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Abstract

The final step in getting an Israeli M.D. is performing a year-long
internship in one of the hospitals in Israel. Internships are decided
upon by a lottery, which is known as “The Internship Lottery”. In
2014 we redesigned the lottery, replacing it with a more efficient one.
This paper presents the market, the redesign process and the new
mechanism which is now in use. There are two main lessons that we
have learned from this market. The first is the “Do No Harm” princi-
ple, which states that (almost) all participants should prefer the new
mechanism to the old one. The second is that new approaches need
to be used when dealing with two-body problems in object assign-
ment. We focus on the second lesson, and study two-body problems
in the context of the assignment problem. We show that decomposing
stochastic assignment matrices to deterministic allocations is NP-hard
in the presence of couples, and present a polynomial time algorithm
with the optimal worst case guarantee. We also study the performance
of our algorithm on real-world and on simulated data.

1 Introduction

Prior to receiving their medical degrees Israeli medical graduates (and for-
eign trained doctors) must participate in a year-long internship program (not
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to be confused with the residency period following their graduation). The
internship is carried out in one of 23 possible hospitals in the country, which
are allocated interns relative to the size of their patient population (with an
advantage to peripheral hospitals), with the smallest allocation being of 4
interns. The internship is perceived as a tax that must be paid: there is
(almost) no correlation between the hospital in which internship was per-
formed to the hospital in which residency is performed, interns work nights
and weekend to receive below minimum wage, and are not getting any tuition
during the internship.1

By and large, interns are not assigned to hospitals on the basis of merit,
since the government wants to spread the more talented interns everywhere.2

Since merit is not a criterion, it makes sense to use some form of lottery
to assign the interns. For many years, the lottery which was chosen was
Random Serial Dictatorship, with some house rules.

In this paper, we describe the market and the different populations of
students, discuss the old lottery and present our new design for the lottery,
which was used first in 2014 (and is also in use this year). We focus this paper
on the lessons we learned, and on techniques that can be used in designing
future markets. More specifically, this paper deals with

1. the “Do No Harm” principle, and the constraint that under some metric
no student will be worse off in the new match,

2. the trade-off between efficiency and truthfulness, and

3. two-body problems in the context of the assignment problem.

In addition, we describe the market, the participants, and share the available
data.

1.1 Background on the internship market

Each year, two different cohorts of students enter independent lotteries which
determine where each student performs her internship. The number of interns
allocated to each hospital is determined independently for each cohort.

1One justification for this tax is that medical studies are highly subsidized by the
government, with a tuition cost of around 2500$ per year. In return, the government uses
the interns as cheap labor in hospitals (all hospitals are operated by the government).

2There is an exception to this rule - five interns with a PhD get to choose where they
want to be assigned.
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The first cohort is composed of students who are in their final year of
their medical school in Israel. This cohort is the more interesting and diverse
one, and contains four populations:

1. a handful of students (usually with a PhD) who get to choose their
internship. From a market design perspective, they can be treated as
reducing the capacity.

2. Couples who wish to be in the same hospital. Unlike the (American)
National Residency Matching Program (NRMP), there is no notion of
preferences over pairs of hospitals. This makes sense: in the NRMP
one spouse may want to be a radiologist, and the other may want to
be a psychiatrist (so they need to rank pairs of programs), whereas in
the current match everyone wants to (well, doesn’t want to, but has to)
be an intern. Around 10% of the interns are involved in a couple, and
most couples are not married, but are just friends who want to share
an apartment if they are stuck in some village where they do not know
anybody. Unlike the NRMP, couples are guaranteed to be interns in
the same place.

3. Students who have kids. This population is characterized by not want-
ing to transfer the family. Hence, they are usually willing to take any
hospital which is a driving distance from home, and are less sensitive
to hospital’s quality.

4. The rest of the students.

In the last decade, the lottery that was used was Random Serial Dicta-
torship, with a few small modifications:

1. The five students who get to pick, choose where they want to go.

2. A couple is considered as one student for the matter of choosing the
permutation. Alternatively, each couple gets two consecutive spots. If
the couple’s top choice among hospitals which have vacancies is A, but
A has just one free spot, they are not allowed to go there and will keep
going down their preferences.3

3It is not clear what happens if all hospitals have just one vacancy when a couple is
chosen. Maybe it just did not happen in recent years. The medical students believed that
couples will always stay together, and this was one of their requirements.
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3. Every year there is a vote about what to do with students with kids
(sometimes an advantage is given only to students with two or more
kids). The options are to treat them as regular students, to let them
take part in the lottery but promise them a seat in their district (the
country is divided into five districts for that matter), or to promise
them a seat in their district, without participation in the lottery (so
they lose the chance to get good hospitals). When the last option is
being used, most parents do not declare themselves parents, as they
claim that this is not really a benefit.

The second cohort consists of graduates of foreign schools, who want to
become Israeli doctors. This only applies to students who studied in certain
countries and have no experience, and most of this cohort is composed of
Israelis who were not accepted to medicine in Israel, and studied in Jordan
or in Europe with the intention of going back to Israel after graduation.

For the foreign cohort, the internship lottery is run by the Ministry of
Health (MoH). There are no votes or appeals, and rules are simpler. For
the Israeli cohort, the MoH just decides on the capacities, and delegates the
rest of the lottery process to a committee of students, elected by the student
body. It is common that the committee puts important decisions (such as
the parental benefits) to vote by the entire student body.

2 The redesign process

We were first approached in 2010 by several medical students who asked for
help in redesigning their market. They had two things which worried them:

1. giving fair benefits to parents. They felt that parents should be treated
differently, but it should not be at the expense of other students, and
were not sure how to do this, and

2. they wanted to improve the efficiency of the system.

We took part in the internship committee of 2011, to understand their de-
mands better. They added a couple of technical requirements:

1. Do No Harm: The redesign process should not hurt any population of
students. Everyone should be (weakly) better off in the new design (at
least in expectation).
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2. In particular, students should have the option of matching together,
just like they did up until then. A couple should get a guarantee that
they will be matched together.

The 2011 class was also generous enough to share their data with us.
Our initial idea was to use some form of Probabilistic Serial [5]. However, the
results were very similar to RSD, and we wanted to improve efficiency. Hence,
we decided to use a rank efficient mechanism, which essentially amounts to
maximizing some linear function on the number of students who get their
i’th rank, for every i.

To cope with the DNH principle, we ran surveys, in which we gave stu-
dents two possible vectors of probabilities (for being assigned to each hospi-
tal), and asked them which is better. We took the data, and tried to find
a simple utility model for it. The model we ended up using is that there
are m hospitals, and you have probability p to get to rank i, this gives you
p(m− i+1)2 points of happiness, and a profile with more happiness points is
better. While one could find a better fit to the model using more parameters,
we were happy that there are no constants that we need to compute. We
also defined a different happiness function for parents, but it was not used
(see below).

Given that we have a definition of happiness, we first compute for every
intern what would be her expected happiness under RSD. Then we choose al-
location probabilities to maximize total happiness, conditioned on capacities
and on the DNH principle – that every agent is happier under the current
algorithm. Given the probability matrix, we decompose it to a convex sum
of assignment matrices (more on that in section 3), and choose a matrix at
random (according to the weights).

Switching to the new mechanism We proposed the new mechanism to
the class of 2012, but were rejected. They did not want to have anything to
do with computers, and were afraid of bugs and backdoors.

For the 2013 class we approached the MoH. We understood that the MoH
is less conservative than the student body, as it has more to gain from new
ideas: if the student body is given a new idea who would make it better off
for with probability 0.4 and worse off with probability 0.6, then they should
reject it. However, under these terms it is in the MoH’s best interest to try
the new idea. If the new idea is a failure than one class pays the price, but
if it is a success then future generations will use it as well. In the MoH we
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found moral support, more data, but no willingness to try the new system.
Their main argument was that they do not want to interfere in something
which is traditionally run by the students, and are not willing to use the
foreign trained students as guinea pigs.

For the 2014 class we went back to the student internship committee.
At this stage we had a large quantity of historical data to present about
both algorithms, and also had a new idea: we will not run the lottery with
a computer, but rather hand them the decomposition of the matrix into a
weighted list of assignments, and let them choose the assignment. This way
they can compute their own marginal distributions, and verify that there is
no backdoor.4 This persuaded the committee to put this for a vote (along
with the parental benefits for that year), with the condition that the new
algorithm will be used only if it wins an absolute majority. 80% of the medical
graduates who participated in the poll (55% of the students) voted in favor
of the new approach. Following the successful vote, we indeed implemented
the algorithm and it was used to assign interns on 2014. In addition, it was
used for the foreign cohort that year. A subsequent vote of the following
cohort of interns, that took place on January 2015, certified the continued
use of our algorithm for 2015, and the foreign trained interns will keep using
it until further notice. In order to increase transparency we explained the
student body the rules of the new match [6].

We have ran a survey in the class of 2014, presenting students with their
marginal distribution under RSD and under the new algorithm, and received
supportive feedback. However, we were asked by the student committee to
distribute the survey only to committee members, as we ran it after the
lottery was over and they wanted to let the dead rest. This turned out to be
very unfortunate, as the class of 2015 was mad at us for not handing each
student in 2014 his or her marginal distribution. We have agreement from
this year’s committee to perform the survey with the entire body of students.

In the years 2014 and 2015, the students voted against giving any parental
benefits. We think that the main source for this vote is not our algorithm,
but a new school of medicine which accepts students who already earned an
undergraduate degree (usually in Biology) and want to undergo retraining
and perform a career change. The graduates of this school constitute the

4To be more exact, they can compute their marginal distributions to see that they are
better off, and the distributions of the members of the committee to see that no one is
cheating.
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majority of parents in the market, and therefore it became an issue of “help-
ing students in the other school” which attracts less sympathy than “helping
the parents in my class”.

Truthfulness and efficiency Our main concern with the new mechanism
is that we sacrifice truthfulness (at least to some degree) to achieve efficiency.
This is probably a necessity: [13] showed that in large random market all
asymptotically efficient, symmetric, and asymptotically strategy-proof mech-
anisms are equivalent to Random Serial Dictatorship. While in theory it
could be that our market is not large enough, or that there is something spe-
cial in the valuation profiles we face, it is unlikely that this is the case. Hence,
any improvement in the welfare will lead to a non-truthful mechanism, such
that some agents will be able to deviate and make a non-negligible gain.

When choosing between truthfulness and efficiency, we need to remember
that truthfulness is a means, while efficiency is an end. We see two main
arguments for truthful mechanisms:

• Truthful mechanisms reduce cognitive burden for the participants.

• When bidding is truthful, the designer can evaluate the welfare. When
bidding is not truthful, such evaluation is not possible.

We think that for this market, one can mitigate the disadvantages of a non-
truthful algorithm, and the gain in welfare is big enough to warrant some
degree of untruthfulness. Specifically, we believe that bidding today is truth-
ful (as much as anything can be truthful in ranking 25 priorities), and that
if in the future a large body of students would bid untruthfully, then discus-
sions in forums and on Facebook revolving around strategic bidding would
emerge. We know that in the past, it was a common (and illegal) practice to
sell and buy internship positions after the lottery.5 Negotiating these deals
was done through social media, and it was not too difficult for us to find it.
Discussing bidding strategies should happen through the same channels, and
be less hidden (since there is nothing wrong about it).

5In theory, there should be no trade following a lottery if monetary transfers are not
allowed. In practice, internship begins at least ten months (and sometime eighteen months)
after the lottery is conducted, so it makes sense that someone who would want a desired
hospital in city A would want to move to city B for some personal reason. Moreover, as
mentioned, illegal monetary transfers were conducted. The students would approach the
MoH, asking to trade places, hiding any financial agreement, and would be granted the
permission to trade. The market price of a good internship used to be 2500$.
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3 Couples in the assignment problem

This section will deal with the students internship committee’s second condi-
tion, and how we were able to comply with it. In the past, any two students
were allowed to declare that they are a “couple” and be matched together
(that is, to the same hospital) by receiving only one joint turn in the Ran-
dom Serial Dictatorship. The committee required us to give couples the
same option under the new algorithm. Similar to several other algorithms
for assignment of indivisible objects (e.g., [10, 5]), our algorithm “trades”
probabilities among participants (based on their preferences), and reaches
a stochastic matrix that has to be decomposed into a convex combination
of valid assignments. The last step uses the famous Birkhoff-von Neumann
decomposition process [4, 19]. The fact that couples cannot be split imposes
(hard) complementarity constraints, which invalidates some of the assign-
ments, and consequently the decomposition process may become harder or
even impossible. On the bright side, only stochastic matrices in which both
members of the couple get exactly the same probability for each hospital are
candidates for decomposition. Is this little advantage enough to make the
problem solvable? And if not, what could be done?

In this paper we first show that not only is the problem often not solvable
when there are couples, but also that it is NP-hard to determine whether a
given stochastic matrix with couples can be decomposed (Theorem 1). This
result extends trivially to environments with more general complementarities
between groups of participants.

Our second main contribution is in bypassing this impossibility result by
providing a polynomial time approximation algorithm that outputs a convex
combination of valid assignments that is similar to the target stochastic ma-
trix. We show that the approximation is tight and behaves like 2/q, where q
is the capacity of the smallest hospital participating in the match. In the last
section of the paper we consider several extensions of the algorithm that can
be useful for other applications. We also use anonymized preferences data
provided by the MoH to subsample and test our algorithm performance. We
find that our algorithm often performs significantly better on actual data
(compared to the theoretical bounds we establish).
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3.1 Our Results

1. It is NP-hard to determine whether a stochastic matrix with couples can
be decomposed into a convex combination of deterministic assignments
with couples.

2. It is possible to approximate such a decomposition in polynomial time.
The approximation is tight and its quality is reciprocal to the smallest
hospital’ capacity.

3. Subsampling real preferences data from the Israeli Medical Internship
Match for which the approximation was developed shows excellent per-
formance of the approximation algorithm.

3.2 Related Work

The assignment problem with couples is a specific case of multi-unit alloca-
tion of indivisible objects without transfers (for example, course allocation),
and we indeed intend for our treatment to convey a message regarding the
more general case. [7] provides a deterministic algorithm to find an ex-post
efficient allocation that represent an approximately competitive equilibrium
from approximately equal incomes. [8] suggest a decomposition in the spirit
of Birkhoff and von-Neumann, but complementarities are not allowed. A
contemporary working paper by [14] is the closest to ours, and it solves the
problem of allocating bundles of indivisible objects by assuming (like we
do) that bundles are limited in size, and that the capacity constraints are
“soft”. While we insist on capacities being met, allowing deviations as those
of Nguyen et al. and then correcting them in a smart way will give a re-
sult similar to our approximation result (Theorem 3, see also Section 5). [2]
suggest a different kind of approximation, by ignoring the couples constraint
with a small probability.

The motivation for decomposing stochastic assignment matrices comes
from mechanisms that efficiently allocate probabilities in the interim stage.
Notable contributions for the case of single-item assignments are [10] who
proposes a competitive equilibrium from equal incomes approach, [5] who
suggest the Probabilistic Serial mechanism which is ordinally efficient (i.e.,
interim efficient given ordinal preferences and not cardinal preferences), and
[9] who studies rank-efficient mechanisms (similar in spirit to the one im-
plemented by us for the Israeli Medical Internship Match). We note that
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several authors have dealt with the case of object assignment when objects
are the endowment of some agents, in which case the top-trading cycles (or
a variation thereof) is often the mechanism of choice (see, e.g., [17, 1]).

Finally, the affect of couples in matching problems has also been studied
in the context of two-sided matching. See, for example, the works by [12]
and [3]. A treatment more related to our current approach is provided by
[15].

3.3 Model and Notation

An assignment problem with couples is a tuple (S,C,H,M). S is a finite set
of single interns, C a finite set of couples of interns, with each c ∈ C being a
set of two interns c = {c1, c2}. We denote by I = S ∪

(⋃
c∈C c

)
the set of all

interns. H is a finite set of hospitals. M ∈ [0, 1]I×H is the target matrix and
it satisfies

1. ∀i ∈ I :
∑

h∈HMi,h = 1, and

2. ∀(c1, c2) ∈ C, h ∈ H : Mc1,h = Mc2,h.

We let qh =
∑

i∈IMi,h be the capacity of hospital h, and q = minh qh be
the capacity of the smallest hospital. Let P be the domain of all assignment
problems with couples. We specify two special sub-domains of P : PC=∅ is
the set of problems without couples (i.e., C = ∅), and PS≥C is the set of
problems in which singles receive more weight than couples in every hospital
(i.e., ∀h ∈ H :

∑
s∈SMs,h ≥ 2

∑
c∈CMc1,h).

A matrix M ′ ∈ [0, 1]I×H that satisfies conditions (1) and (2), and ∀h ∈
H :

∑
i∈IM

′
i,h = qh is called a stochastic assignment matrix (with respect to

P ). If all the elements of a stochastic assignment matrix (with respect to
P ) are in {0, 1}, then the matrix is called a deterministic assignment matrix
(with respect to P ). A stochastic assignment matrix M ′ is decomposable if
it can be represented as a convex combination of deterministic assignment

matrices, i.e.,
{(
λk,Mk

)}K
k=1

such that for each k, λk ∈ (0, 1) and Mk is a

deterministic assignment matrix,
∑K

k=1 λ
k = 1, and M ′ =

∑K
k=1 λ

kMk. A
straightforward extension of the Birkhoff-von Neumann theorem shows that
on the sub-domain PC=∅ all target matrices are decomposable. In Section 3.4
we show that on the general domain, P , it is NP-hard to verify whether a
target matrix is decomposable.
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We say that a convex combination of deterministic assignment matrices{(
λk,Mk

)}K
k=1

ε-approximates a target matrix M if∣∣∣∣∣
∣∣∣∣∣|M −

K∑
k=1

λkMk| · ~1[I]

∣∣∣∣∣
∣∣∣∣∣
∞

< ε,

where ~1[I] is a vector of ones of size I, so we approximate the maximum value
over the L1 norm of each row.

A decomposition algorithm A takes a problem P ∈ P and outputs a
convex combination of deterministic assignment matrices (with respect to
P ). We say that A provides an f -approximation on domain P ′ if for every
P ∈ P ′, A(P ) f(P )-approximates M . Our aim in Section 3.5 is to provide
a lower bound for the optimal approximation on P , and an upper bound for
the optimal approximation on PS≥C .

3.4 NP-hardness result

Theorem 1. On the domain P, determining whether the target matrix is
decomposable is in NPC.

Proof. We will reduce 3-edge coloring of cubic graphs to the interns-hospitals
assignment problem, ([11], proved that 3-edge coloring of cubic graphs is in
NPC).

Let G = (V,E) be a cubic graph with |V | = n vertices and m = 3n/2
edges. For each edge e let us have 3 hospitals A(e), B(e), C(e), each of
capacity 2. For each vertex v and each color i ∈ {1, 2, 3} let us have a hospital
(v, i) with capacity 1. Thus altogether we have 3m hospitals of capacity 2 and
3n hospitals of capacity 1, total hospital capacity is 3n+6m = 3n+6·3n/2 =
12n.

Now for each edge e = (u, v) we have one couple that wants to be either
in A(e) or in B(e) or in C(e), each with probability 1/3 and we also have 6
single interns as follows:

• First single wants either A(e) with probability 2/3 or (u, 1) with prob-
ability 1/3.

• Second wants either A(e) with probability 2/3 or (v, 1) with probability
1/3.
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• Third wants either B(e) with probability 2/3 or (u, 2) with probability
1/3.

• Forth wants either B(e) with probability 2/3 or (v, 2) with probability
1/3.

• Fifth wants either C(e) with probability 2/3 or (u, 3) with probability
1/3.

• Sixth wants either C(e) with probability 2/3 or (v, 3) with probability
1/3.

Note that altogether we have (2 + 6)m = 8 · 3n/2 = 12n interns. Hence,
any assignment of all of them uses all capacity of all hospitals.

Suppose first that G is class 1 (that is, it is 3-edge colorable). Fix a
proper 3-edge coloring by colors 1, 2, 3. Each such coloring corresponds to a
full assignment of all interns as follows:

If edge e = (u, v) is colored 1 then the couple is in A(e), First single
intern is in (u, 1), second in (v, 1), third and forth in B(e), fifth and sixth in
C(e). If e is colored 2 and 3 we proceed symmetrically in the obvious way.
It’s clear that this is a full assignment.

Now give this assignment weight 1/3, and give weight 1/3 to each of the
two other assignments obtained from it by cyclically shifting the colors of all
edges. This gives a decomposition of our matrix of probabilities.

Conversely, if there is a decomposition, then any single assignment in its
support must be a full assignment (assigning all interns and saturating all
hospitals). But this means that for each edge e, among the 8 interns corre-
sponding to this edge, 6 including the couple are assigned to the hospitals
A(e), B(e), C(e) and there is a unique i ∈ {1, 2, 3} so that two of the single
interns are assigned to (u, i) and (v, i) and thus G is 3-edge colorable, as
needed.

3.5 Approximation

3.5.1 Lower bound

Theorem 2. If A provides an f -approximation on PS≥C, then for any n ∈ N
there exists P ∈ PS≥C such that |I| ≥ n and f(P ) ≥ 2

q+2
.
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Proof. Given n ∈ N, let q = 4dn
8
e. Let S =

{
s1, . . . , s 1

2
q+1, s

′
1, . . . , s

′
1
2
q+1

}
,

C =
{
c∗, c1, . . . , c 1

4
q−1, c

′
1, . . . , c

′
1
4
q−1

}
, and H = {h, h′}. Consider the tar-

get matrix M ∈ PS≥C described in Table 1. Under this stochastic as-

signment matrix each single intern in
{
s1, . . . , s 1

2
q+1

}
and each couple in{

c1, . . . , c 1
4
q−1

}
gets a probability 1 to be assigned to h, each single intern in{

s′1, . . . , s
′
1
2
q+1

}
and each couple in

{
c′1, . . . , c

′
1
4
q−1

}
gets a probability of 1 to

be assigned to h′, and the couple c∗ gets an equal probability to be assigned
to either h or h′. Note that the capacity of both hospitals is q.

Table 1: Target matrix for proof of Theorem 2
h h’

s1 1 0
... 1 0

s 1
2
q+1 1 0

s′1 0 1
... 0 1

s′1
2
q+1

0 1

c∗,1 0.5 0.5

c∗,2 0.5 0.5

c1,1 1 0
c1,2 1 0

... 1 0
c 1

4
q−1,1 1 0

c 1
4
q−1,2 1 0

c′1,1 0 1

c′1,2 0 1
... 0 1

c′1
4
q−1,1 0 1

c′1
4
q−1,2 0 1

In any convex combination that approximates M , one of the hospitals
will be assigned at least 1

4
q of the couples with a weight of at least 1

2
. This
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means that with probability 1
2

the left over capacity for single interns is at
most 1

2
q, where as the single interns require 1

2
q + 1. The optimal way to

minimize the deviation from the singles probability would be to divide the
deviation equally among all the relevant single interns. This means that

each individual intern in the relevant hospital will get at most 1
2
· 1 + 1

2
·

1
2
q

1
2
q+1

instead of getting 1, and to complete the individual’s total probability to 1,

the single will get 1 − (1
2
· 1 + 1

2
·

1
2
q

1
2
q+1

) to the other hospital (instead of 0).

Therefore the approximation cannot be better than:

2

(
1− 1

2
· 1− 1

2
·

1
2
q

1
2
q + 1

)
=

2

q + 2

(
=

2

q + 2

)

One may argue that the example provided in the proof for Theorem 2
seems quite pathological. Indeed, the target matrix allocates many interns
either h or h′ with probability 1. There could be scenarios in which it would
be very reasonable to consider only target matrices in which each intern’s
probability of reaching any particular hospital is bounded by some expres-
sion related to the number of hospitals (see also the concluding discussion).
Nevertheless, in our main application the chosen algorithm involves trading
probability between interns, and so it often outputs target matrices that are
close to being pathological in exactly the same sense. This motivates our
approximation metric and the consideration of extreme cases. More impor-
tantly, a similar bound can be achieved even if probabilities are restricted
to being small, although the problems are not in the domain PS≥C (see Ap-
pendix A). Finding a lower bound in the domain PS≥C when probabilities
are constrained to be “small” remains an open problem.

3.5.2 Suggested algorithm for upper bound

We present an approximation algorithm for decomposing any matrix M ∈ P .
The algorithm can be roughly divided into two main stages: the first stage
deals only with couples and assigns them to hospitals according to their
probability in M , and the second stage ’fixes’ the probabilities of the single
interns in M to match the assignment of the couples from the first stage.
In the second stage the over-demanded capacity taken by the couples in any
specific hospital is deducted from singles’ demand according to a division
which preserves the weight of each single intern in the singles’ demand.
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The algorithm starts by “enlarging” each hospital capacity to the sum of
the couples probabilities to be assigned to h divided by two and rounded up to
the nearest integer. The couples now behave like singles, and for each hospital
we add a new single to take the “extra” capacity (the new single’s demand
is completed by a dummy hospital, h∅). Doing so for all hospitals gives
us a new stochastic assignment matrix containing only “singles” (with each
single representing an original couple), and it can be decomposed using the
Birkhoff-von Neumann theorem, to get a convex combination of deterministic
assignment matrices that represent the allocation of the couples. In some of
these assignment the couples take slightly more capacity than their expected
share (but only up to the nearest multiple of two).

In the second stage of the algorithm, we look at the residuals of the first-
stage assignment. For each couples assignment and for each hospital we check
whether the couples exceeded their expected share in that hospital, and if
so, we let all the singles reduce their demand by their respective weights.
The missing demand is directed at a dummy hospital, h∅. We again have a
stochastic assignment matrix containing only singles that can be decomposed
using the Birkhoff-von Neumann theorem.6 The output of the decomposition
assigns some of the singles to the dummy hospital, so we move them to vacant
positions arbitrarily. The algorithm then combines back the first-stage and
the second-stage assignments to get a valid deterministic assignment matrix
with respect to the original problem.

The full algorithm’s pseudo-code can be found in Algorithm 1.

Theorem 3. Algorithm 1 provides an f̄ -approximation on PS≥C, where
f̄(P ) = 2/q.

Lemma 4. Algorithm 1 runs in polynomial time.

Proof. The size of the convex combination
{(
λk,Mk

)}K
k=1

related to the cou-
ples is polynomial, also we use Birkhoff’s proof which provides a constructive
algorithm for the implementation of the decomposition [16] in polynomial
time, so the whole algorithm is polynomial.

of theorem 3. In the first part of the algorithm (lines 1 through 10) the cou-
ples are allocated exactly their demanded capacity. This is done by taking

6Strictly speaking, the demand needs to be rounded up to the nearest integer, and this
can be done again by adding dummy interns for each hospital, and putting all the leftover
demand in the dummy hospital.
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Algorithm 1 Approximation

Input: A stochastic assignment matrix M I×H ∈ P
1: S ′ = C ∪H, H ′ = H ∪ {h∅}
2: Create a new matrix M ′ ∈ [0, 1]|S

′|×|H′| (initialize with zeros)
3: for all h ∈ H do
4: for all c ∈ C do
5: M ′

c,h = Mc1,h

6: end for
7: M ′

h,h = d
∑

c∈CM
′
c,he −

∑
c∈CM

′
c,h

8: M ′
h,h∅

= 1−M ′
h,h

9: end for . We get that (S ′, ∅, H ′,M ′) = P ′ ∈ PC=∅

10: Decompose M ′ into a convex combination of deterministic assignment

matrices
{(
λk,Mk

)}K
k=1

(with respect to P ′)
11: Create an empty set of allocations ψ = {}
12: for k = 1 to K do
13: H̃ = H ∪ {h∅}
14: Create a new matrix M̃ ∈ [0, 1]|S|×|H̃| (initialize with zeros)
15: for all s ∈ S do
16: for all h ∈ H do
17: if

∑
c∈CM

k
c,h >

∑
c∈CM

′
c,h then . If couples exceeded their

quota
18: M̃s,h = Ms,h − Ms,h∑

s′∈SMs′,h
· 2
(∑

c∈CM
k
c,h −

∑
c∈CM

′
c,h

)
19: else
20: M̃s,h = Ms,h

21: end if
22: end for
23: M̃s,h∅ =

∑
h∈HMs,h −

∑
h∈H M̃s,h

24: end for . We get that (S, ∅, H̃, M̃) = P̃ ∈ PC=∅

25: Decompose M̃ into a convex combination of deterministic assignment

matrices
{(
λ̂l, M̂ l

)}L
l=1

(with respect to P̃ )

26: for l = 1 to L do
27: Stitch Mk and M̂ l into a valid deterministic assignment matrix

Mk,l for P . Couples get the hospitals they are assigned under Mk, singles
not assigned to h∅ get the hospitals they are assigned under M̂ l, and
singles assigned to h∅ get the rest of the vacant positions (arbitrarily)

28: Add
(
λk · λ̂l,Mk,l

)
to ψ

29: end for
30: end for
31: Output ψ
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only the couples, treating them as single agents, enlarging the capacities re-
lated to the couples so that they would be an integer, and add a dummy
hospital to take all the left-over probabilities of the dummy agents. Then it
is possible to use the Birkhoff-von Neumann decomposition.

We note that since each hospital has only one related dummy agent,
then the capacity taken by the couples is always either the full (rounded up)
capacity of the hospital according to M ′, or one less than that. If it is the first
case, the singles can be allocated their entire demand for this hospital in the
next step. However, if the couples exceeded their fractional capacity, we “fix”
the demand of the single interns, and each intern i loses 2 (dq′he − q′h) times
his weight in the sum of probabilities of singles, where q′h =

∑
c∈CMc1,h.

Let yh be the total weight given the matrices of the second kind (for a
certain hospital h). Then the following holds:

(1− y) · bq′c+ y · dq′he = q′h (1)

If we denote by xh = q′h − bq′hc the fractional part of the couples’ total
probability we get yh = xh/2. Now each time the second case materializes,
the singles lose 2 − xh. The total loss is given by (2 − xh) · xh2 , which is
maximized at xh = 1. Since we assumed that each hospital contains more
singles interns than interns who are part of a couple, each single s losses at
most Ms,h · 12/

qh
2

= Ms,h/qh.
Across all hospitals, each single intern s losses at this point at most∑
h∈HMs,h/qh ≤ (

∑
h∈HMs,h)/q = 1/q. However, in the last phase of the

algorithm (line 27), singles receive back their “lost probability” in arbitrary
hospitals, and so each single can deviate up to 1/q further from her endow-
ment, resulting in a total of at most 2/q.

4 Experimental results

In this section we characterize the interns’ preferences and provide simulation
results using the Israeli Medical Internship Match data provided to us by the
Israeli MoH. The data contained the preferences of interns starting from
1995. However, due to significant changes in the hospitals and the internship
conditions in them, some of the earlier data cannot be treated as coming
from a similar distribution to the more recent data. We therefore focused
only on preferences from the years 2010-2014. During those years there
were 23 possible hospitals for each intern to rate, and interns must rank all
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hospitals. The number of interns varied from one year to another, but it is
always around 500, and the number of internship positions is always equal
to the number of interns. Preferences of foreign trained doctors are also
available to us, but only until the year 2012.

4.1 Description of interns’ preferences

Looking at the interns’ preferences, there are several interesting points to be
made. The first is that preferences are geographically driven. For example,
ranking the hospitals according to the number of students who listed this
hospital as their top priority (this is the ranking published by the MoH), we
see that in the top five hospitals there are two hospitals from the center, one
from the north, one from the south, and one from the Jerusalem area (these
are four of the districts in Israel). However, for any given student, such a
geographically dispersed ranking is very unlikely. Indeed, except for Ichilov
hospital (a hospital in the center of Israel which represents the top option for
most of the population), it is common that all the top choices of a student
come from the same geographic area.7 To measure this effect, Figure 1 shows
the percentage of interns whose top k choices all came from the same area,
for k = 2 to 10 (this graph ignores Ichilov hospital). Note that if choices
were random, one would expect an exponential decay, where here we see a
linear decay.

Figure 1: Geographical orientation at the top of the list
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Another interesting point is the differences between the Israeli interns
(interns who studied medicine in Israel) and the foreign trained doctors. For-

7It is known that one can always swap Ichilov hospital later for something else. Hence
some students pick it first, because they want the flexibility – the lottery is conducted
between ten and eighteen months before the internship starts.
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eign trained graduates have even stronger geographic preferences than Israeli
ones. This helps explain another difference between these two populations’
preferences: their performance in the old RSD mechanism. Under that mech-
anism the average rank of hospital that the Israeli interns received was 4.594,
whereas the foreign trained doctors (who are matched separately) received
an average rank of 2.549. Similarly, under the new mechanism the average
rank of Israeli interns was improved to 3.686, and the foreign trained doctors
got 2.042. Our hypothesis was that the foreign trained doctors’ preferences
therefore exhibit more heterogeneity in some sense.8

To verify that foreign trained doctors’ preferences are more heterogeneous,
we grouped preferences according to the top three hospitals, sorted by fre-
quency, and plotted the percentage of students who chose the most common
triplet, one of the two most common triplets, and so on. For example, if
the most common triplet for the foreign trained doctors is A,B,C, and the
second most common is B,C,A, we are interested in the fraction of students
whose top three choices are A,B,C, and at the fraction of students whose
top three choices are either A,B,C or B,C,A. The results are presented in
Figure 2. The right panel shows that the cumulative distribution of local in-
terns is much higher than the cumulative distribution of the foreign trained
doctors. The top ten triplets cover almost 50% of the Israeli interns, but
only about 20% of the foreign trained doctors. Amazingly, even the density
of each of the top 10 triplets (which are not necessarily the same among the
two populations) is higher for the local interns (as depicted by the left panel).
This indicates that their preferences are indeed much more homogeneous, at
least at the top of the distribution. We note that Figure 1 suggests that for-
eign trained doctors do exhibit a higher tendency to group hospitals by area.
The only reasonable conclusion is that while foreign trained doctors care a lot
about geography, there are less prone to select necessarily the center of Israel
as their preferred location, or that they tend to have more heterogeneity in
ranking hospitals within each area.

We also tried to study the differences between the preferences of singles
and couples, but did not reach any significant conclusions. Furthermore,
while we did not perform a thorough analysis, it is likely to assume that
preferences depend also on the medical school in which an intern completed
her medical studies, for both personal reasons (already lives in the same city)

8The common conspiracy theory is that the MoH gives them more seats at the preferable
hospitals. We have verified the numbers and the conspiracy theory is incorrect.
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Figure 2: Distribution of top triplets (left panel: density, right panel: cumu-
lative)
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and professional reasons (knows the hospital better from her time at medical
school). This by itself might not have an impact on designing a mecha-
nism, but it may be of interest for understanding better the distribution of
preferences and what creates heterogeneity.

4.2 Simulation results for the algorithm

In the simulations we used a subsampling method, i.e., we drew preference
profiles from the union of all data points, where we distinguish between
preferences that were submitted by single interns and preferences that were
submitted by couples. This allowed us to create multiple “possible markets”,
each with |I| = 496 (which was the actual number of interns in 2014) and
with 24 couples. For each point in the figure we used 5,000 different market
draws.

To create Figures 3 and 4, we drew markets (in the sense explained above),
then used our assignment mechanism to generate the matrix M , to which Al-
gorithm 1 was applied. While Theorem 3 only ensures approximation quality
of 2/q, we can clearly see in Figure 3 that although in our case q = 4, the

average performance of our algorithm is far better than 1
2

(the red vertical
line). One reason for the difference between the theoretical prediction and
the data is that our analysis assumes that the percentage of singles’ weights
is equal across all hospitals (see also the concluding discussion). The second
and much more important reason is that even after applying the probability
allocation mechanism, pathological examples similar to the one presented in
Theorem 2 are relatively rare. A third reason is that the arbitrary way in
which singles were allocated at the end of the algorithm may in fact improve
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the performance.9 We note that the spike at the left side of the distribution
occurs exactly because of a small hospital to which couples are likely to be
allocated because of their (non-random) preferences (indeed, this spike disap-
pears completely in Figure 5 which uses random allocation of probabilities).

Figure 3: The histogram shows the distribution of the maximum value over
the L1 norm of each intern in the absolute distance between the original
assignment matrix and the approximated one. The red dashed vertical line
represents the theoretical upper bound.
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For completeness, Figure 4 depicts the distribution of
|M−

∑K
k=1 λ

kMk|·~1[I]

|I| ,
which is the average L1 norm. This metric was not analyzed theoretically, but
it is of much interest to the social planner. It roughly means that while the
intern who got her probability vector changed the most suffered an average
of at about 15% change, the average intern’s probability vector was only
changed by less than 2%.

Figure 4: The histogram shows the distribution of the average value over
the L1 norm of each intern in the absolute distance between the original
assignment matrix and the approximated one.
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9One may consider replacing the arbitrary assignment with a more sophisticated
method to slightly improve the results. We did not pursue this direction any further.
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In order to separate the effect of the LP mechanism used to generate
probability matrices, we also produce similar figures for matrices produced
randomly using the iterative algorithm of [18] (but only select those within
our sub-domain of interest, PS≥C), with the same market size as used for
Figures 3 and 4. Figure 5 indeed reveals that using random matrices reduces
the maximal impact by a factor of about 5. However, it is evident from
Figure 6 that the average intern’s probability vector is now more susceptible
to changes following the application of our approximation algorithm.

Figure 5: The histogram shows the distribution of the maximum value over
the L1 norm of each intern in the absolute distance between the original
assignment matrix and the approximated one, for randomly generated values.
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Figure 6: The histogram shows the distribution of the average value over
the L1 norm of each intern in the absolute distance between the original
assignment matrix and the approximated one, for randomly generated values.
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Finally, we also tried to see what would have happened to the performance
of our algorithm if couples’ preferences were more capacity-driven compared
to their true distribution. For this test, we used the same distribution for
singles’ preferences, but each couples’ preference was created by drawing
hospitals one by one, where every time the draw is from those hospitals not
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drawn yet, and with the capacity of the hospital being the weight in the
random draw. This made couples like big hospitals better than they like
small hospitals, and thus the minimal weight of singles in all hospitals went
up, and our algorithm’s performance was improved (see Figures 7 and 8).

Figure 7: The histogram shows the distribution of the maximum value over
the L1 norm of each intern in the absolute distance between the original
assignment matrix and the approximated one, for capacity-driven couples.
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Figure 8: The histogram shows the distribution of the average value over
the L1 norm of each intern in the absolute distance between the original
assignment matrix and the approximated one, for capacity-driven couples.
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Figure 7 presents a funny double-peaked distribution. The reason for this
is not lack of experiments, but rather whether or not a couple has a chance
of getting to a hospital with capacity 4. Since the LP is an affine maximizer,
if a couple has a chance to get to this small hospital, then this probability
will be non negligible (in the order of at least 0.3 or so). If the couple has
a chance to get there then rounding the probabilities of the intern there will
give the intern with the highest discrepancy in the decomposition. One the
other hand, if no couple ever gets to that hospital the decomposition there
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is always perfect, and we need to worry about the second smallest hospital
(which already has twice the number of interns than the smallest hosptial).

5 Extensions

5.1 Lower percentage of singles in each hospital

For the sake of simplicity we focused on the domain PS≥C in which there are
more single interns than interns who are part of a couple in each hospital. It
is easy to generalize our results to the domain of PS≥αC , in which in every
hospital the total weight allocated to single interns is at least α times the
total weight allocated to couples (∀h ∈ H :

∑
s∈SMs,h ≥ α · 2

∑
c∈CMc1,h),

for some positive α.
The example given in Theorem 2 can be modified to have 2α

1+α
q+2 singles

and 1
1+α

q−1 couples, and the resulting bound will be 1

( α
1+α)q+1

. The approx-

imation algorithm stays exactly the same, and it provides an approximation
of 1

( α
1+α)q

.

On a similar note, we remark that presenting the approximation as de-
pending on the minimal capacity was a matter of choice. A slightly more
accurate bound can be formulated in terms of the minimal singles’ demand
across hospital, i.e., minh∈H

∑
s∈SMs,h

(
≥ α

1+α
q
)
. This bound works much

better when for some reason couples focus their demand on larger hospitals.

5.2 Groups larger than two

In the Israeli Medical Internship Match, interns were only allowed to register
either as singles or as couples. However, other applications may require larger
groups to be assigned together. To extend our solution to larger groups it
is possible to replace the first stage of the algorithm (the one which rounds
up the capacities demanded by the couples and allocates the couples) by the
allocation method of [14] (without the singles). Their algorithm ensures an
allocation that deviates from the initial allocation by at most k − 1 seats in
each hospital, where k is the size of the largest group. We can then take
the remaining capacities and split them among the singles in a similar man-
ner, and the analysis of the upper bound will remain similar (the coefficient
however will change according to k). Obviously, our two extensions can be
combined.
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6 Conclusion

In this paper we described a recent application of knowledge and research
in market design to the problem of allocating interns to internship positions
in Israel. Our data exhibited several very interesting characteristics that
lead us, for example, to recommend (or at least suggest for consideration)
merging the two cohorts (of local interns and foreign trained doctors) and
assigning them using the same mechanism, since there are likely significant
gains to trade. A näıve attempt that we made in putting combining these
two populations resulted in an improvement for both populations under the
new mechanism, and an improvement only for the local interns under RSD
(with the foreign trained doctors receiving a worse expected rank). However,
it is possible that the MoH will decide that the DNH principle should apply
here as well and that the baseline that should be taken is not RSD on the
merged population, but rather two independent runs of RSD (one for each
population) and running the linear program on top of it.

We expect that decomposing stochastic matrices under small comple-
mentarity constraints will rise in other applications. Consider for example
a lottery which assigns students to courses. A student needs to care about
her probability of getting each course, but would also like the guarantee that
two courses will not overlap. While the algorithm we presented here has a
worst case approximation ratio 2/q (where q is the minimal capacity in the
problem), it behaves much better on simulated and on real data. The reason
for this better behavior is that couples do not necessarily concentrate in the
small hospitals (and indeed making couples prefer big hospitals improves the
performance).

6.1 Open questions

1. What is a more principled way of balancing strategy-proofness with
efficiency? We did not pay any extra price for strategy-proofness (in
addition to the price for the DNH principle).

2. The students ended up giving no advantages to parents in 2014 and
2015. How would the algorithm behave given a population which con-
sists also of parents? Is there a more principled way to cope with
parents?

3. For the assignment problem with couples, what is the lower bound for
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approximation within the domain PS≥C and with elements of M being
“small”?

4. For the assignment problem with couples, our approximation algorithm
and analysis assumed that couples must be matched to the same hos-
pital. Can a similar approximation be found when couples can be in
different hospitals within the same city?
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A Lower Bound for small probabilities

Define an example with

H = {h1, . . . , h2m, h′1, . . . , h′2m} ,
S = {s1, . . . , s2m(2k+1)}, and

C = {c1, . . . , c(2k+1)m},
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where m and k are integers. Consider the target matrix M ∈ PS≥C described
in Table II. Under this stochastic assignment matrix each single intern in S
gets a probability 1

2m
to be assigned to each hospital in {h′1, . . . , h′2m}, and

each couple in C gets a probability of 1
2m

to be assigned to each hospital in
{h1, . . . , h2m}. One can verify that the capacity of every hospital is 2k + 1.

In each deterministic assignment, the couples occupy at most 4mk slots
in the hospitals in {h1, . . . , h2m}, hence the singletons occupy at least 2m
slots in {h1, . . . , h2m}. This is true for every assignment, hence true for their
convex combination as well, meaning that some single intern spends at least

2m
(2m)(2k+1)

= 1
2k+1

of his probability in the hospitals in {h1, . . . , h2m}. Thus,

the approximation cannot be better than 2
2k+1

=
(

2
q

)
.

Table 2: Target matrix for small probabilities example
h1 · · · h2m h′1 · · · h′2m

s1 0 · · · 0 1/(2m) · · · 1/(2m)
... 0 · · · 0 1/(2m) · · · 1/(2m)

s2m(2k+1) 0 · · · 0 1/(2m) · · · 1/(2m)

c1,1 1/(2m) · · · 1/(2m) 0 · · · 0
c1,2 1/(2m) · · · 1/(2m) 0 · · · 0

... 1/(2m) · · · 1/(2m) 0 · · · 0
cm(2k+1),1 1/(2m) · · · 1/(2m) 0 · · · 0
cm(2k+1),2 1/(2m) · · · 1/(2m) 0 · · · 0
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