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Abstract

We consider the problem of representing the visibility graph of line segments as a
union of cliques and bipartite cliques. Given a graph G, a family G = {G1, G4, ..., Gk}
is called a cligue cover of G if (i) each G; is a clique or a bipartite clique, and (%)
the union of G; is G. The size of the clique cover G is defined as Ele n;, where n;
is the number of vertices in ;. Our main result is that there exist visibility graphs
of n nonintersecting line segments in the plane whose smallest clique cover has size
Q(n?/ log? n). An upper bound of O(n?/logn) on the clique cover follows from a well-
known result in extremal graph theory. On the other hand, we show that the visibility
graph of a simple polygon always admits a clique cover of size O(nlog3 n), and that
there are simple polygons whose visibility graphs require a clique cover of size Q(n logn).
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1 Introduction

Given a set S of n nonintersecting line segments in the plane, its visibility graph G(.5)
has the endpoints of S as vertices and pairs of mutually visible endpoints as edges. (Two
points in the plane are visible, with respect to 5, if the open line segment joining them does
not intersect any segment of S.) The number of edges of G(5) may range from linear to
quadratic in n, as shown in Figure 1.

(@ (b)

Figure 1: Two extreme visibility graphs. The example in (a) has a linear number of edges,
and the one in (b) has a quadratic number of edges.

In this paper, we consider the problem of representing a visibility graph compactly.
Our motivation stems from the example in Figure 1(b), where the visibility graph has a
quadratic number of edges, but we can represent it implicitly by storing only the vertices.
Similarly, a complete bipartite visibility graph can also be represented compactly by storing
its two vertex classes. The idea of representing a visibility graph as a union of cliques or
bipartite cliques has the advantage that each component is particularly simple. We discuss
some algorithmic implications of our compact representation in Section 1.3. Let us first
define our model of the compact representation more formally.

1.1 The Model

Let S be a set of line segments in the plane, where no two segments intersect except possibly
at endpoints. Let V(.9) denote the set of endpoints in 5. We say that two points are mutually
vistble if the open segment connecting them does not intersect the closure of any segments
of §; however, it is convenient to assume that the endpoints of the same segment are visible
to each other. This visibility relation induces a visibility graph G = G(5') with vertices V(.5)
and edges E(5). Let G = {G1,G4,...,Gx} be a family of subgraphs of G. We say that G
is a clique cover of G(S) if the following conditions hold:



1. Each G; is a clique or a bipartite clique, and
2. E(S) = EyUEyU---U Ej, where E; denotes the set of edges in G;.!

Since each G is a clique or a bipartite clique, it can be represented compactly in O(|V;|)
space, where V; is the vertex set of G;. Let f(5,G) denote the size of the clique cover G:

k

1(5.G) = _Vil,
=1
and let f(5) denote the size of a smallest clique cover of G(.9); that is, f(.5) = ming f(5,G).
Finally, define

f(n) = max f(5),

where the maximum is taken over all sets S of n nonintersecting line segments in the plane.
In order to be able to consider graphs of varying densities, we also define
g(n,e) = max f(5).

|S|=n
|E(S)|=e

We establish nearly tight upper and lower bounds on the quantities f(n) and g(n,e).

1.2 The Summary of Results

The main result of our paper is that the smallest clique cover of a visibility graph has size
Q(n?/log?n) in the worst case.? Thus,

Jn) = @ (1;‘”) . (1)

Roughly speaking, we show that there are visibility graphs with a quadratic number of edges
that do not contain a large bipartite clique. Thus, in the worst-case, the best representation
of a visibility graph by cliques and bipartite cliques can save at most a factor of O(log? n)
over an explicit representation. This result is also close to the best possible — any graph
on n vertices has a clique cover of size O(n?/logn) [16].

Our proof of the lower bound in Eq. (1) uses a non-constructive, probabilistic argument.
By a constructive method, we can prove a slightly weaker result, namely, f(n) = Q(n3/2).
Specifically, we construct a set of n disjoint line segments whose visibility graph G has e =
O(n®/?) edges, G has a vertex-induced subgraph G’ also with ©(e) edges, and G’ does not
contain a Ky . This construction actually shows that g(n,e) = ©(e) whenever e = O(n?/?).
Our probabilistic construction gives the general lower bound g(n,e) = Q(n + ¢/ log® n) for

!In some applications, a proper partition of the edges may be desired; however, since we are primarily
interested in a lower bound, we work with the weaker model allowing overlap.
2All logarithms in our paper are to the base 2.



all e = O(n?). These results imply that virtually no compaction is possible in the worst
case, no matter how dense G is.

Finally, we establish a positive result for the visibility graph of segments forming the
boundary of a simple polygon. We show that the visibility graph of a simple polygon on n
vertices always admits a clique cover of size O(nlog® n). We also show that the clique cover
size is at least Q(nlogn) for the visibility graph of certain simple polygons.

1.3 The Motivation

A compact representation of the visibility graph appears to be the key to deriving efficient
algorithms for several visibility-related problems. We use the following three problems to
illustrate this point.

1. [Size of a visibility graph.] Given a set S of nonintersecting line segments in the plane,
count the number of edges in its visibility graph G(5).

2. [The biggest stick or diagonal.] Given a bounded polygonal region with holes, com-
pute the longest segment (“stick”) that can be placed inside the region. The longest
diagonal problem requires that both endpoints of the stick be vertices of the polygonal
region.

3. [Range-limited visibility graph.] Given a set S of nonintersecting line segments in the
plane, compute all edges of G(5) of length at most one.

The problems 1-3 can be easily solved in O(n?) time, by explicitly computing the
visibility graph [12, 17]. Whether they can be solved in o(n?) time remains an open problem.
Interestingly enough, though, all three problems can be solved in substantially better time
for a simple polygon. In particular, the number of edges in the visibility graph of a simple
polygon can be computed in time O(nlog? n) [1], the biggest stick can be computed in time
O(n®/5t%) for any € > 0 [1], the biggest diagonal can be computed in time O(nlog®n) [3],
and the range-limited visibility graph can be computed in time 0(714/3"'E + k), where k is
the output size.

A common element of all these algorithms is that they implicitly depend on the fact
that the visibility graph of a simple polygon admits a small clique cover, which also can
be computed efficiently. Moreover, these algorithms can be generalized to a collection of
(nonintersecting) segments provided that the visibility graph of the segments has a small,
and efficiently computable, clique cover. Our main result, f(n) = Q(n?/log®n), suggests
that the existing algorithms or their variants are not likely to yield O(n?~%)-time algorithms
for these problems, for any ¢ > 0. Although we are unable to prove that a lower bound on
f(n) implies a similar lower bound for the time complexity of problems 1-3, we believe it
to be the case.

Our paper contains four sections. In Section 2, we present our main result: a lower
bound on the clique cover size of the visibility graph of segments in the plane. In Section 3,
we give an algorithm for computing a small clique cover of the visibility graph of a polygon



and a lower bound on the worst-case size of such a cover. We close in Section 4 with some
discussion of the possible implication of our results.

2 A Lower Bound on Compact Representation

In this section, we prove a lower bound on the function f(n). We give two different proofs;
both proofs use essentially the same construction, however, one is constructive while the
other is probabilistic.

2.1 The Construction

Our construction uses three sets A, B,C of points and segments, arranged along three
vertical lines, as shown in Figure 2. A and C consist of uniformly spaced points along the
lines x = 1 and & = 3, respectively. The middle set B has point-sized “holes” along the
line x = 2. The holes are created by placing open line segments end-to-end along the line.
Specifically, to create holes at points by, bg, ..., by,, where b; = (2,1;), we use open segments

(b_ooyb1), (b1,b2),(b2,03), ..., (b1, b1 ), (b, bso ), where b_ = (2, —00) and by, = (2, 00).

Remark: The construction outlined above is quite degenerate: it uses point-sized segments
and holes; all segments are contained in three parallel lines. We will use this simpler form
for our proofs since it best illustrates the main idea of the construction. At the end of this
section, we discuss how to convert our construction into a non-degenerate one, in which all
segments have finite lengths, every pair of segments is separated by a finite distance, and
no three endpoints are collinear.

The sets A and C' consist of uniformly spaced lattice points on the lines ¢ = 1 and = = 3,
respectively, with y-coordinates between 1 and 3n. The middle set B consists of holes at
some subset of the points (2,¢), where n+1 <17 < 2n. Let p, be the y-coordinate of a point
p, and define P, = {p, | p € P} for a set of points P. We put 4, = C, = {1,2,...,3n} and
leave B, C{n+1,n+2,...,2n} unspecified. Define

A = {(Lylic Ay},
B = {(2,9)]1€ By},
¢ = B, ]ieCy},

S = AUuBUC.

Slightly abusing the notation, we will let B denote both the set of holes as well as the
set of segments that are used to create these holes. We will argue that, for an appropriate
choice of the set By, the visibility graph of § has clique cover size Q(n?/ log? n). We begin
with some definitions.

Definition: Given two sets of numbers X,Y and a number z, define z+ X = {242z |z € X},
2X ={2z|zeX},and X +Y ={z+y|z € Xandy € Y}. Wesay that (X,Y) satisfies
the sum condition (with respect to By) if X +Y C 2B,.



Figure 2: Sketch of the lower bound construction.

The following lemma is straightforward.

Lemma 2.1 Two points a and ¢, where a € A and ¢ € C, are mutually visible if and only
if ay + ¢y € 2B,. Two subsets P C A and Q C C induce a bipartite clique in G(S5) if and
only if (P,,Q,) salisfies the sum condition with respect to B,,.

Lemma 2.2 [n the visibility graph of S, |E(G)| = O(n |B|). The number of visibility graph
edges belween A and C' is also O(n |B|).

Proof: Let us first count the number of visible pairs (a,c), where @ € A and ¢ € C. A
pair (a,c) is visible through the hole at b, for b € B, if and only if a, + ¢, = 2b,. Since
ay,¢y € {1,2,...,3n} and b, € {n + 1,...,2n}, there are at least 2n and at most 3n
solutions to the equation a, + ¢, = 2b,, for a fixed b,. Thus, each hole b € B creates O(n)
visibility edges between A and C, and so the total number of visible pairs of the form (a, ¢)
is ©(n|B]).

Next, due to collinearity of A (resp. B and C'), the number of visible pairs among points of
A (resp. B and C) is linear. Finally,

|((AUC) x BYNE(S)] < |AuC|-|B|
O(n|B)).

This completes the proof of the lemma. O

The main idea behind our lower bound argument is to show that there exist large sets
B that preclude all but small bipartite cliques. In particular, we show that there are sets
B, with |B| = ©(n), such that there is no bipartite clique K,, between A and C with
min{p, ¢} > clog?n, where c is an absolute constant. In the remainder of this section, we
concentrate primarily on the subgraph induced by AU C.



Definition: We say that a set B has the property L(m,d), where m = m(n) and d = d(n),
if the following conditions are satisfied:

1. |By| = O(m), with B, C{n+1,n+2,...,2n},

2. For every pair (P, (), with P C A and  C C, that satisfies the sum condition with
respect to By, we have min{|P|,|Q|} < d.

The following theorem relates property L(m,d) to the size of a clique cover.
Theorem 2.3 The existence of a set B with property L(m, d) implies that f(n) = Q(nm/d).

Proof: The collinearity of points in A and € implies that the visibility subgraph induced
by AU C' cannot have a clique of size greater than four. Thus, it suffices to consider only
the bipartite cliques. Let Gy,...G} be a clique cover of G(5), and let E; denote the set of
edges in G;. If G; = K, 4, we put w(G;) = (p+ ¢q)/pg. Next, for an edge e € E(S), let
w(e) = ) .ep, w(Gi). Since min{p, ¢} < d, we have w(G;) > 1/d, and therefore w(e) > 1/d,
for every e € E(S). Finally,

1(8) = Y wle) > 2 = Q(mn/a),

e€E(S)
where the last inequality follows from Lemma 2.2 and the fact that |[B| = ©(m). O

If a set B satisfies property L(m,d), then trivially a subset B’ C B satisfies property
L(m/,d), where m' = |B'|, giving the following corollary of the above theorem.

Corollary 2.4 The existence of a set B with property L(m,d) implies that g(n,e) = Q(n+
e/d), for any n < e < mn.

The key remaining step in the proof is to show that there exists a set B with property
L(m,d) where m is large and d is small. The next two sections address this problem.
In Section 2.2, we give a construction of a set B with property L(y/n,2), which implies
f(n) = Qn®?), and g(n,e) = O(e) whenever e = O(n®/2). In Section 2.3, we give a
probabilistic proof for the existence of a set B with property L(©(n),O(log?n)), which
gives a near-quadratic lower bound for f(n).

2.2 A Constructive Lower Bound

We employ the following result of Erdos and Turdn [10], proved independently by Singer
[15]. For the sake of completeness, we include the proof given in [10].

Lemma 2.5 (Erdds-Turdn [10]) Given any integer m > 0, lel
T(m)={01,09,...,00y C{1,...,m}

be a largest-cardinality set such that o; + o; # oy + 01 whenever {i,j} # {i’,5'}. Then,

{ = O(y/m).



Proof: It is clear that a larger set with this property does not exist: the numbers |o; — o]
must be different, for all 1 < ¢ < 7 < t, and therefore (é) < m. We now exhibit a
set of ¢ = Q(y/m) numbers with the required property. Pick a prime number p, where
1 <p < |/m/2|. Given an integer 7, for 1 < i < p, define (i) to be the smallest positive
integer u satisfying i*> = u (mod p), where 1 < u < p. Define a sequence of numbers

o; = 2pi+(i*), forl1<i<p. (2)

It is easily checked that o; < 2p?, and o; < o; for i < j. We claim that o; + 0; # o + 0y
whenever {7,j} # {k,l}. To prove the claim, we observe that if o; + 0; = o} + oy, then
Eq. (2) implies

i+j=k+1 and 24+ =k +1° (mod p). (3)

Thus, i1 —k = [ —j and ¢ — k? = [? — 52 (mod p). Since {i,5} # {k,l}, we have
i —k,l—j # 0, which implies that i + £ = j + [ (mod p). But, then Eq. (3) implies that
i = and j = k, which contradicts our assumption that {7, j} # {k,1}.

It is a well-known fact of number theory that there exists a prime number between m
and 2m, for any m > 1; see for instance [13]. Thus, we can always find a prime p with

|v/m/8] < p < |v/m/2]. This completes the proof that |T'(m)| = O(y/m). O

The preceding proof also gives an O(m) time algorithm for constructing a set 7'(m) with
|T(m)| = O(y/m). In order to construct a set B with property L(y/n,2), we pick B, as the
shifted set T'(n):

By={n+il|ieT(n)}

Since the shift does not affect the sum property, the implication of Lemma 2.5 continues
to hold. We show that the set B so obtained has property L(y/n,2). The first condition,
namely, |B,| = ©(y/n), is clearly satisfied. To prove the second condition, we assume for
the sake of a contradiction that there exist distinct ay,ay € A, and ¢1,¢3 € € such that
(a; +¢;)/2 € By, for all 1,57 € {1,2}. Let b;; = (a; + ¢;)/2, where 1 < 4,5 < 2. Then, we
have

bi1 + bag = b1g + b1 = (a1 + a2 + ¢1 + ¢2)/2.

By Lemma 2.5, we have either b1; = by2 and byy = by, or by = by and byy = b12. In
either case, we arrive at the conclusion that either ¢y = a9 or ¢; = ¢9, which contradicts
the assumption that ay,as and ¢, ¢y are distinct. We have established the following key
lemma.

Lemma 2.6 One can construct a set B with property L(y/n,2).

Theorem 2.7 One can construct a sel S of n disjoint segments in the plane such that
|E(S)| = ©(n®/%) and the minimum clique cover size of G(S) is also ©(n®/?). This implies
that f(n) = Q(n?/?),

Corollary 2.8 g(n,e) = O(e) for e = O(n®/?).



2.3 A Probabilistic Lower Bound

We prove the existence of a set B C {n + 1,...,2n} with property L(Q(n), log*n), thus
establishing the lower bound f(n) = Q(n?/log? n). Our proof uses a probabilistic argument.
To simplify the notation, we omit all floor and ceiling signs whenever they are not essential,
and assume that n is sufficiently large.

Let N ={1,2,...,3n}, and let p be a small absolute constant, to be fixed later. Let Z be
a random subset of N obtained by choosing each element of N randomly and independently
with probability p. The cardinality of the set Z N {n + 1,...,2n} is a Binomial random
variable with parameters n and p. By the standard estimates for Binomial distributions (see
for instance [2, Appendix A]), |Z| > np/2 with high probability; high probability means
“with probability approaching 1 as n goes to infinity”. Our proof hinges on the following
crucial claim:

With high probability, there do not exist subsets 5,7 C N such that
(i) [S],IT| > Tog?n, and
(i) S+TC27.

The claim implies that the set B obtained from B, = Z N {n +1,...,2n} has property
L(np/2, log® n), with high probability. We now proceed to prove this claim.
Consider two arbitrary sets 5,7 C N, with |S| = |T| = d. We always have the following
bounds for |S + 7|
2d—-1 < |[S+T| < d°

Let N, denote the number of ordered pairs (5, 7") satisfying |S+71'| = m, where 2d—1 <
m < d*. Let E denote the expected number of pairs (5,7T) with S + T C2Z. Since the
elements of Z are chosen independently, we have the following upper bound on F:

d2
E < Z N.p™. (4)

m=2d—1

Our goal is to show that this expectation is o(1) for large n, provided p is a sufficiently
small constant. This is shown by proving that |S + T'| is sufficiently large for most of the
pairs 5,7 that satisfy the above properties. The crucial lemma is the following.

Lemma 2.9 For all m, 2d — 1 < m < d?,

Mo = g 3 (B 5)
€m 2d 4\/m
< (*F) T (6)



Proof: Clearly, N,, is the number of ordered pairs of ordered sets S = {s1,...,s4} and T' =
{t1,...,14} of distinct elements of N satisfying |5 + T'| = m, divided by (d!)%. To estimate
this number, it is convenient to choose the members of S and T sequentially, alternating
between S and T'. For each ¢, 1 < i < d, define S; = {s1,...,s;} and T; = {t1,...,t;}. Put
§'= 8 smand 1" =T . For i > \/m, we call s; enlarging if

|(si + T N (Sic1 + Tiz1)] < Vm/2.
Similarly, ¢; is called enlarging if |(¢; + ") N (S; + Ti—1)| < v/m/2. Observe that if s; is

enlarging then

1S5 + Tica]| = |Sic1 + Tica| > vm/2

and an analogous statement holds for a enlarging ¢;. Since |S + 1| = m, there are at most
2\/m enlarging elements in SUT. The proof depends on the observation that the number of
ways to choose a non-enlarging s; is at most 2|.5;_1 + T;_1| < 2m, for any fixed ¢; a similar
statement holds for a non-enlarging ¢;. This follows because if s; is chosen uniformly at
random among the 3n members of N then the expected value of |(s; + T7) N (Si—1 + T;-1)]
is at most

[T'| - 1Si—1 + Tica|  /mo|Sica + T

3n B 3n '

By Markov’s Inequality, the probability that the cardinality of this intersection exceeds
vm/2 is smaller than 2-|5;_1 + 1;-1|/3n < 2m/3n. Thus, the number of ways to choose
a non-enlarging s; is at most 2m.

To establish the bound in Eq. (5), observe that there are less than (3n)2V" choices for the

(ordered) sets 7”7 and $’. Among the remaining 2d — 2y/m (ordered) elements of SUT there
2d-2

are ¢ < 2y/m enlarging choices. There are ( \/E) ways to choose the ¢ steps when an
enlarging element is picked, and each enlarging element can be chosen in at most 3n ways
(trivially). Each of the 2d — 2\/m — i non-enlarging elements can be chosen in at most 2m
different ways, by the above observation. This completes the proof of Eq. (5). The bound

in Eq. (6) follows from the observations that 1/d! < (e/d)?, and that

20/
2d — 24/ : :
E ( ] \/E) (3n)2(2rrn/)2d—2ﬁ—2 S 22d(3n)2ﬁ(2m)2d
. [
1=0

O
Lemma 2.10 There exists an absolute positive constant py such that for p < py the prob-

ability that S + T C2Z for some subsets S, T C N is o(1) (as n tends to infinity), where
|S| = |T| =d=log*n.

Proof: By Lemma 2.9, the expectation F of the number of pairs (5,7") with S +7 C 27
is at most

d2 d2 dem 24 A
IR S OIS
m=2d—1 m=2d—1 '

10



4 2d
Put R,, = < Zm) (3n)""p™ . Then

dem

y ) + 4v/mlog(3n) — mlog (%) . (7)

log R, = 2dlog (

Without attempting to optimize the constants, we prove the corollary for py defined by
log(1/po) = 32e. If p < pg, then log(1/p) > 32e¢. For each m > 2d — 1 > d = log® n, we have

4y/mlog(3n) < 8m (8)
and, since logz < z for z > 4,
4 4e
2dlog<—(;m) < 2d (;m = 8em (9)

Substituting Eqs. (8) and (9) in Eq. (7), we get log R,,, < —16em for each admissible m.
Thus,

d? d?
E < Y R, <00) 271 = (1),
m=2d—1 m=2d—1

provided n is sufficiently large. Thus, the probability that there are S and 7', with |5| =
|T| =dand S+7T C2Z,is o(1). This completes the proof. O

Lemma 2.10 and Theorem 2.3 together imply the following theorem.

Theorem 2.11 There is a set S of n disjoint line segmenlts in the plane whose visibilily
graph has ©(n?) edges and the smallest clique cover of the visibility graph of S has size
Q(n?/log*n). Thus, f(n) = Q(n?/log*n).

Remark. The proof of Lemma 2.10 can be modified to show that there also exist sets with
property L(Q(n'~%),0(1/§?%)), for any fixed 0 < § < 1. The modification sets p = 1/n® and
d = ¢/8%, where c is an appropriate constant independent of §. Substituting these values
in Eq. (7) shows that log R,, < —c’élogn, for some constant ¢/ > 0. Thus, the expected
number of (5,7') pairs with S +7 C 2Z is ¥ < Ei:Qd—l 2-¢'?logn which is o(1). This
gives the following corollary of Theorem 2.11.

Corollary 2.12 g(n,e) is O(e) and Q(n + ¢/log*n), for any e > n. If e = O(n*79%), for
any constant 0 < 6 < 1, then g(n,e) = Q(e); the constant of proportionality depends on §.

In fact, we can prove the following theorem, which is a slightly stronger version of
Lemma 2.10.

Theorem 2.13 Let Z be a random subset of N = {1,2,...,3n} obtained by choosing each
a € N randomly and independently with probability p (where p is any constant, 0 < p < 1).
Then, with high probability, there are no subsets S and T of N, |S| = |T| = ¢(p)log® n, with
S+T C2Z7.

11



The proof of Theorem 2.13 depends on the following lemma, which can be proved by a
simple greedy argument; we omit the proof for lack of space.

Lemma 2.14 For every 0.65 < € < 1, there is a 6 = 6(€) > 0 such that, for any two subsels
S,T C N of size d and g < 6v/d, there exist §' C S and T' C T with |§'| = |T'| = g and
5417 2 (1 - ).
Proof: Our proof is by induction on g. Assuming that d is sufficiently large, the claim
obviously holds for g < 10. Inductively assume that the lemma holds for all g < gg, and
consider ¢ = go + 1. By the induction hypothesis, there exist S” C S and 7" C T, with
|S"| = |T"| = go, such that |S" +T"| > (1 — €)g2.

We claim that there is an element x € S — 5" such that

(@ +T") = (8" +T")] = 2(1 - €)go + 1. (10)
Indeed, assuming otherwise implies that, for all z € § — 5",
(z4+T")N(S"+T")] > go—2(1—€)go—1 > go(2¢ — 1.3),

since go > 10. A simple counting argument shows that there exist a y € T" and a subset
S C S — 85" of size (2¢ —1.3)(d — go) such that y+ 5 C S” +T". This implies that

(2¢ = 1.3)(d—go) = |y+ 5] < [5"+T"| < g3. (11)

But (2¢ — 1.3)(d — go) > g2 if go < §v/d, where § = §(¢) is an appropriate constant, thereby
contradicting Eq. (11).

Thus, we can find an element z € S — 5" that satisfies Eq. (10). By setting 5’ = S"U{z},
we obtain

5"+ 1" > (1-€)g5+2(1—€)go+1 > (1-€)(go+ 1)

Since |S" 4+ T"] is already at least (1 — €)(go + 1)%, we can choose an arbitrary element
z €T —T" and set T = T" U {z}. This completes the proof of the lemma. O

Proof of Theorem 2.13: Let ¢ = 3/4. If S + T C2Z, for some |S| = |T| = clog®n,
then by Lemma 2.14 there exist S’ C S and T’ C T, with |5’ = |T'| = g = ¢'logn and
|S"+T"| > g?/4, where ¢’ = §(3/4)\/c is a constant depending only on § and ¢. But the
expected number of such pairs (57, 7") is at most

c*log?n - log(l/p))
4

(3n)29p92/4 = exp (20’ log? n + 2¢'log 3logn —

2¢'log 3 "2 log(1

(Bn)29p92/4 - — exp(loan (26’—|— ¢ log _ (C) Og( /p)))
logn 4

which is o(1) for any p < 1 provided that ¢ (and thus ¢’) is sufficiently large. Thus, with

high probability, 27 contains no such S’ + 77, and hence no such S + 7', completing the

proof. O

12



Although the above proof is shorter and gives a slightly better estimate, we believe that
the proof in Lemma 2.10 may eventually lead to an asymptotically better estimate.

Remark. The pseudo-random properties of Paley graphs (see [2] for the definition) sug-
gest that the following explicit construction of a subset Z C {n + 1,...,2n} may satisfy
property L(Q(n),logo(l) n). Let g be the smallest prime larger than 2n, and let Z be
the set of all ¢,n + 1 < ¢ < 2n, that are quadratic residues modulo ¢. It is easy to see
that |Z] = (1 + o(1))n/2. By applying known estimates for character sums it can be
shown that, for every k& < logn/4, if two subsets 5,7 C {1,...,3n}, with |S| = k, satisfy
S+ T C2Z, then |T| < (1 + 0o(1))g/2¥ = O(n/2%). One can also show that Z satisfies
property L(2(n),O(y/n)) (for instance, see [2], pp. 116-119). However, it is not known if
7 satisfies property L(Q(n),logo(l) n), although it seems plausible (but difficult, as a proof
would have some far reaching number-theoretic consequences).

2.4 Removing Degeneracies from the Construction

A simple modification of our construction turns it into a non-degenerate configuration. In
the modified version of our construction, the segments have finite lengths, they are separated
by finite distances, and no three endpoints lie on a line. We first replace the open segments
of B by a collection of slightly shorter closed segments separated by tiny but finite-length
gaps; the segments still lie along the line x = 2. Clearly, this does not affect the visibility
between A and C, it at most doubles the number of edges between B and A U (', and
it introduces O(|B|) visibility edges between endpoints of B. Next, we replace the points
of A by tiny horizontal segments whose left endpoints lie on a concave function of the y
coordinate and whose right endpoints lie on a convex function, as shown in Figure 3. We
apply a similar transformation to C'. We then tilt each segment of A and C slightly in
order to avoid horizontal collinearities; this is done in such a way that one endpoint of a
segment does not block the visibility of the other endpoint. A similar tilt is applied also to
the segments of B, ensuring that the number of visibility edges among endpoints of B does
not exceed O(|B|).

The final construction has at most twice as many endpoints and at most four times as
many visibility edges as the original one. It is easily checked that it does not contain cliques
or bipartite cliques that are much larger than those contained in the original construction.
The use of segments instead of points necessarily means that certain bipartite cliques in-
admissible in the original construction are possible in the modified construction; however,
this only affect the constants in our theorems, not the asymptotic form of their expressions.
For instance, while K, is not possible in the original (degenerate) construction used for
the proof of Theorem 2.7, in the modified construction, we can only exclude Ky 4.

3 The Visibility Graph of a Simple Polygon

Consider a simple polygon P on n vertices, and let 5 denote the set of segments forming its
boundary. We show in this section that G(.5) admits a compact representation; specifically,
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Figure 3: Removing degeneracies.

we produce a O(nlog®n) size clique cover of G(S). We also show that there are polygons
whose visibility graph requires a clique cover of size Q(nlogn).

3.1 An upper bound

In this section, we describe an algorithm for constructing a small clique cover of the visibility
graph G(S5). Let CH(P) denote the convex hull of P. The closure of CH(P) \ P consists
of a collection of simple polygons with disjoint interiors, called pockets. Each edge in G(.5)
lies inside CH(P) and does not cross any segment of 5. Therefore it lies either in P or
in one of the pockets of P. We will present an algorithm to compute a clique cover of the
edges of G(.9) that lie inside P. A clique cover of other edges of G(.5) can be computed by
repeating the same procedure for each pocket of P. Abusing the notation slightly, we will
use G(P) to denote the set of edges in G(.9) that lie inside P. Our construction is based on
a divide-and-conquer approach. We partition P into two subpolygons P, P, by a diagonal
e, such that each of the subpolygons has at most 2n/3 vertices [4]. The edges of G(P) can
be partitioned into three subsets:

(i) Fi11: an edge of G(P) is in Fq; if both of its endpoints lie in P,
(ii) FEgz: an edge of G(P) is in Fy; if both of its endpoints lie in Ps,
(iii) Eq2: an edge of G(P) is in Eyz if one of its endpoints lies in P; and the other in P;.

We recursively compute clique covers of Fq1 and Fy;. In the following, we describe a
procedure for computing a clique cover for Fq,.

Without loss of generality assume that e lies on the y-axis, and that the right (resp. left)
side of e lies in Py (resp. P,). Let p be a rightward directed ray emanating from e. Using a
standard duality transformation, we can map the line supporting p to a point p*. We will
refer to the point p* as the dual of p. We define a planar map M; in the dual plane as
follows. Each face of M; is the set of points dual to the rays emanating from e and hitting
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first (the interior of)) some fixed edge a of P; (i.e., the portion of p between e and @ avoids
the exterior of P;). Every edge v of M; is the locus of points dual to the rays that either
hit a fixed vertex v of Py, or touch a vertex v of P; before hitting an edge a of P;. Let v(7)
denote the vertex of P; that the rays corresponding to points on the edge 7 intersect before
crossing the boundary of P;. By considering leftward-directed rays, define a similar map
M, for P;. By a result of Chazelle and Guibas [8], each M; is a convex planar subdivision
having O(n) faces, edges, and vertices. Let I';, I'; denote the set of edges in M7 and in My,
respectively.

The intersection point of an edge 771 € I'; and an edge 72 € 'y is the dual of the line
passing through v(y1) and v(7y2). By construction, the edges y; and 7, intersect if and
only if the interior of the segment v(71)v(72) does not intersect the boundary of P, i.e., if
and only if (v(71),v(72)) is a visibility edge of Fy;. The problem of finding a small clique
cover of Fqy thus reduces to finding a small clique cover of the intersection graph G™ of
I'y UT; (i.e, the vertices of G* are the segments of I'; and I'y, and (71,72) is an edge in G*
if 71 and 77 intersect). Chazelle et al. [7] have presented an algorithm that can compute a
clique cover of G* of size O(nlog? n). This immediately gives a clique cover of Ej, of size
O(nlog*n). Let S(n) denote the minimum clique cover size for the visibility graph of any
simple polygon on n vertices. Then, the preceding discussion has shown that

S(n) < S(ny) + S(ny) + O(nlog®n),

where 1y +ny = n and ny,ny < 2n/3. The solution to this recurrence is S(n) = O(nlog®n).
We apply the above procedure to all pockets of P, obtaining a clique cover of the entire
visibility graph. Since the total number of vertices over all pockets is at most 2n, we have
established the following theorem.

Theorem 3.1 Let S be a sel of line segments forming the boundary of a simple polygon in

the plane. Then, f(S) = O(nlog®n).

3.2 A lower bound

We (constructively) prove that there are simple polygons on n vertices whose visibility
graphs require clique covers of size (nlogn). The combinatorial lemma needed here fol-
lows from a result of Katona and Szemerédi [14], and our proof below applies their ap-
proach. Our lower bound construction uses a polygon P on 4n vertices, whose vertices
are labeled a1, uy, vy, b1, a9, ug,...v,,b,, in a counterclockwise order around the boundary.
Let C,C9,C3 be three concentric circles of radii 1 — e, 1,1+ ¢, respectively, where ¢ is a
sufficiently small positive number. In the polygon, the vertices uq,...,u, lie on circle Cf,
the vertices aq, b1, ..., a,, by, lie on circle Cy, and the vertices vy, ..., v, lie on Cs, as shown
in Figure 4.

Each 4-tuple a;, u;, b;, v; forms a sufficiently small convex quadrilateral so that the fol-
lowing conditions are satisfied:

1. b; is not visible from «;,
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Figure 4: Lower bound construction

2. the line through «; and u; separates b;, v; from all other vertices of P, and a; is visible

to all b;, 7 # ¢, and

3. the line through b; and u; separates a;, v; from all other vertices of P, and b; is visible
to all a;, 7 # .

Let 5" denote the set of edges of the polygon P. Let H denote the bipartite graph with
vertices {a1,...,a,} U {b1,...,b,} and edges {(a;,b;)| 1 <i # j <n}. Observe that H is
the complete bipartite graph minus the matching {(a;,b;) |1 <7 < n}.

Lemma 3.2 f(5) = Q(nlogn).

Proof: It is easily seen that f(5) is at least as large as the size of a smallest clique cover
of H. Indeed let G be a clique cover of G(.5). By deleting all u;’s and v;’s from each clique
of G, we obtain a clique cover of H. In the following, we prove a lower bound on the size of
the smallest clique cover of H.

Consider a collection of subgraphs that covers H. Since H is bipartite, every induced
subgraph of H is also a bipartite graph. For each 7, 1 < ¢ < n, let X; denote the collection
of subgraphs in our cover that contain a; and let Y; be the collection of the subgraphs that
contain b;. Observe that the size of the cover is precisely >-" ,(|X;| + |Yi|). Any subgraph
in the cover of H cannot contain both a; and b;, because (a;,b;) is not an edge in H.
Consequently, X; and Y; are disjoint, for every ¢. Let us choose for each subgraph in our
collection, randomly and independently, a color 0 or 1 with probability 1/2. Let E; be the
event that all the members of X; received color 0 and all those in Y; color 1. Then the
probability of E; is 2= (IXil+I¥i) " Also, the events E; are pairwise disjoint. Indeed, assuming
otherwise implies that there is coloring so that all the subgraphs in X; are colored 0 and all
those in Y; are colored 1 for some ¢ # 7. But that means that X; and Y; are disjoint, which
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is false, as both of them contain the subgraph containing the edge (a;,b;). Therefore, the
sum of the probabilities of the events F; is at most 1, i.e.,
- 1

— < 1.
; 9| X |+Y:| — 1

By the arithmetic-geometric inequality, the left-hand side divided by n is at least the n-th
root of the product

- 1
_ s
I S = 172
=1
where s denotes here the size of the cover. Thus 2° > n”, implying the desired result. O

4 Discussion and Open Problems

We have considered the problem of representing the visibility graph of a set of nonintersect-
ing line segments by cliques and bipartite cliques. We showed that there are families of n
segments whose visibility graphs require clique covers of size Q(n?/log?n) (Theorem 2.11).
On the other hand, the visibility graph of a simple polygon can always be represented by
a clique cover of size O(nlog®n). Our investigation is motivated by the observation that
the existing efficient algorithms for several visibility-related problems depend on the cover
size of the visibility graph. We conjecture that our lower bound of Q(nQ/log2 n) on the
size of clique cover implies a similar lower bound on the time complexity of solving the
problems 1-3 mentioned in the introduction.

The problems 1-3 stated in the introduction, and several other visibility-related prob-
lems, are instances of the following abstract problem. Let 5 be a set of n nonintersecting
line segments in the plane, let V(.9) denote the endpoints of the segments in 5, and let £(.5)
denote the edges of the visibility graph G(.9). Consider a commutative semigroup (C,+)
and a weight function w from pairs of endpoints in V() to C; that is, w : V(5)x V(5) — C.
Consider the problem of computing the total weight on the edges of E(S5):

W)= 3 wpa). (12)

(p,9)EE(S)

In this setting, for instance, the biggest diagonal problem can be formulated by taking the
semigroup (R, max) and the Euclidean weight function; that is, w(p,q) is the Euclidean
distance between p and g. Other problems have similar formulations.

We believe that one can define a model for visibility-type problems along the lines of
the semigroup model of computation used by Fredman [11] and Chazelle [5, 6, 9], which has
been used successfully to prove lower bounds on range searching problems. In particular,
one needs to formalize the cost of computing the weight W. It seems reasonable that, in the
absence of additional assumptions, computing W(1") for an arbitrary subset 7' C .S would
require at least |(V(7') x V(T')) N E(S)| operations, that is, the time proportional to the
size of the visibility graph induced by T'. On the other hand, if the visibility graph induced
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by 7' is a clique or a bipartite clique, then the weight W{(7") can be computed with O(|T])
operations. We would like to argue that, in some sense, these two extremes are the only
cases, and that the cost of computing W(7') is at least Q(|7'|) even when the graph induced
by T is a clique or a bipartite clique. In that case, the results of this paper imply an almost
quadratic lower bound for the abstract problem of computing W(5). We leave it as an open
problem to prove or disprove this claim.

Acknowledgment We would like to thank J. Pach and J. Spencer for helpful comments
that led to an improved estimate in Theorem 2.11.
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