
Approximate Hypergraph Coloring

Noga Alon 1 Pierre Kelsen 2 Sanjeev Mahajan 3 Hariharan Ramesh 4

Abstract

A coloring of a hypergraph is a mapping of vertices to colors such that no hyperedge is
monochromatic. We are interested in the problem of coloring 2-colorable hypergraphs. For
the special case of graphs (hypergraphs of dimension 2) this can easily be done in linear time.
The problem for general hypergraphs is much more difficult since a result of Lovász implies
that the problem is NP-hard even if all hyperedges have size three.

In this paper we develop approximation algorithms for this problem. Our first result
is an algorithm that colors any 2-colorable hypergraph on n vertices and dimension d with
O(n1−1/d log1−1/d n) colors. This is the first algorithm that achieves a sublinear number of
colors in polynomial time. This algorithm is based on a new technique for reducing degrees
in a hypergraph that should be of independent interest. For the special case of hypergraphs
of dimension three we improve on the previous result by obtaining an algorithm that uses
only O(n2/9 log

17
8 n) colors. This result makes essential use of semidefinite programming.

We further show that the semidefinite programming approach fails for larger dimensions.

Key words. Approximation algorithms, hypergraphs, semidefinite programming.

1 Introduction

A hypergraph H = (V,E) consists of a finite set V of vertices (or nodes) (whose number is
denoted by n) and a collection E of non-empty subsets of V called edges. The dimension of H,
denoted by d, is the maximum size of an edge in E. Thus, a graph is a hypergraph of dimension
2. A k-coloring of a hypergraph is a mapping φ : V → {1, . . . , k} such that no edge of H has all
vertices of the same color. A hypergraph is k-colorable if it admits a k-coloring.

We consider the problem of coloring hypergraphs that are known to be 2-colorable. Although
we can 2-color a 2-colorable (or bipartite) graph in linear time using a straightforward depth-first
search algorithm, the problem is NP-hard for hypergraphs even if all edges have size at most 3.
(This problem is a special case of Set Splitting and was shown to be NP-hard by Lovász ([12];
see also [7])).

In this paper we give the first polynomial time algorithm for coloring 2-colorable hypergraphs.
Our algorithm runs in polynomial time and uses O(n1−1/d log1−1/d n) colors. This result is

1Dep. of Math., Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel and Institute for
Advanced Study, Princeton, NJ 08540. Research supported in part by a USA-Israeli BSF grant, by the Sloan
Foundation grant No. 96-6-2 and by an NEC Research Institute grant. E-mail: noga@math.tau.ac.il.

2Max-Planck-Institut für Informatik, Im Stadtwald, Saarbrücken, Germany. E-mail : kelsen@mpi-sb.mpg.de
3Max-Planck-Institut für Informatik, Im Stadtwald, Saarbrücken, Germany. E-mail: mahajan@mpi-sb.mpg.de
4Max-Planck-Institut für Informatik, Im Stadtwald, Saarbrücken, Germany. E-mail: ramesh@mpi-sb.mpg.de

1

obtained by combining a simple randomized algorithm with a new technique for reducing the
degrees in a hypergraph. The latter technique is inspired by a similar method that was developed
by Wigderson ([14]) for coloring 3-colorable graphs.

For the special case of hypergraphs of dimension 3 we reduce the number of colors to
O(n2/9 log

17
8 n). We achieve this bound by using a powerful new technique based on semidefinite

programming and pioneered by Goemans and Williamson ([8]). The technique involves relaxing
an integer program (whose solution is NP-hard) into a semidefinite program (for which an ap-
proximate solution can be found in polynomial time). Using an approach based on semidefinite
programming we get an algorithm that uses only O(n2/9 log

17
8 n) colors. The degree reduction

technique is also used for this result.
The semidefinite programming technique was successfully used by Goemans and Williamson

to obtain an approximate solution to the Max-Cut problem with approximation ratio .878. The
best previous ratio was 1/2 obtained by a straightforward random cut algorithm. Using the same
technique Goemans and Williamson also derived improved approximations for the MAX-2SAT
problem.

Karger, Motwani and Sudan ([10]) used the semidefinite programming approach to ob-
tain better coloring algorithms for 3-colorable graphs. In an elegant paper they achieve an
O(n1/4 log n) bound on the number of colors needed to color a 3-colorable graph (in random
polynomial time). The previous best bound was O(n2/5) colors achieved by a deterministic
polynomial time algorithm of Blum ([4]).

Frieze and Jerrum ([6]) gave a .65 approximation algorithm for MaxBisection based on
semidefinite programming, improving the .5 ratio achieved by the random bisection algorithm.
Finally, Alon and Kahale ([2]) use semidefinite programming to achieve better approximations
to the maximum independent set problem.

In this paper we apply the technique to a problem on hypergraphs of dimension 3. This
application is somewhat surprising, as we show that the technique fails for dimensions higher
than 3.

The paper is organized as follows: in the next section we present a new technique for reducing
the maximum degree of a hypergraph. We present this result first because it will be used
throughout the rest of the paper. In section 3 we describe an algorithm that colors 2-colorable
hypergraphs of fixed dimension with o(n) colors in polynomial time. Only elementary techniques
are used for this result: the key ingredients are the degree reduction technique from section 2
and a simple randomized algorithm. In sections 4 and 5 we show how semidefinite programming
can be used in conjunction with the degree reduction technique to get better colorings for 2-
colorable hypergraphs of dimension 3. In the concluding section 6 we argue that this algebraic
technique cannot be extended to hypergraphs of higher dimensions and show the limitations of
the semidefinite programming based approach for hypergraphs of dimension 3.

Since the conference version of this paper appeared [11], we found out that similar results

2

have been obtained independently by Chen and Frieze in [5].

2 Degree Reduction

Wigderson ([14]) showed that by coloring some subset of vertices in a 3-colorable graph with
O(
√
n) colors, the subgraph induced by the uncolored vertices can be made to have maximum

degree O(
√
n). In this section we show a similar type of result for hypergraphs of arbitrary

dimension. Our algorithm may be viewed as an extension of Wigderson’s technique to hy-
pergraphs. Together with the results of the following sections it will yield polynomial time
algorithms that color 2-colorable hypergraphs of fixed dimension with a sublinear number of
colors.

Fix a 2-colorable hypergraph H = (V,E) with n vertices. For a subset S of vertices let
N1(S) = {w ∈ V : S ∪ {w} ∈ E} and d1(S) = |N1(S)|. Fix an integer value t > 0. Consider the
following procedure:

Algorithm Reduce.
For all S ⊆ V with d1(S) > t:

(1) If N1(S) is an independent set (i.e., it does not completely contain an edge of E), then
color the vertices of N1(S) with a new color; remove the vertices from H and all edges
that contain at least one of these vertices.

(2) If N1(S) is not an independent set (i.e., it contains some edge of E), then replace all edges
of H containing S with the hyperedge S.

We note that this algorithm can be made to run in polynomial time since we only have to look
at those subsets S obtained by removing a single vertex from an edge (total number at most n
times the number of hyperedges).

Lemma 1 After running algorithm Reduce on a hypergraph H, we obtain a hypergraph H ′ with
the following properties: (1) in H ′ each subset S of vertices satisfies d1(S) ≤ t; (2) H ′ is
2-colorable; (3) any k-coloring of H ′ yields a k + n/t-coloring of H (in polynomial time).

Proof. Property 1 is immediate from the algorithm. To verify property 2, note that step (1) of
Reduce preserves 2-colorability. Now assume that the hypergraph just before an application of
step (2) is 2-colorable. We observe that the fact that N1(S) is not independent implies that some
two vertices in N1(S) have different colors under any 2-coloring. Thus, the subset S cannot be
monochromatic under any two-coloring. Hence, replacing all edges containing S by the subset
S will preserve 2-colorability. Finally, for property 3 we note that the total number of colors
used by Reduce is at most n/t since each color takes care of at least t vertices. Now suppose
that we color the remaining hypergraph H ′ with k new colors. Assign to all vertices in H that

3

also belong to H ′ the new color thus chosen while all vertices not in H ′ get the color that they
are given by Reduce (different from the k new colors). This coloring is a legal coloring of the
vertices in H with at most k + n/t colors. 2

The maximum degree of a hypergraph, usually denoted by ∆, is the maximum number of
edges containing the same vertex.

Theorem 1 Suppose that we have a polynomial time algorithm that colors any 2-colorable hyper-
graph H of dimension d with maximum degree ∆ with ∆α colors, then we also have a polynomial

time algorithm for coloring any such hypergraph on n vertices with Θ(n
(d−1)α

1+α) colors.

Proof. Applying algorithm Reduce to H we obtain H ′ with maximum degree at most nd−2t (a
more precise bound is

(n−1
d−2

)
· t). Thus, we can color H ′ with at most (nd−2t)α colors. The total

number of colors used is then (by lemma 1) n/t+ (nd−2t)α. With t = n
1−α(d−2)

1+α , we obtain the

asymptotically minimum number of colors, namely Θ(n
(d−1)α

1+α) colors. 2

3 A Simple Randomized Algorithm

Let H = (V,E) be a hypergraph of dimension d ≥ 3 that is 2-colorable. Let ∆k denote the

maximum number of edges in H of size k that contain the same vertex and let ∆′k = ∆
1

k−1

k .
Finally, let ∆′ = max{∆′k : 2 ≤ k ≤ d}. The following simple randomized algorithm computes
an approximate coloring of H.

Algorithm Rancolor.

(1) While H is non-empty do:

(1.1) Each vertex chooses uniformly at random a color from the same set of size d4∆′e.
(1.2) A vertex is good if it is not contained in any monochromatic edge. Remove all good

vertices as well as the edges containing them from H. Do not reuse these colors in
later rounds (i.e., remove them from the ground set).

Algorithm Rancolor does indeed produce a valid coloring of H since among all the good vertices
eliminated in one round there is no monochromatic edge and each color is used in at most one
round.

Theorem 2 The expected total number of colors used is O(∆′ log n).

4

Proof. Fix a round of algorithm Rancolor. The probability that an edge of size k is monochro-
matic is at most 1

4k−1
1

∆′k−1 ≤ 1
4k−1 (1/∆′k)

k−1 = 1
4k−1∆k

. Thus, a vertex is good with probability
at least 1/2. The expected number of good vertices removed in one round is thus at least n/2.
We conclude that the expected total number of rounds is at most O(log n). This implies the
claim of the theorem. 2

We note that the claim about the expected number of colors can be transformed into a high
probability claim using standard techniques

This bound by itself is not useful since ∆′ can be as large as Θ(n) making the number of
colors used by Rancolor as large as n. Together with the degree reduction technique from the
last section we get, however, an interesting result:

Theorem 3 A 2-colorable hypergraph of dimension d can be colored in polynomial time with
O(n1−1/d(log n)1−1/d) colors.

Proof. Applying lemma 1 we see that after running algorithm Reduce we have ∆k ≤ nk−2t for
all k (a more precise bound would be

(n−1
k−2

)
t) and hence

∆′ ≤ max{(nk−2t)
1

k−1 : 2 ≤ k ≤ d}.

Fix k such that (nk−2t)
1

k−1 is maximum (for 2 ≤ k ≤ d). Combining this bound with the previous
theorem (and applying lemma 1 once more) we see that we can color the hypergraph with
log n(nk−2t)

1
k−1 + n/t colors. For t = n

1
k /(log n)1− 1

k we obtain the (asymptotically) minimum
number of colors, namely n1−1/k · (log n)1−1/k. 2

4 Hypergraph Coloring via Semidefinite Programming

In this section we describe a better coloring algorithm for the special case where each edge
of H has size at most 3. We use semidefinite programming in conjunction with our degree
reduction technique to achieve this result. We interweave our exposition with a description of
the semidefinite programming paradigm.

Let H = (V,E) be a 2-colorable hypergraph of dimension 3. Without loss of generality, we
may assume that all edges of H have size exactly three. (This assumption is not essential but
simplifies the exposition.) Indeed, if there are edges of size two we can proceed as follows: in a
first phase 2-color H, taking only the edges of size 2 into account. In a second phase color H
as described in this section, only considering edges of size 3. Now assign to each vertex as color
the pair of colors it receives in these two phases. This is clearly a legal coloring and the total
number of colors is at most twice that used in the second phase.

Let φ denote a 2-coloring of H. For convenience we shall assume that the range of φ is
{−1, 1}. We can express the fact that φ is a 2-coloring by the following set of equalities: for

5

every edge e = (x1, x2, x3) we have

φ(x1)φ(x2) + φ(x2)φ(x3) + φ(x1)φ(x3) = −1. (1)

Note that the validity of this equation follows from the fact that in any edge (x1, x2, x3), the
coloring φ maps exactly two xi to one value (e.g., -1) and the remaining vertex xj to the other
value (e.g., +1).

Write the vertex set of H as V = {u1, . . . , un}. Consider the following semidefinite optimiza-
tion problem:

minimize α (*)
where the n× n-matrix (aij) is positive semidefinite
subject to

aij + ajk + aik ≤ α if (ui, uj , uk) ∈ E
aij = aji
aii = 1.

Lemma 2 The semidefinite optimization problem (*) above has a solution α ≤ −1.

Proof. Recall that φ denotes a 2-coloring of H (with color set {−1, 1}). Fix two unit vectors
u and v in Rn with5 u · v = −1, e.g., u = (−1, 0, . . . , 0) and v = (1, 0, . . . , 0). Define vectors
z1, . . . , zn by zi = u if φ(ui) = −1 and zi = v if φ(ui) = +1. Since u · v = −1, we have
zi · zj + zj · zk + zi · zk = −1 if (ui, uj , uk) ∈ E. We also trivially have zi · zj = zj · zi because of
symmetry of the dot product. Finally zi · zi = 1 because both u and v are unit vectors.

Define aij = zi · zj for 1 ≤ i, j ≤ n. The matrix A = (aij) is symmetric positive definite since
it is of the form A = BBT , and has ones in the diagonal. The claim of the lemma follows. 2

We can use the ellipsoid method or any other interior-point methods ([9],[1]) to find a solution
where α ≤ −1 + δ in time polynomial in n and log(1/δ).

Lemma 2 tells us that we can go from the 2-coloring ofH to a good solution to the semidefinite
optimization problem (*). Conversely, we shall now show how to get a good coloring from a
good solution to the semidefinite optimization problem. The method we describe in this section
is based on separating the vectors zi using random hyperplanes. A more sophisticated technique
yielding stronger results will be developed in the next section. Both techniques were originally
used in [10] in the context of graph coloring.

For the following discussion we fix a solution to (*) with α = −1 + δ. Using the notation
from the proof of lemma 2 we denote the corresponding (unit) vectors by z1, . . . , zn. Thus we
have

zi · zj + zj · zk + zi · zk ≤ −1 + δ if (ui, uj , uk) ∈ E. (2)
5We use u · v to denote the dot product of the two vectors u and v.

6

Let r be a unit vector which is uniformly distributed on the unit sphere. r defines uniquely
a hyperplane which is normal to it. We need the following technical lemma.

Lemma 3 For three unit vectors x1, x2 and x3, the probability that they do not all lie on the
same side of the hyperplane (or equivalently, sgn(x1 · r),sgn(x2 · r) and sgn(x3 · r) are not all
equal) is

1
2π

(α+ β + γ)

where α = arccos(x1 · x2), β = arccos(x2 · x3) and γ = arccos(x1 · x3). Thus, if x1 · x2 + x2 ·
x3 + x1 · x3 ≤ −1 + δ, then this probability is at least 3

2πarccos(
−1+δ

3).

Proof. The first claim of the lemma is the same as lemma 2.2 in [8]. For the second part it
suffices to show that

1
2π

(α+ β + γ) ≥ 3
2π
arccos(

−1 + δ

3
)

Elementary differential calculus shows that the expression on the left is minimized for α = β = γ.
Since x1 · x2 + x2 · x3 + x1 · x3 = −1 + δ we get for α = β = γ that cos(α)(= x1 · x2) = −1+δ

3 or
α = arccos(−1+δ

3). The claim follows. 2

Let us fix a small delta such that −1+δ
3 < −.33. Let p denote the probability that the vectors

corresponding to an edge of H do not lie on the same side of a hyperplane. With lemma 3 we
get p > 3

2πarccos(−0.33) > 0.91.
Let us choose k random hyperplanes h1, . . . , hk with normal vectors r1, . . . , rk indepen-

dently. Map each vertex ui with corresponding vector zi to the vector yi = (sgn(zi · r1), sgn(zi ·
r2), . . . , sgn(zi · rk)).

Fix an edge e in E. Let us say that this edge is bad (for the given hypergraph) if the vertices
in e are mapped to the same vector under the mapping just described. The probability that
an edge is bad is at most (1 − p)k < .09k (since the hyperplanes are chosen independently at
random).

We construct a coloring of H as follows: let Vb ⊆ V denote the vertices in H that are
contained in bad edges. Assign to all vertices in V − Vb as colors the corresponding y vectors.
Recursively color the hypergraph H ′ = (Vb, E′), where E′ is the set of edges in E all of whose
vertices belong to Vb, with a set of new colors. (To make sure no colors are reused, we may
think of the color of a vertex as a pair (y, i) where i is the recursion depth at which a vertex
was colored successfully and y is the vector that was assigned to it at that time.)

Let the random variable Z denote the number of edges that are bad with respect to k
random hyperplanes. Note that E[Z] < 0.09km where m denotes the number of edges in H.
Let ∆ denote the maximum degree of H. Thus m ≤ n∆/3 and E[Z] < 0.09kn∆/3. By
choosing 0.09k < 3n

4n∆ = 3
4∆ or k > .416 ln ∆ we get E[Z] < n/4 and hence E[|Vb|] < 3n/4.

Thus for these values of k a constant fraction of the vertices of H are colored in the current

7

stage. The recursion will only be performed for O(log n) levels and the total number of colors
is O(2.416 ln ∆ log n) = O(∆.289 log n).

We thus have the following result:

Theorem 4 A 2-colorable hypergraph of dimension 3 can be colored in polynomial time with
O(∆.289 log n) colors.

By applying the degree reduction technique (theorem 1) to theorem 4 we obtain the first
improvement on the result from theorem 3 (which yields n.66 for dimension 3).

Theorem 5 There is a polynomial time algorithm that colors any 2-colorable hypergraph of
dimension 3 with fewer than n.45 colors. 2

Although the algorithm is randomized, one can use the recently developed technique of
Mahajan and Ramesh ([13]) to derandomize this algorithm into a deterministic polynomial time
algorithm. We briefly explain how this is done. A random spherically symmetric vector is
generated by choosing each of its coordinates independently from the normal distribution with
mean 0 and variance 1. We need to choose the ”random vector” deterministically. We use the
method of conditional expectations and fix each coordinate in turn. The problem then is to
compute conditional expectations and to find minima over a continuous range. This is described
in [13].

In the next section we use a more sophisticated technique to achieve a better bound, namely
roughly O(n2/9).

5 The Center Method

In this method, we take t independent random vectors, called centers (t will turn out to be
O(∆

1
8 log9/8 n)) and we assign to each vertex vector the center which has the largest projection

on the vertex vector as its color. This method reduces the number of bad edges to n/6, and
hence the number of bad vertices to n/2. Hence by iterating this method logn times, we
can properly color a 2-colorable hypergraph with O(∆

1
8 log

17
8 n) colors. Ideally we would like

each random center to be of unit length, but as Karger, Motwani and Sudan [10] argue, this
leads to technical difficulties in the analysis. Instead we choose each coordinate of each center
independently normally distributed with mean 0 and variance 1. Then each center is spherically
symmetric. However the norm of such a center is now a random variable (although as the number
of dimensions tends to infinity, this norm becomes almost constant). The main contribution of
this section is the analysis which requires more sophistication than in the graph case.

Let P (t) be the probability that c1 gets assigned to all three of vi, vj , vk. In this case, the
probability that a hyperedge (i, j, k) is bad is the probability that the same center gets assigned
to all three of vi, vj , vk. Let the centers be indexed as c1, ...ct. Then the probability that an edge

8

is bad is tP (t). Our core theorem states that P (t) is O(log9 t
t9

). Hence the probability that an

edge is bad is O(log9 t
t8

).

Theorem 6 P (t) is O(log9 t
t9

)

Before we give the proof of the core theorem, we derive the final result.

Corollary 1 By using the center method O(log n) times each time reducing the number of bad
vertices by half, we can properly color a 2-colorable hypergraph in O(∆

1
8 log

17
8 n) colors.

Proof of the Corollary. We want the number of bad edges to be less than n/6. Let p denote
the probability that an edge is bad. It follows from the core theorem that p = O(log9 t

t8
). The

expected number of bad edges is at most mp ≤ n∆p/3. This number is less than n/6 provided
that p < 1

2∆ . Routine algebra shows that this is satisfied by t = log9/8 n∆1/8. In each stage we
use this many colors for a total of O(log n) stages, yielding the desired result. 2

Theorem 7 We can color a 2-colorable hypergraph with O(n2/9 log
17
8 n) colors in polynomial

time.

Proof. Straightforward application of theorem 1 in conjunction with the previous corollary. 2

Proof of the Core Theorem. We have P (t) = Pr(c1 ·vi > max{c2 ·vi, ..., ct ·vi}∧ c1 ·vj >
max{c2 · vj , ..., ct · vj} ∧ c1 · vk > max{c2 · vk, ..., ct · vk}).

Now as all of ci’s are spherically symmetric, we can rotate the coordinate system so that all
but the first 3 coordinates of vi, vj and vk are 0, or so that essentially we are in a 3-dimensional
coordinate system. So we can assume that each of the ci’s is a 3-dimensional vector with each
coordinate distributed independently with distribution N(0,1). Now c · v (where c is a center
and v a vertex vector) is |c| cos(< c, v >) (where < c, v > is the angle between c and v).

Also note that as vi · vj + vj · vk + vk · vi ≤ −1 or that |vi + vj + vk| ≤ 1, this implies that
for any unit vector l, one of l · vi, l · vj and l · vk is at most 1/3. This is because l · (vi + vj + vk)
is at most 1. So for any vector c1, the angle between either c1 and vi, or c1 and vj or c1 and vk
is at least arccos(1/3). Let us say that this happens for vi. Then

P (t) ≤ Pr(c1 · vi > max{c2 · vi, ..., ct · vi}),

or
P (t) ≤ Pr(|c1|/3 > max{|c2| cos(< c2, vi >), ..., |ct| cos(< ct, vi >)}

or
Pr(|c1|/3 > max{|c2| cos(< c2, vi >), ..., |ct| cos(< ct, vi >)}.

Now let the conditional probability that given that there are r centers which have angle at
most ε with vi, the event inside the above probability (|c1|/3 > . . .) holds, be denoted by P (t|r).

9

Without loss of generality, call these r centers c2, ..., cr+1. Then it is clear that c2 · vi, ..., cr+1 · vi
are all non-negative for any ε ≤ π/2.

Hence P (t|r) is bounded from the above by

Pr(|c1|2/9 > max{|c2|2 cos2(< c2, vi >), ..., |cr+1|2 cos2(< ct, vi >)}

or
Pr(|c1|2/9 > max{|c2|2 cos2 ε, ..., |cr+1|2 cos2 ε}

For a fixed vector v, the probability that a random vector is within an ε angle from it is ε2/4
for small enough ε. This can be seen by looking at the volume of the cone(of the unit sphere)
of angle ε centered around v. Therefore the probability that there are r centers which have an
angle at most ε (for small enough ε) with vi is

(t
r

)
(ε

2

4)r(1− ε2

4)t−r.
Hence P (t) ≤

∑t
r=0 P (t|r)

(t
r

)
(ε

2

4)r(1− ε2

4)t−r.
We now bound P (t|r). We need to calculate

Pr(|c1|2 > qmax{|c2|2, ..., |cr+1|2})

for q = 9 cos2(ε).
Each of |ci|2 is a sum of squares of 3 independent normal random variables with mean

0 and variance 1. So we need to calculate Pr(X1 > qmax{X2, ..., Xr+1}) where each Xi is
independently the sum of squares of 3 normals with mean 0 and variance 1. It is known that
the probability density function f(t) of each Xi is c

√
te−t/2 for some normalization constant c.

The next theorem proves an appropriate upper bound on the above probability.

Theorem 8 If X1..., Xr+1 are independent with density function f(t), then
Pr(X1 > qmax{X2, ..., Xr+1}) is O(1

(q+rr)), for q ≥ 1.

Proof. We have

Pr(X1 > qmax{X2, ..., Xr+1}) = c

∫ ∞
0

(Pr(X < t/q))r
√
te−t/2dt,

where X is a random variable with density function f(t).
So Pr(X < x) = 1− g(x)e

−x
2 where g(x) ≥ 1 for all x. Hence

Pr(X1 > qmax{X2, ..., Xr+1) ≤ c
∫ ∞

0
(1− g(t/q)e

−t
2q)r
√
te−t/2dt.

As q ≥ 1 and g(t/q) ≥ 1 for all t, the term on the right-hand side of the above inequality is at
most

c

∫ ∞
0

(1− g(t/q)e
−t
2q)r(g(t/q))q−1

√
te−t/2dt

10

We now make a change of variables. Let g(t/q)e
−t
2q = z Then we have

Pr(X1 > qmax{X2, ..., Xr+1}) ≤ c′
∫ 1

0
(1− z)rzq−1dz

(where c′ is some constant) because the derivative with respect to t of g(t/q)e
−t
2q is some constant

times
√
te
−t
2q . The term on the right-hand side of the above inequality is c′

q /
(q+r
r

)
. Hence the

required probability is O(1

(q+rr)).

Hence P (t|r) is bounded by O(1

(q+rr)) for q = 9 cos2 ε.

Returning to the proof of the core theorem, note that by the above

P (t) ≤ d
t∑

r=0

(
t

r

)
(
ε2

4
)r(1− ε2

4
)t−r

1(q+r
r

)
for some constant d and q = 9 cos2 ε. Manipulating algebraically the right hand side, we get that
P (t) is O(ε2(dqe−q)(ε2t)−q) for q = 9 cos2 ε. Now we set ε2 = 1/ log t. Then dqe− q = 9−9 cos2(ε)
which is O(ε2). After doing some algebra, we see that P (t) = O(log9 t/t9). 2

6 Conclusions

In this final section we address the following two questions:
Can the semidefinite approach be extended to hypergraphs of higher dimension ?
Can the bound on the number of colors be improved significantly in dimension 3 ?

We have fairly strong evidence to believe that the answer to the first question is negative.
Consider the example of a 2-colorable hypergraph of dimension 4. We can write a semidefinite
program very similar to the program (*) of section 4: instead of taking the sum of the dot
products of three vectors we take the sum of dot products of four vectors (remember that
semidefiniteness implies that each aij in (*) can be written as a dot product), i.e.,

minimize α (**)
where the n× n-matrix (aij) is positive semidefinite
subject to

aij + ajk + akl + aik + ajl + ail ≤ α if (ui, uj , uk, ul) ∈ E
aij = aji
aii = 1.

Now consider a complete bipartite hypergraph (with n vertices on each side), that is, a
maximal 2-colorable hypergraph with half the vertices of one color and half the other. As n
tends to infinity, the semidefinite program is minimized for such a hypergraph at α which tends

11

to zero. To see this consider an optimal solution, let v1, v2 . . . , vn denote the unit vectors assigned
to the vertices in one color class, and let u1, u2, . . . , un be the vectors assigned to the vertices of
the other color class in this solution. Clearly

||
n∑
i=1

vi +
n∑
j=1

uj ||2 = 2n+ 2(
∑
i<j

vi · vj +
∑
i<j

ui · uj +
∑
i,j

vi · uj) ≥ 0.

Choose randomly a 4-tuple with 3 vertices in one color class and 1 in the other. The expected
value of the sum of the six dot products corresponding to this 4-tuple is

3
2
(n

2

)(∑
i<j

vi · vj +
∑
i<j

ui · uj) +
3
n2

∑
i,j

vi · uj =

3
n2

(
∑
i<j

vi · vj +
∑
i<j

ui · uj +
∑
i,j

vi · uj) +
3

n2(n− 1)
(
∑
i<j

vi · vj +
∑
i<j

ui · uj) ≥ −O(
1
n

).

However, α = 0 is a trivial solution, as we do not even need to solve the program to have
all vectors orthogonal, and in fact for every hypergraph, α = 0 is a feasible solution. Therefore,
there is no real information in the solution to the quadratic programming problem corresponding
to the coloring probelm for hypergraphs of dimension 4.

Let us now turn our attention to the second question. Let us say that a hypergraph H of
dimension 3 on n vertices is vector 2-colorable if there exist n unit vectors vi such that for any
hyperedge {i, j, k}, vi ·vj+vj ·vk+vk ·vi ≤ −1. Notice that all vector-2-colorable hypergraphs can
be colored by the number of colors given by the center method, not just 2-colorable hypergraphs.
We would like to construct a hypergraph that is vector-2-colorable but has a lower bound of Nβ

on its chromatic number (β > 0), where N is the number of vertices in the hypergraph. This
then shows the limitation of semidefinite programming in this context.

Construct a hypergraph as follows. The vertices of the hypergraph are all strings of length
n over {0, 1, 2}. Three vertices s1, s2, s3 define a hyperedge in the hypergraph if the sum of
Hamming distances between them is at least 8n/3. We want to show an upper bound of cn, for
some c < 3, on the size of its maximum independent set. This will then show a lower bound
on the chromatic number of the hypergraph of the kind dn for some d > 1, or in terms of the
number of vertices N = 3n of the hypergraph, Nβ, for some β bounded away from zero.

Why is this hypergraph vector-2-colorable? Each string of length n over {0, 1, 2} can be
associated with a vector of dimension 2n where 0 is replaced by the vector (1, 0)/

√
n, 1 by

(−1
2 ,
√

3
2)/
√
n and 2 by (−1

2 ,
−
√

3
2)/

√
n. The

√
n factor comes in because we wish to normalize

each vector corresponding to an n-length string to a unit vector. It is easily seen that if the sum
of the Hamming distances d(s1, s2), d(s2, s3), d(s3, s1) between three strings s1, s2 and s3 is at
least 8n/3, then the sum of dot products of the corresponding vectors is at most −1.

12

In the conference version of this paper, we conjectured that this hypergraph has an upper
bound of Nα (α < 1) on the size of its maximum independent set, yielding a lower bound of Nβ

(β > 0) on its chromatic number. We settle this conjecture here.

Theorem 9 The maximum number of strings of length n over {0, 1, 2} such that the sum of the
Hamming weights among any three strings is smaller than 8n/3 is at most cn for some constant
c < 3.

To prove the theorem (without any attempt to optimize our estimates), we first establish the
following simple lemma.

Lemma 4 Let T be a subset of {0, 1, 2}n, such that |T | > 2
33n. Then there exist three strings

s1, s2, s3 such that d(s1, s2) = n, d(s2, s3) = n, d(s3, s1) = n.

Proof: Take s1 to be a random string in {0, 1, 2}n. Let s1 = a1a2...an. Let s2 = (a1 + 1)(a2 +
1)...(an+1) and s3 = (a1+2)(a2+2)...(an+2) (where the addition is modulo 3; thus, for example,
if s1 = 1201, then s2 = 2012, and s3 = 0120). Observe that d(s1, s2) = d(s2, s3) = d(s3, s1) = n.
The probability that s1 is in T is greater than 2

3 , and the same is true of s2 and s3. Hence, the
expected size of the intersection of {s1, s2, s3} and T is bigger than 2. Thus there exist s1, s2

and s3 in T such that d(s1, s2) = d(s2, s3) = d(s3, s1) = n, and we are done. 2

Theorem 10 Let n be sufficiently large. Let W be a subset of {0, 1, 2}n such that |W | >
3ne

−δ′2n
2 . Let δ > δ′ and T = {v ∈ {0, 1, 2}n : d(v,W) ≤ δn}. Here d(v,W) denotes

minw∈W d(v, w). Then |T | > 2
33n

Before we prove Theorem 10, we notice immediately that together with lemma 4 it implies

Theorem 9. This is because, whenever W is a set of size bigger than 3ne
−δ′2
2n (that is some

d(δ′)n, where d(δ′) < 3 for δ′ > 0), the set T = {v ∈ {0, 1, 2}n : d(v,W) ≤ δn} has car-
dinality bigger than 2

33n, and therefore contains strings u1, u2, u3 ∈ T such that d(u1, u2) =
d(u2, u3) = d(u3, u1) = n. Therefore there exist strings s1, s2, s3 in W such that d(s1, u1) ≤ δn,
d(s2, u2) ≤ δn and d(s3, u3) ≤ δn for every δ > δ′. Then d(s1, s2)+d(s2, s3)+d(s3, s1) ≥ (3−6δ)n.
Now taking δ such that 3− 6δ = 8/3 and δ′ anything less proves the result.

Proof of Theorem 10: We will actually show the following. Given S a subset of {0, 1, 2}n such that

|S| ≥ 1
33n, |v ∈ {0, 1, 2}n : d(v, S) ≥ (c+ 2)

√
n| is at most 3ne

−c2
2 . Then taking S = {0, 1, 2}n−T

and c = δ′
√
n establishes the result.

Given such an S, define a function f : {0, 1, 2}n → R+ by f(v) = d(v, S). Let uj denote the
jth coordinate of a given string u. Let u be a random string from {0, 1, 2}n. Define a sequence
of random variables, X0, ..., Xn by Xi(v) = E(f(u)|∀j ≤ i, uj = vj). Notice that X0 = E(f)
and Xn(v) = f(v). This sequence defines a (Doob) martingale (see Chapter 7 in [3]), and

13

|Xi+1 −Xi| ≤ 1. The fact that |Xi+1 −Xi| follows from the fact that d(u, S) cannot change by
more than 1 by changing one coordinate of u, and thus we can apply Azuma’s inequality, stated
in the following lemma (see [3] for more details).

Lemma 5 Let X0, ..., Xn be a martingale such that |Xi+1 − Xi| ≤ 1. Then Pr(Xn − X0 >

l
√
n) ≤ e

−l2
2 and Pr(Xn −X0 < −l

√
n) ≤ e

−l2
2 .

Hence, in our case, Pr(f(u)− E(f) > l
√
n) ≤ e

−l2
2 and Pr(f(u)− E(f) < −l

√
n) ≤ e

−l2
2 .

Since f(u) = d(u, S) and |S| ≥ 1
33n, Pr(f(u) = 0) ≥ 1

3 . Putting l = 2 in the second
inequality gives Pr(f(u) − E(f) < −2

√
n) ≤ e−2 < 1

3 . Hence E(f) ≤ 2
√
n. Using the first

inequality, we thus have

Pr(f(u) > (c+ 2)
√
n) ≤ Pr(f(u)− E(f) ≥ c

√
n) ≤ e

−c2
2 ,

as needed.2
Acknowledgment. We would like to thank Magnus Haldorsson for helping to formulate the
conjecture solved in the last section.

References

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to com-
binatorial optimization, Proc. of the 2nd MPS Conference on Integer Programming and
Combinatorial Optimization, Carnegie Mellon University, 1992.

[2] N. Alon, N. Kahale, Approximating the independence number via the Θ function,
Manuscript, 1995.

[3] N. Alon, J. Spencer, The Probabilistic Method, Wiley, 1992.

[4] A. Blum, New Approximation Algorithms for Graph Coloring, JACM, 41, pp. 470-516, 1994.

[5] H. Chen, A. Frieze, Coloring Bipartite Hypergraphs, Integer Programming and Combinato-
rial Optimization V, 1996.

[6] A. Frieze, M. Jerrum, Improved Approximation Algorithms for Max k-Cut and Max Bisec-
tion, Integer Programming and Combinatorial Optimization, 1995.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-
Completeness, Freeman, San Francisco, CA, 1979.

[8] M. Goemans, D. Williamson, 0.878 Approximation Algorithms for Max Cut and Max 2SAT,
Proc. of 26th Annual Symposium on the Theory of Computing, pp. 422-431, 1993.

14

[9] M. Grötschel, L. Lovász, A Schrijver, The ellipsoid method and its consequences in combi-
natorial optimization, Combinatorica 1, pp. 169-197, 1981.

[10] D. Karger, R. Motwani, M. Sudan, Approximate Graph Coloring by Semidefinite Program-
ming, Proc. of the 35th IEEE Symposium on Foundations of Computer Science, pp. 1-10,
1994.

[11] P. Kelsen, S. Mahajan, H. Ramesh, Approximate Hypergraph Coloring, 5th Scandinavian
Workshop on Algorithms and Theory, pp. 41-52, 1996.

[12] L. Lovász, Colorings and Coverings of Hypergraphs, Proc. 4th Southeastern Conference on
Combinatorics, Graph Theory, and Computing, Utilitas Mathematica Publishing, Winnipeg,
pp. 3-12.

[13] S. Mahajan, H. Ramesh, Derandomizing Semidefinite Programming Based Approximation
Algorithms, Proc. of the 36th IEEE Symposium on Foundations of Computer Science, 1995,
pp. 162-169.

[14] A. Wigderson, Improving the Performance Guarantee for Approximate Graph Coloring,
JACM 30(4), pp. 729-735, 1983.

15

