
Coloring graphs with sparse neighborhoods

Noga Alon ∗ Michael Krivelevich † Benny Sudakov ‡

Abstract

It is shown that the chromatic number of any graph with maximum degree d in which the
number of edges in the induced subgraph on the set of all neighbors of any vertex does not exceed
d2/f is at most O(d/ log f). This is tight (up to a constant factor) for all admissible values of d
and f .

1 Introduction

The chromatic number χ(G) of a graph G is the minimum number of colors required to color all
its vertices so that adjacent vertices get distinct colors. It is easy and well known that if d is the
maximum degree of G then χ(G) ≤ d + 1. This upper bound can be improved if the graph has
sparse neighborhoods, namely, if no subgraph on the set of all neighbors of a vertex spans too many
edges. The first instance of a result of this type is Brooks’ Theorem [5], which asserts that if no
neighborhood contains

(d
2

)
edges (that is, if G contains no copy of the complete graph on d + 1

vertices), then χ(G) ≤ d. Molloy and Reed [13] proved that for every ε > 0 there is some δ > 0 such
that if no neighborhood contains more than (1− ε)

(d
2

)
edges, then χ(G) ≤ (1− δ)(d+ 1). Johansson

[7] proved that if each neighborhood contains no edges at all (that is, if G is triangle-free), then
χ(G) ≤ O(d/ log d). Related results for independence numbers of graphs with sparse neighborhoods
appeared earlier in [1]. Our main result in the present note is the following.

Theorem 1.1 There exists an absolute positive constant c such that the following holds. Let G =
(V,E) be a graph on n vertices with maximum degree d in which the neighborhood N(v) of any vertex
v ∈ V spans at most d2/f edges. Then the chromatic number of G is at most c d

log f .
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This result supplies an interpolation between the above mentioned bounds and is tight, up to the
multiplicative constant c, for all admissible values of d and f , as stated in the following result.

Proposition 1.2 There exists an absolute positive constant b such that the following holds. For
every positive integer d and every f satisfying 2 ≤ f ≤ 2d2, there is a graph G with maximum degree
at most d in which the neighborhood of any vertex spans at most d2/f edges and χ(G) ≥ bd/ log f.

The proof of the main result is based on probabilistic arguments, and is described in the following
section. The final section contains some concluding remarks.

2 The proof

We first prove Theorem 1.1 for f ≥ d4ε, where ε > 0 is some fixed constant (say, ε = 1/28.) We make
no attempt to optimize our absolute constants here and in the rest of the paper.

Theorem 2.1 Let G = (V,E) be a graph on n vertices with maximum degree d in which the neigh-
borhood N(v) of any vertex v ∈ V spans at most d2−4ε edges for some fixed ε > 0. Then the chromatic
number of G is at most O(d/(ε3 log d)).

Our proof relies heavily on the following result of Johansson [7] mentioned in the introduction.

Proposition 2.2 ([7]) If G is a triangle-free graph with maximum degree d then

χ(G) ≤ O(
d

log d
). 2

We need the following lemma.

Lemma 2.3 Let ε > 0 be a fixed real. Let G = (V,E) be a graph on n vertices with maximum degree
d in which the neighborhood N(v) of each vertex v ∈ V spans at most d2−4ε edges. Then there exists
a partition of the vertex set V = V1 ∪ . . . ∪ Vk with k = Θ(d1−ε/ε2), such that for any 1 ≤ i ≤ k the
induced subgraph G[Vi] is triangle-free and has maximum degree at most O(d/ε2k) = O(dε).

Proof. We may and will assume, whenever this is needed, that d is sufficiently large. First partition
the vertices of G into d1−ε parts Ui, 1 ≤ i ≤ d1−ε. To do so color the vertices of the graph randomly
and independently by d1−ε colors. For a vertex v ∈ V (G), and a vertex u adjacent to it, call u a
bad neighbor of v, if they have at least d1−2ε common neighbors. Otherwise call u a good neighbor
of v. Since the neighborhood of any vertex spans at most d2−4ε edges, there are at most 2d1−2ε

bad neighbors for any vertex. For any vertex v define three types of ”bad” events. Let Av be the
event that v has more than 2dε neighbors of the same color as v. Let Bv be the event that v has
more than 10/ε bad neighbors with the same color as v. Finally, let Cv be the event that the set
of good neighbors of v which have the same color as v spans more than 100/ε2 edges. We use the
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symmetric version of the Lovász Local Lemma (see e.g. [4]) to prove that with positive probability
no bad events happen.

Note that each of the events Av, Bv and Cv is independent of all but at most O(d2) others, as it
is independent of all events Au, Bu, Cu corresponding to vertices u whose distance from v is bigger
than 2. Since the degree of any vertex in its color class is binomially distributed with mean at most
dε, the standard Chernoff estimates (see, e.g., [4] , Appendix A) imply that the probability that the
vertex v has more than 2dε neighbors of the same color as that of v is at most e−Ω(dε) < d−3. Clearly

Pr[Bv] ≤
(

2d1−2ε

10
ε

)
(

1
d1−ε )

10
ε < d−3.

To bound the probability of Cv we need the following simple observation. If a graph has more than
100/ε2 edges than by Vizing’s theorem [14] it either has a vertex of degree at least 9/ε or a matching
with at least 9/ε edges. Therefore Cv can happen only if we have a matching of size at least 9/ε on
the good neighbors of v which have the same color as v or there is a good neighbor u of v, such that
u and v have at least 9/ε common neighbors with the same color as v . The probability of the first
event is bounded by (

d2−4ε

9
ε

)
((d1−ε)−2)

9
ε < 0.5d−3,

and the probability of the last one is at most

d

(
d1−2ε

9
ε

)
(

1
d1−ε )

9
ε < 0.5d−3.

Therefore the probability of Cv is at most d−3. Thus, by the Local Lemma, with positive probability
none of the events Av, Bv or Cv happen. Thus we have a partition Ui, 1 ≤ i ≤ d1−ε such that in each
induced subgraph G[Ui] the maximum degree is at most 2dε and the neighborhood of any vertex v in
it has the property that one can remove from it a set Sv,i of at most 100/ε2 + 10/ε ≤ 110/ε2 vertices
such that the remaining ones span no edges. Fix such a partition.

Recall that a graph is p-degenerate if any subgraph of it contains a vertex of degree at most p.
Such graphs are trivially p+ 1 colorable. Construct an auxiliary digraph Di on the set of vertices Ui
as follows. For each vertex v ∈ Ui the edges from v are exactly the ordered pairs {(v, u)|u ∈ Sv,i}.
By definition, the digraph Di has maximum outdegree at most 110/ε2 and therefore it is 220/ε2

degenerate. Thus Di can be properly colored by at most 220/ε2 +1 colors. Note that each color class
is now a triangle-free graph. Altogether this gives a partition of the graph into at most O(d1−ε/ε2)
parts such that each part induces a triangle-free graph with maximum degree at most 2dε. This
completes the proof. 2

Now we are ready to prove the theorem.
Proof of Theorem 2.1. Let V1, . . . , Vk be a partition of the vertices of G satisfying the properties
in Lemma 2.3 . Then by Johansson’s result (Proposition 2.2) the chromatic number of each induced
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subgraph G[Vi] is at most O( d
ε2k
/ log( d

ε2k
)). Coloring each subgraph G[Vi] by its own colors we get a

proper coloring of G. Therefore

χ(G) ≤ k O
(
d

ε2k
/ log(

d

ε2k
)
)

= O

(
d

ε3 log d

)
.

2

An immediate consequence of the last theorem is the following:

Corollary 2.4 Let H = (V,E) be a fixed graph so that H − v is bipartite for some v ∈ V . Then the
chromatic number of any graph G with maximum degree d, which does not contain a copy of H is at
most O(d/ log d). In particular, this is true for H = Ck, the cycle of length k.

Proof. We may and will assume, that d is sufficiently large as a function of the size of H. For
each vertex u of G the induced subgraph G[N(u)] on the neighborhood of u contains no copy of the
bipartite graph H−v. Thus by the known results on Zarankiewicz’s problem (see, e.g., [11], Problem
10.37) the number of edges in G[N(v)] is at most d2−4ε for some fixed ε = ε(H). Now use Theorem
2.1 to color G. 2

The general case of Theorem 1.1 cannot be proved using the arguments in the proof of Theorem
2.1 since if f is much smaller than the degree d the desired partition cannot be obtained in one
step since this would cause more dependencies than we may allow. To overcome this difficulty we
apply an approach similar to the one used in [2] and construct the desired partition by a sequence
of random halving steps. This is done using the following lemma.

Lemma 2.5 Let G = (V,E) be a graph on n vertices with maximum degree d ≥ 2 in which the
neighborhood N(v) of any vertex v ∈ V spans at most s edges. Then there exists a partition of V
into two subsets V = V1 ∪ V2 such that the induced subgraph G[Vi], i = 1, 2, has maximum degree
at most d/2 + 2

√
d log d and the neighborhood N(u) of any vertex u in G[Vi], i = 1, 2 spans at most

s/4 + 2d3/2
√

log d edges.

Proof. Partition the set of vertices V into two subsets V1 and V2 by choosing for each vertex
randomly and independently an index i to be either 1 or 2 and placing it into Vi. For i = 1, 2 let Gi
be the induced subgraph of G on Vi. For each v ∈ V let Av be the event that the degree of v in Gi

is greater than d/2 + 2
√
d log d and let Bv be the event that the neighborhood of v in Gi spans more

than s/4 + 2d3/2
√

log d edges. Observe that if none of the events Av, Bv holds, then our partition
satisfies the assertion of the lemma. Hence it suffices to show that with positive probability no event
Av, Bv happens. We prove this by applying the Local Lemma. Since the number of neighbors of any
vertex v in Gi, i = 1, 2, is a binomially distributed random variable with parameters d(v) ≤ d and
1/2, it follows by the standard estimates for Binomial distributions (cf. , e.g., [4], Appendix A) that
for every v ∈ V

Pr(Av) ≤ 2e−
2(2
√
d log d)2

d ≤ 2d−8.
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To bound the probability of the event Bv we use a large deviation inequality for martingales.
Denote by Xi

v the number of edges spanned by the neighborhood of v in Gi. Then the expected
value of Xi

v satisfies EXi
v ≤ s/4. Observe that by shifting a neighbor u of v from G1 to G2 or vice

versa the value of Xi
v can change by at most d(u) ≤ d. Since the number of neighbors of v is at most

d, the large deviation inequality for vertex exposure martingale (see, e.g., [12], p. 149) implies that

Pr(Xi
v − EXi

v ≥ t) ≤ e
− 2t2

d·d2 .

By taking t = 2d3/2
√

log d we obtain

Pr(Bv) ≤ e−2
(2d3/2

√
log d)2

d3 < 2d−8.

Clearly each event Av, Bv is independent of all but at most 2d2 others, as it is independent of all events
Au, Bu corresponding to vertices u whose distance from v is bigger than 2. Since e·2d−8 ·(2d2+1) < 1
we conclude, by the Local Lemma, that with positive probability no event Av, Bv holds. This
completes the proof of the lemma. 2

Proof of Theorem 1.1. Let G = (V,E) be a graph with maximum degree d in which the neigh-
borhood N(v) of any vertex v ∈ V spans at most d2/f edges. Since the chromatic number of G is
at most d + 1 we may and will assume, whenever this is needed, that f is sufficiently large. First
we consider the case f > d1/7. In this case the result of the theorem follows from Theorem 2.1
with ε = 1/28. Hence we can assume that f ≤ d1/7. Apply Lemma 2.5 to split G into two induced
subgraphs G[Vi], i = 1, 2 such that the maximum degree in each G[Vi] is at most d/2 + 2

√
d log d

and the neighborhood N(u) of any vertex u in G[Vi], i = 1, 2, spans at most d2/(4f) + 2d3/2
√

log d
edges. By applying Lemma 2.5 again to each of these two graphs we obtain a splitting of G into four
induced subgraphs. Continuing in this manner we obtain, after j such halving steps, a partition of
G into 2j induced subgraphs. Define two sequences dt and st, 0 ≤ t ≤ j as follows, d0 = d, s0 = d2/f

and for all t < j:
dt+1 = dt/2 + 2

√
dt log dt, st+1 = st/4 + 2d3/2

t

√
log dt

Note that by Lemma 2.5, dt is an upper bound for the maximum degree and st is an upper bound for
the number of edges spanned by the neighborhood of any vertex in any of the 2t induced subgraphs
of G obtained after t halving steps.

Let j be the smallest integer for which (8d/2j)1/7 becomes less than f . We claim that dj ≤ 8d/(2j)
and sj ≤ (8d/2j)2/f . Thus we can apply Theorem 2.1 (with ε = 1/28) to each of the 2j induced
subgraphs obtained after the j-th step of the partition. This implies that the chromatic number of
each such induced subgraph is at most

O

(
8d/2j

log(8d/2j)

)
= O

(
d

2j log f

)
.
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By coloring each of the 2j induced subgraphs with new colors we obtain a proper coloring of G
by O(d/ log f) colors. In order to complete the proof of the theorem it thus remains to show that
dj ≤ 8d/(2j) and sj ≤ (8d/2j)2/f .

Clearly, dt ≥ d/(2t) > f7/8 is large enough by our assumption, hence dt+1 ≤ dt/2 + d
2/3
t ≤

1
2(d1/3

t + 1)3 for all t < j. Thus by taking cubic roots and subtracting 1
21/3−1

from both sides we
obtain

d
1/3
t+1 −

1
21/3 − 1

≤ 1
21/3

(d1/3
t + 1)− 1

21/3 − 1
=

1
21/3

(
d

1/3
t − 1

21/3 − 1

)
.

Therefore
d

1/3
j − 1

21/3 − 1
≤ 1

2j/3

(
d

1/3
0 − 1

21/3 − 1

)
,

and, since d0 = d and 21/3 − 1 > 1/4,

d
1/3
j ≤ d1/3

2j/3
+ 4 ≤ 2

d1/3

2j/3
.

The last inequality follows from the assumption that d/2j−1 > f7/8 is large enough. Thus dj ≤
8d/(2j). Note that the same proof also shows that dt ≤ 8d/2t for all t ≤ j. Since by definition

st ≥
s0

4t
=

d2

4tf
=

1
64

(8d
2t )2

f
≥ 1

64

(
8d
2t

)2−1/7

≥ 1
64
d

2−1/7
t

for all t < j, we obtain that st+1 ≤ st/4 + 3s5/6
t ≤ 1

4(s1/6
t + 2)6. Hence by taking sixth roots and

subtracting 2
41/6−1

from both sides we obtain

s
1/6
t+1 −

2
41/6 − 1

≤ 1
41/6

(s1/6
t + 2)− 2

41/6 − 1
=

1
41/6

(
s

1/6
t − 2

41/6 − 1

)
.

Therefore
s

1/6
j − 2

41/6 − 1
≤ 1

4j/6

(
s

1/6
0 − 2

41/6 − 1

)
,

and, since s0 = d2/f and 41/6 − 1 > 1/4,

s
1/6
j ≤ d2/6

4j/6f1/6
+ 8 ≤ 2

d2/6

4j/6f1/6
.

Thus sj ≤ (8d/2j)2/f , completing the proof of the theorem. 2

We conclude the section with the (simple) proof of Proposition 1.2, which shows that the assertion
of Theorem 1.1 is tight.
Proof of Proposition 1.2. It is well known (see, e.g., [10], [6]) that there is an absolute constant
C so that for every integer ∆ there is a triangle-free graph G on m vertices with maximum degree ∆
containing no independent set of size at least Cm log ∆/∆. (In fact the above holds even for graphs
with arbitrarily large girth; for large ∆ the best known estimate is (2 + o(1))m log ∆/∆, where the
logarithm is in base e.) The chromatic number of each such graph is clearly at least ∆/(C log ∆)
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and as it is triangle-free it has no edges at all in any neighborhood. Therefore, taking ∆ = d, the
assertion of Proposition 1.2 for any f ≥ dΩ(1) follows. We thus may assume that, say, f is an integer
satisfying 2 ≤ f < d/4. In this case let H be a triangle-free graph with maximum degree ∆ = 2f ,
m vertices, and no independent set of size Cm log(2f)/(2f). Let G be the graph obtained from H

by replacing each vertex of H by a clique on bd/(2f + 1)c vertices. Then the maximum degree of
G is smaller than d, it has mbd/(2f + 1)c vertices, it contains no independent set of size at least
Cm log(2f)/(2f), and the maximum number of edges in a neighborhood of a vertex in it is smaller
than 3d2/(4f) ≤ d2/f . It follows that the chromatic number of G is at least

mbd/(2f + 1)c
Cm log(2f)/(2f)

= Ω(d/ log f),

completing the proof. 2

3 Concluding remarks

• Some of the results described here can be extended to list colorings. The choice number ch(G)
of a graph G = (V,E) is the smallest integer k such that for every assignment of a list S(v) of k
colors to each vertex v of G there is a proper coloring of G assigning to each vertex a color from
its list. Clearly ch(G) ≥ χ(G) for every graph G and it is well known that the inequality may be
strict. It is not difficult to extend some of the results of this note to choice numbers. Thus, for
example, using the technique of [3] it is not difficult to show that if G satisfies the assumptions
of Theorem 2.1 and d ≥ (log n log log n)1/ε then the inequality ch(G) ≤ O(d/(ε3 log d)) (which
is stronger than the assertion of the theorem) holds as well.

Indeed, as proved by Johansson in [7], the choice number of any triangle-free graph with
maximum degree d is at most O(d/ log d). Given lists of colors Lv of size O( d

ε3 log d
) for each

vertex v, partition the set of all colors X = ∪v∈V Lv into k sets X1, . . . , Xk by choosing for each
color randomly and independently an index i between 1 and k and by placing it in Xi. Since
for all vertices v ∈ V the random variable |Lv ∩Xi| is binomially distributed with parameters
O( d

ε3 log d
) and 1/k, then by a standard large deviation inequality (cf. , e.g., [4], Appendix A)

Pr

(
|Lv ∩Xi| ≤ O(

d

ε3k log d
)
)
< e
−Ω( d

ε3k log d
) = e

−Ω( dε

ε log d
)
<

1
n2
.

Therefore with positive probability no such event happens. This implies that there exists a
partition of the colors into k pairwise disjoint parts with the property that |Lv∩Xi| ≥ O( d

ε3k log d
)

for all i and v ∈ V . Take one such partition. Since the induced subgraph G[Vi] constructed
in the proof of Theorem 2.1 is triangle-free and has maximum degree O(d/ε2k), Johansson’s
result implies that its choice number is at most ch(G[Vi]) ≤ O( d

ε2k
/ log( d

ε2k
)) = O( d

ε3k log d
).

Therefore one can color the induced subgraph G[Vi] using only colors from Xi. Since the sets
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Xi are pairwise disjoint this gives a proper coloring of the vertices of the graph G using the
original lists of colors.

Similarly, if G satisfies the assumptions of Corollary 2.4 and d ≥ (log |V | log log |V |)1/ε then
the inequality ch(G) ≤ O(d/ log d) holds.

• It is worth noting that there is no analog of Theorem 1.1 if the assumption that the maximum
degree of G is d is replaced by the assumption that G is d-degenerate. A graph is d-degenerate
if any induced subgraph of it contains a vertex of degree at most d. It is easy and well known
that each such graph is (d+ 1)-colorable (see, e.g., [9], page 8). However, it turns out that for
every d there is a triangle-free d-degenerate graph Gd whose chromatic number is d+ 1. This
is trivially true for d = 1. Assuming it holds for d− 1, we prove it for d, d ≥ 2. Let Gd consist
of d pairwise vertex disjoint copies H1,H2, . . . ,Hd of Gd−1 together with an independent set X
of size md, where m is the number of vertices of Gd−1. For each choice of d vertices, one from
each Hi, there is a unique vertex of X joined to all these vertices. It is easy to check that the
resulting graph is a triangle-free, d-degenerate graph of chromatic number d+ 1.

• Our main result here determines the asymptotic behavior of the maximum possible chromatic
number of graphs with a given maximum degree and a given bound on the maximum number of
edges in a neighborhood. A related conjecture is the following one, dealing with the maximum
possible chromatic number of graphs with forbidden subgraphs.

Conjecture 3.1 For every fixed graph H there exists a positive constant cH such that the
chromatic number of any graph G with maximum degree d that contains no copy of H is at
most cHd/ log d.

Some version of this conjecture is suggested in [8], where it is shown that it almost holds: the
chromatic number of any graph G as above is at most cHd log log d/ log d. Note that Johansson’s
result [7] stated as Proposition 2.2 here shows that the conjecture holds for H = K3, and
Corollary 2.4 shows it holds for all graphs H containing a vertex v such that H−v is bipartite.
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