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Abstract

A Boolean function f of n variables is said to be q-locally correctable if, given a black-
box access to a function g which is ”close” to an isomorphism fσ(x) = fσ(x1, . . . , xn) =
f(xσ(1), . . . , xσ(n)) of f , we can compute fσ(x) for any x ∈ Z

n
2 with good probability using

q queries to g. It is known that degree d polynomials are O(2d)-locally correctable, and that
most k-juntas are O(k log k)-locally correctable, where the closeness parameter, or more precisely
the distance between g and fσ, is required to be exponentially small (in d and k respectively).

In this work we relax the requirement for the closeness parameter by allowing the distance
between the functions to be a constant. We first investigate the family of juntas, and show that
almost every k-junta is O(k log2 k)-locally correctable for any distance ε < 0.001. A similar
result is shown for the family of partially symmetric functions, that is functions which are
indifferent to any reordering of all but a constant number of their variables. For both families,
the algorithms provided here use non-adaptive queries and are applicable to most but not all
functions of each family (as it is shown to be impossible to locally correct all of them).

Our approach utilizes the measure of symmetric influence introduced in the recent analysis
of testing partial symmetry of functions.

1 Introduction

Local correction of functions deals with the task of determining the value of a function in a given
point by reading its values in several other points. More precisely, we care about locally correcting
specific functions which are known up to isomorphism, that is, functions which are known up to
reordering of the input variables. Our main interest is identifying the number of needed queries for
this task, for a given function. For a permutation σ ∈ Sn and a function f = f(x1, . . . , xn) : Z

n
2 →

Z2, let fσ denote the function given by fσ(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Question. Given a specific Boolean function f , what is the needed query complexity in order to
correct an input function which is close to some isomorphism fσ of f?

This question can be seen as a special case of locally correctable codes (see, e.g., [13]). Each
codeword would be the 2n evaluations of an isomorphic copy of the input function, and thus the

∗Sackler School of Mathematics and Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978,
Israel. Email: nogaa@tau.ac.il. Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF
grant and by the Israeli I-Core program.

†Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Email: amitw@tau.ac.il.
Research supported in part by an ERC Advanced grant and by the Israeli Centers of Research Excellence (I-CORE)
program.

1

http://arxiv.org/submit/0576969/pdf


number of distinct codewords is at most n!, and we would like to correct any specific value of the
given noisy codeword using as few queries as possible.

The notion of closeness in the above question plays a crucial role in answering it. We say
that two functions are ε-close to one another if they differ on at most an ε fraction of the inputs.
Equivalently, f is ε-close to f ′ if Prx[f(x) 6= f ′(x)] ≤ ε, over a uniformly chosen x ∈ Z

n
2 . The main

focus of this work is to better understand the functions for which a constant number of queries
suffices for local correction, while we allow ε to be a constant as well. In particular, we show that
for partially symmetric functions, that is, functions which are symmetric with respect to all but a
constant number of their variables, this is typically the case.

The field of local correction of Boolean functions is closely related to that of property testing,
and in particular to testing isomorphism of functions. In testing, the goal is to distinguish between
a function which satisfies some property and functions which are far from satisfying that property,
while here we are guaranteed the input function is close to satisfy a property, the property of being
isomorphic to some specific function, and we are required to locally correct a given input. Due to
this resemblece, many tools used in the research of local correction are borrowed from the field of
testing functions isomorphism and property testing in general (see e.g. [9, 11, 2, 7, 1, 10]).

1.1 Preliminaries

Below is the formal definition of locally correctable functions, as given in [4].

Definition. A Boolean function f : Zn
2 → Z2 is q-locally correctable for ε > 0 if the following

holds. There exists an algorithm that given an input function g which is ε-close to an isomorphism
fσ of f , can determine the value fσ(x) for any specific x ∈ Z

n
2 with probability at least 2/3, using

q queries to g.

The two interesting parameters of the above definition are the noise rate ε and the number of
queries q. In our recent work [4] it is shown that when we allow the noise rate to be relatively small,
depending on the structure of the function, functions from several interesting classes can be locally
corrected. More precisely, it is observed that every degree d polynomial can be locally corrected
from noise rate of ε < 2−d−3 using O(2d) queries. The family of k-juntas, that is, functions which
only depend on k of their input variables, are in particular degree k polynomials and hence the
same upper bound is applicable. However, this is usually not tight as most k-juntas can actually be
locally corrected from the same noise rate using O(k log k) queries. For more details on the above
results, we refer the reader to [4].

The above results require an exponential dependency between the noise rate ε and the param-
eter determining the structure of the function, such as the size of the junta or the degree of the
polynomial. This raises the following natural question. Can we locally correct functions from these
families when the noise rate is higher or even constant? More generally, which functions can or
cannot be locally corrected with a constant number of queries from a given constant noise rate?

1.2 Our results

The main result of this work is the identification of two families, in which most functions can be
locally corrected from a constant noise rate. The first family is that of juntas. We say that almost
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every k-junta satisfies a property if only εk fraction of the k-juntas do not satisfy it, where εk tends
to zero as k tends to infinity.

Theorem 1.1. Almost every k-junta can be locally corrected from a noise rate of ε = 0.001, using
O(k log2 k) non-adaptive queries.

Similarly to the result in [4], this statement applies to almost every junta (and not to all of
them). The main differences between the results are the constant noise rate which does not depend
on the junta size k, and the fact that the algorithm we describe is non-adaptive (at the expense of
increasing the query complexity by a logarithmic factor).

The second main result presented here is an extension of Theorem 1.1 to another family of
functions, the family of partially symmetric functions, as defined in [8]. A function f is called
t-symmetric if there exists a set of t variables such that f is symmetric with respect to these
variables (that is, any reordering of these variables does not change the function). To better see the
connection between these functions and juntas, the following equivalent definition is often useful.
We say that f is (n− k)-symmetric if there exists a set of k variables such that the output of f is
determined by these k variables, and the Hamming weight of the others. A k-junta is in particular
an (n− k)-symmetric function, and hence the following theorem can be viewed as a generalization
of Theorem 1.1.

Theorem 1.2. Almost every (n− k)-symmetric function can be locally corrected from a noise rate
of ε = 0.001 using O(k log2 k) non-adaptive queries.

Here too the term ”almost every” means that only εn fraction of these functions do not satisfy
the above where εn tends to zero as n tends to infinity, and it does not depend on k.

The proof of the theorem relies on the analysis of partially symmetric functions and borrows
some of the ideas provided in [8]. Notice that although juntas are in particular partially symmetric
functions, Theorem 1.1 is not a corollary of Theorem 1.2, as juntas represent a small fraction of
all partially symmetric functions, and these results are applicable only to most functions in the
respective families.

The above theorems apply to almost every junta and partially symmetric function but not to
all of them. As the next simple result indicates, this restriction is unavoidable. Some functions in
these families are not locally correctable from a constant noise rate, regardless of the number of
queries.

Proposition 1.3. For every constant ε > 0, there exists k(ε) such that the following holds. For
every k ≥ k(ε), there exist k-juntas which cannot be locally corrected from ε noise rate, regardless
of the number of queries.

Proof. Fix some ε > 0 and let k(ε) = ⌈log 1/ε⌉. Given some k ≥ k(ε), we consider the k-junta f
which is defined to be 1 only when the first variable is 1 and the other k − 1 variables following it
are 0. This function is obviously a k-junta as it is determined by the first k variables only. Notice
however that the constant zero function is 2−k ≤ ε close to f , and therefore if we try to locally
correct it, we will not be able to identify which isomorphism of f we were given. Hence we would
not be able to locally correct f , regardless of the number of queries.

The above result is rather extreme, in the sense that we have no way of identifying which
original isomorphism was chosen. For most functions this is not the case, and this allows us to
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achieve the previous results. The last result we present in this work shows that locally correcting
most functions is relatively hard, even from the smallest possible error rate of a single error.

Theorem 1.4. Almost every function over n variables cannot be locally corrected, even from a
single error (i.e., ε = 2−n), using fewer than n/100 non-adaptive queries.

The proof of Theorem 1.4 appears in Section 4 along with several open questions. In Sections 2
and 3 we prove Theorems 1.1 and 1.2, respectively. The two proofs share a similar structure.

2 Correcting juntas

Our approach for locally correcting juntas consists of two main steps. The goal of the first step is to
identify the junta variables, i.e. those variables which determine the output of the function. Since
our query complexity should not depend on the input size, one cannot hope to recover their exact
location. Instead, we use the testing-by-implicit-learning approach (see, e.g., [12]) and only identify
large sets which contain these variables. The second step, performed after we have identified k sets,
each of which containing one of the junta variables, is recovering their internal order (out of the k!
possible orderings). Once both these steps are completed, we would be able to output the correct
value of the function for the requested input.

In Section 2.1 we define some of the tools and typical properties of juntas. The two steps of the
algorithm are later described in Secctions 2.2 and 2.3, completing the proof of Theorem 1.1.

2.1 Properties of juntas

Since juntas depend on a relatively small number of variables, we often consider their concise
representation over these variables only. Given a k-junta f , we denote the core of f by fcore : Z

k
2 →

Z, which is the function f restricted to its k junta variables in their natural order.

A variable of a function is said to be influencing if modifying its value can modify the output
of the function. Clearly a k-junta has at most k influencing variables, which are in fact the junta
variables (those which appear in its core). The following definition quantifies how influential a
variable, or more generally a set of variables, is with respect to a given function.

Definition 2.1 (Influence). Given a Boolean function f : Z
n
2 → Z2, the influence of a set of

variables J ⊆ [n] := {1, 2, . . . , n} with respect to f is defined by

Inff (J) = Pr
x,y

[

f(x) 6= f(xJyJ)
]

where xJyJ is the vector whose ith coordinate equals to yi if i ∈ J , and otherwise equals to xi.
When the set J = {i} is a singleton, we simply write Inff (i).

An important property of influence is monotonicity. Namely, it is known (see, e.g., [11]) that
for any two sets J ⊆ K and any function f , Inff (J) ≤ Inff (K). Given this property, a set which
has even a single variable with large influence must also have large influence. We heavily rely on
this fact in our algorithm.

The result we present in this work is only applicable to most juntas. The following two propo-
sitions indicate two typical properties of juntas, which are required for our algorithm to work with
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high probability. The first, presented in Proposition 2.2, indicates that in a typical junta every
influencing variable has constant influence. The second property bounds the distance between
a typical junta and its isomorphisms, and is presented in Proposition 2.3. Notice that in both
propositions, it suffices to consider the core of the junta rather than the entire function.

Proposition 2.2. Let f : Zk
2 → Z2 be a random core of a k-junta. Then with probability at least

1− 2−Ω(k), any variable i ∈ [k] out of the k variables of f has influence Inff (i) > 0.1.

Proof. Let f be a random function over k variables. The influence of some variable i is determined
by the number of pairs of inputs, which differ only on the coordinate i, that disagree on the output.
Since each output of the function is chosen independently, and as these 2k−1 pairs are disjoint, this
is in fact a binomial random variable. The influence of variable i is less than 0.1 only if at most
1/5 of these pairs disagree. This probability is thus

Pr[B(2k−1, 0.5) < 1
5 · 2k−1] < 2−c2k

for some absolute constant c > 0, where here B is the binomial distribution and we applied one
of the standard estimates for binomial distributions (cf., e.g. [3], Appendix A). Therefore, by the
union bound, all k variables have influence greater than 0.1 with probability 1− 2−Ω(k).

Proposition 2.3. Let f : Zk
2 → Z2 be a random core of a k-junta. Then with probability at least

1− 2−Ω(k), f is 0.1-far from any non-trivial isomorphic function.

Proof. Let f be a random function of k variables and let π ∈ Sk be any non-trivial permutation.
Our goal is to show that Prx[f(x) 6= fπ(x)] > 0.1 for every such π, with high probability (where
the probability is over the choice of f and applies to all permutations simultaneously). We will do
a similar calculation to the one above. Here however, we do not have a nice partition of the inputs
into disjoint pairs, as some inputs remain unchanged after applying the permutation. Consider
the partition of the inputs according to π into chains, that is elements x, πx, π2x, . . . , πix = x.
Notice that if π is not the identity, there are at most 2k/2 chains of length 1 (half of the elements).
Looking at the elements of a chain of length i ≥ 2, i − 1 ≥ ⌈i/2⌉ of them result in pairs x, πx so
that all these events f(x) 6= f(πx) are mutually independent. Thus in total we have at least 2k/4
independent samples.

As before, we can now bound the probability that Prx[f(x) 6= fπ(x)] < 0.1 by the probability
that at most 2/5 of these pairs would disagree (as with probability at least 1/4 we fall into an
element from our independent samples). We bound this probability by

Pr[B(2k/4, 0.5) < 2
5 · 2k

4 ] < 2−c′2k

for some absolute constant c′ > 0, where again we applied one of the standard estimates for binomial
distributions. Since there are only k!− 1 non-trivial permutations, we can apply the union bound
and conclude that over the choice of f , it is 0.1-far from all its non-trivial isomorphic copies with
probability at least 1− 2−Ω(k).

2.2 Finding the influencing sets

In order to find the influencing sets, we first need a way to estimate the influence of a set by querying
the input function. To this end we use the following natural algorithm Estimate-Influence.
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Algorithm 1 Estimate-Influence(f, J, δ, η)

1: Set q = ⌈ ln 2/η
2δ2

⌉ and X = 0.
2: for i = 1 to q do

3: Pick two random inputs x, y ∈ Z
n
2 .

4: Increase X by 1 if f(x) 6= f(xJyJ).
5: Return X/q.

Proposition 2.4. For any function f , a set of variables J and two constants δ, η ∈ (0, 1), the algo-
rithm Estimate-Influence(f, J, δ, η) returns a value within distance δ of Inff (J) with probability
at least 1− η, by performing O(δ−2 log 1/η) non-adaptive queries to f .

Proof. The proof is a direct application of the Chernoff bound as E [X/q] = Inff (J) and we deviate
by more than δ with probability at most 2 exp(−2δ2q).

In our scenario, however, we also need to consider the fact that we query a noisy version of the
function. The following proposition shows that the noise cannot modify the influence of a set by
too much, and therefore we can still estimate correctly which sets have significant influence.

Proposition 2.5. Let f and g be any two functions which are ε-close. Then for every set J ⊆ [n]
of variables, |Inff (J)− Infg(J)| ≤ 2ε.

Proof. Fix J to be some subset of the variables and let f and g be two functions which are ε-close.
We prove that Inff (J) ≤ Infg(J) + 2ε, from which the proposition follows by simply replacing the
roles of f and g. By the triangle inequality,

Inff (J) = Pr
x,y

[

f(x) 6= f(xJyJ)
]

≤ Pr
x
[f(x) 6= g(x)] + Pr

x,y

[

g(x) 6= g(xJyJ)
]

+ Pr
x,y

[

g(xJyJ) 6= f(xJyJ)
]

≤ Infg(J) + 2ε .

We are now ready to describe the first step in our algorithm for local correction of juntas, which
is identifying the influencing sets. A crucial restriction we must assume over the function we try
to correct is that the influence of any influencing variable is significant enough, so we can identify
them in spite of the noise (namely, it should satisfy Proposition 2.2).

The algorithm Find-Influencing-Sets is given a function f , a partition of the variables I, a
size parameter k and a noise parameter ε. The algorithm returns all parts in the partition I which
it considered as influential with respect to ε. We will later see that in the scenario we apply it,
the returned sets are exactly those which contain significantly influencing variables of f , with high
probability.

Remark. The algorithm Find-Influencing-Sets is very similar to the algorithm BlockTest

defined in [5]. The main difference is in the noise tolerance behavior. In the original algorithm a
part Ij was marked as non influential, and was removed from S, only if its estimated influence was
precisely 0. Here however we mark such a part as non-influential even if it has some influence, but
as long as our estimate for it is small enough.
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Algorithm 2 Find-Influencing-Sets(f,I = {I1, . . . , Is}, k, ε)
1: Fix r = ⌈12k ln s⌉ and S = [s].
2: for each of r rounds do
3: Pick a random subset T ⊆ [s] by including each index independently with probability 1/k.
4: Define J = ∪i∈T Ii to be the union of sets in I according to the indices of T .
5: If Estimate-Influence(f, J, ǫ, 1/20r) ≤ 3ε, set S = S \ T .
6: Return {Ii}i∈S

Lemma 2.6. Let f be a k-junta whose influencing variables each has influence of at least 6ε
for some ε > 0, and they are separated by a partition I, of size |I| = O(k2), |I| > 5. Then for
every function g which is ε-close to f , Find-Influencing-Sets(g,I, k, ε) returns exactly the k sets
containing the influencing variables of f with probability at least 9/10, by performing O(k log2 k/ε2)
non-adaptive queries to g.

Proof. Fix ε > 0 and let f, k,I and g be as described in the lemma. We first note that the
query complexity is indeed O(k log2 k/ε2) as we have r = O(k log s) = O(k log k) rounds, assuming
s = O(k2), and in each round we perform O(log s/ε2) = O(log k/ε2) queries. Moreover, the queries
are all non-adaptive as we only apply the Estimate-Influence algorithm which is non-adaptive
as well.

By the analysis of Estimate-Influence and the parameters we provide it, we know it would
deviate by more than ε with probability at most 1/20r. Since we invoke it once per round and
there are only r rounds, by the union bound they would all deviate by at most ε simultaneously
with probability at least 19/20. Assuming this is indeed the case, what remains to be shown is that
every set containing an influencing variable would be returned, and only those.

Let I be a set containing an influencing variable of f . Since we know each influential variable
of f has influence at least 6ε, by monotonicity of influence we have Inff (J) ≥ Inff (I) ≥ 6ε for any
set J such that I ⊆ J . Moreover, since g is ε-close to f , by Proposition 2.5 we have Infg(J) ≥ 4ε
for any such set J . As we assumed all calls to Estimate-Influence deviated by at most ε, we
would not flag the set I as non-influential at any round (and thus it would be returned).

Consider now the case that I contains no influencing variable of f . It suffices to show that at
some round, the set J would contain I but no other set I ′ which contains an influencing variable.
If there was such a round, then Infg(J) ≤ Inff (J) + 2ε = 2ε and we would estimate it correctly
to be at most 3ε by our assumption. Since there are at most k sets with influencing variables, at
each round, J would include I and no other set with influencing variables with probability at least
(1/k)(1 − 1/k)k ≥ 1/4k for k ≥ 2. We can now bound the probability that the set I would be
incorrectly returned by (1 − 1/4k)r ≤ e−r/4k ≤ e−3 ln s < 1

20s . By applying the union bound over
all the parts in I, we get that with probability at least 19/20, all sets without influencing variables
would not be returned.

Combining both our assumptions, each occurring with probability at least 19/20, we indeed
showed that with probability at least 9/10, precisely the sets which contain the influencing variables
of f would be returned.
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2.3 The algorithm

Before we proceed to describe the complete algorithm, we need some additional definitions. Since
we have no intention to identify the exact location of the influencing variables, and we only identify
sets which contain them, it is natural to query the function at inputs which are constant over the
sets in a given partition. For this purpose, we use the following distribution.

Definition 2.7. Let I = {I1, . . . , I2s} be a partition of [n] into an even number of parts (where
some parts may be empty). The distribution DI over y ∈ Z

n
2 is defined as follows.

• Choose z ∈ Z
2s
2 to be a random balanced vector of Hamming weight |z| = s.

• Define y ∈ Z
n
2 such that for every Ij ∈ I and i ∈ Ij, yi = zj .

Proposition 2.8 ([10]). Let J = {j1, . . . , jk} ⊆ [n] be a set of size k, and let s = Ω(k2) be even.
The distribution DI satisfies the following conditions.

• For every x ∈ Z
n
2 , PrI,y∼DI

[y = x] = 2−n given that the partition I was chosen at random.

• The marginal distribution of y over the set of indices J is 4k2/s-close to uniform over Z
k
2 (in

total variation distance), for a fixed partition I which separates the variables of J .

Remark. In our scenario, we sometimes use the distribution DI0∪I1 where I0 and I1 are random
partitions of X0 and X1, such that |I0| = |I1| = 2s, and where X0 ∪ X1 = [n] are a partition of
[n] into two parts. We define y ∼ DI0∪I1 to be a merge of y0 ∼ DI0 and y1 ∼ DI1 in the following
way. The vector y is the unique vector for which yX0

= y0 and yX1
= y1. Thus, the first item of

Proposition 2.8 holds as is, and in the second item we have an additional factor of 2.

The full algorithm is described as Algorithm 3 below. From this point on, whenever we draw a
random partition of some set, we do so by assigning each element into one of the parts uniformly
and independently at random (which may result in some empty parts). Recall that our goal is to
locally correct a given function g, which is ε-close to fσ, by returning the value fσ(x) for the given
input x. Additionally, f is a k-junta whose core is known to the algorithm, and we can and will
restrict ourselves to such functions which satisfy typical conditions (namely Propositions 2.2 and
2.3). Notice that in our scenario, the smaller ε is the easier it is to correct so it suffices to show
that for ε = 0.001, the algorithm succeeds with good probability and with the requested query
complexity.

Proof of Theorem 1.1. First, we analyze the query complexity of the algorithm. All the queries
the algorithm perform are by invoking Find-Influencing-Sets and querying y which was chosen
according to DI . In both cases, the queries only depend on the partitions I0 and I1, and therefore
they are non-adaptive. The number of queries in these parts are O(k log2 k) and O(k log k) respec-
tively, and thus the algorithm performs a total of O(k log2 k) non-adaptive queries as required.

Let f be a function which satisfies the conditions of Propositions 2.2 and 2.3. As each condition
is satisfied with probability at least 1− 2−Ω(k), it suffices to show the algorithm succeeds with high
probability for such functions.

The success of the algorithm depends on the following three events. The first, we need the
partition I to separate all the junta’s influencing variables. In each set of variables, X0 and X1,

8



Algorithm 3 Locally-Correct-Junta(fcore, k, g, x)

1: Fix s = 400k2 and r = 2500⌈k log k⌉.
2: for j ∈ {0, 1} do

3: Let Xj = {i ∈ [n] | xi = j}.
4: Randomly partition Xj into Ij, consisting of (potentially) s parts.
5: Define I = I0 ∪ I1 to be the partition of X0 ∪X1 = [n].
6: Invoke Find-Influencing-Sets(g,I, k, 0.01) and assign the result into J = {Ia1 , Ia2 , . . .}.
7: If |J | 6= k, or if J contains an empty set, return 0.
8: Let B = (b1, . . . , bk) be an arbitrary ordered set such that bi ∈ Iai for every i ∈ [k].
9: For every ℓ ∈ [r], randomly sample yℓ ∼ DI0∪I1 and query g(yℓ).

10: Let π ∈ Sk be the permutation which maximizes the number of indices ℓ for which
g(yℓ) = fcore(y

ℓ
Bπ

), where Bπ = (bπ(1), . . . , bπ(k)).
11: Return fcore(xBπ )

there are at most k influencing variables. Since we partition each of them into s parts at random,
we would have such a bad collision with probability at most 2

(k
2

)

/s < 1/30 for our choice of s.

The second event is identifying the correct sets, those for which fσ has influencing variables.
Assuming there were no collisions in the partition, by Lemma 2.6 we will identify precisely the
influencing sets with probability at least 9/10.

The third and last event which remains is correctly choosing the permutation π. Here we rely on
the fact that the core of f is not close to any non trivial permutation of itself. Since our estimates
are performed using queries according to DI0∪I1 , we need to estimate how accurate they are. By
proposition 2.8, as each sample y is distributed uniformly, the distance between g(y) and fσ(y) is
at most 0.001 over the choice of I0 and I1. By applying Markov’s inequality, our partitions will
satisfy Pry∼DI0∪I1

[g(y) 6= fσ(y)] ≤ 0.01 with probability at least 9/10.

Assume from this point on that the partitions I0 and I1 were good, namely, satisfying the above
inequality. By the second part of proposition 2.8, the marginal distribution of y over the influencing
variables, and hence over the influencing sets (for each partition Ij), is 4k2/s-close to uniform in
total variation distance. Therefore, when π ∈ Sk is not the correct permutation we have

Ey∼DI0∪I1
[g(y) = fcore(yBπ)] ≤ 1− 0.1 + 0.01 + 24k2

s = 0.93 ,

where Bπ are defined as in the algorithm. For the correct permutation however, this expectation
would be at least 0.97. Since our queries are independent, we can apply the Chernoff bound.
When we perform r such queries, we deviate from the expectation by at least 0.02 with probability
at most exp(−2 · 0.022 · r) = exp(−2⌈k log k⌉). By the union bound, our estimation for all k!
permutations is within 0.02 from the expectation with probability at least 9/10. Combining this
with the probability that the partitions are good, it follows that we choose the correct permutation
π with probability at least 4/5.

The failure probability of our algorithm can be bounded by the probability that one of the above
events does not occur. Therefore, the algorithm fails with probability at most 1/30+1/10+ 4/5 =
1/3, meaning it returns the correct answer with probability at least 2/3, as required.

Remark. The assertion of the theorem holds also when the core of f is isomorphic to itself for
some non-trivial permutation. The crucial requirement is that it is not ε-close to any of its permu-
tations for 0 < ε < 0.1. For simplicity, the proof does not consider these cases, however this only
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influences the identification of the permutation π which is indifferent to which of the isomorphisms
it corresponds.

3 Correcting partially symmetric functions

The algorithm for local correction of partially symmetric functions is similar to the one just pre-
sented for locally correcting juntas. The main tool for generalizing the algorithm and its proof is
the analogous measure to influence called symmetric influence, introduced in [8]. We repeat the
definition of symmetric influence and some of its properties in Section 3.1, where we also prove
several properties of typical partially symmetric functions.

In Section 3.2 we describe the algorithms for estimating the symmetric influence of a set and
identifying all the asymmetric sets in a partition (namely, sets which have large symmetric influ-
ence). This is the first step in the correcting algorithm. The second step, which is again recovering
the ordering of the identified sets, is described as part of the algorithm in Section 3.3, followed by
the proof of Theorem 1.2.

3.1 Properties of partially symmetric functions

Unlike juntas, partially symmetric functions typically depend on all the variables of the input. How-
ever, there is a large set of variables which influence the function only according to their combined
Hamming weight, and not according to the value of each coordinate. The concise representation of
partially symmetric functions is therefore different from that of juntas.

Let f : Zn
2 → Z2 be an (n − k)-symmetric function. We define the core of f by fcore : Zk

2 ×
{0, 1, . . . , n − k} → Z2, the function f restricted to its k asymmetric variables and the Hamming
weight of the remaining variables.

The notion of influence represents how much a variable, or a set of variables, can influence the
output of the function when their value is modified. For partially symmetric functions however, as
typically all variables influence the output of the function, this is less useful. Instead, as the special
variables are in fact the asymmetric variables of the function, we find the following definition of
symmetric influence more useful. We measure for a set of variables, what is the probability that
reordering them would result in a change of the output of the function.

Definition 3.1 (Symmetric influence, [8]). Given a Boolean function f : Zn
2 → Z2, the symmetric

influence of a set of variables J ⊆ [n] with respect to f is defined by

SymInff (J) = Pr
x∈Zn

2
,π∈SJ

[f(x) 6= f(πx)] ,

where SJ is the set of permutations within Sn which only move elements inside the set J .

Similar to juntas, a function f is (n − k)-symmetric if and only if there exists a set K of size
at most k such that SymInff ([n] \ K) = 0. The authors of [8] defined symmetric influence and
showed it satisfies several properties which are similar to those of influence. One of these properties
is monotonicity. For any two sets J ⊆ K and any function f , SymInff (J) ≤ SymInff (K). As in
the case of juntas, our algorithm heavily relies on this fact in order to identify the asymmetric sets.

Like Theorem 1.1, Theorem 1.2 is also applicable only to most partially symmetric functions and
not to all of them. We again define two properties which are required for our algorithm to succeed
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with high probability, which are typical to such functions. The first bounds the symmetric influence
of sets containing at least one asymmetric and one symmetric variable, presented in Proposition 3.2.
The second, described in Proposition 3.3, deals with the distance between such a function and its
non-trivial isomorphisms.

Proposition 3.2. Let f : Zn
2 → Z2 be a random (n−k)-symmetric function for some k < n. Then

with probability at least 1−2−Ω(
√
n), any asymmetric variable i and any symmetric variables j have

symmetric influence SymInff ({i, j}) > 0.1.

Proof. Let f be a random (n − k)-symmetric function and assume without loss of generality that
its asymmetric variables are the first k variables. We arbitrarily choose the asymmetric variable
xk and the symmetric variable xk+1. Let x be a random vector and apply a random permutation
on xk and xk+1. Notice that only with probability 1/4 we might see two different outputs of f ,
as with probability 3/4 either xk = xk+1, or the chosen permutation is the identity. We therefore
restrict ourselves to such inputs where xk 6= xk+1 and the permutation transposes xk and xk+1.

We consider the partition of inputs to fcore into 2k−1(n− k− 1) pairs according to the value of
x1, · · · , xk−1 and the Hamming weight of the variables xk+2, . . . , xn. Notice that since we require xk
to be different from xk+1, for each such restriction we have precisely two inputs to the core. More-
over, the transposition of xk and xk+1 only swaps between the two inputs of the same pair, meaning
the pairs are independent. Define m = n− k − 2 and for every z ∈ Z

k−1
2 and w ∈ {0, 1, . . . ,m} let

Xz,w be the indicator random variable of the event that fcore agrees on the corresponding pair of
inputs. Using these definitions, we can compute the symmetric influence of k and k+ 1 as follows.

SymInff ({k, k + 1}) = 1

8
+

1

8

∑

z∈Zk−1

2

m
∑

w=0

(m
w

)

2k−12m
· (−1)Xz,w .

To bound the deviation of the symmetric influence, we additionally define for each z and w the
random variable Yz,w =

(m
w

)

2−(k−1)2−m · (−1)Xz,w . The accumulated sum over Yz,w for every z and

w is a martingale. When we add a specific Yz,w to the sum, we modify it by
(m
w

)

2−(k−1)2−m in
absolute value. Therefore, by the Azuma-Hoeffding inequality,

Pr[SymInff ({k, k + 1}) < 0.1] ≤ Pr[|8 · SymInff ({k, k + 1}) − 1| > 1
5 ]

≤ 2 exp

(

−
1
52

2
∑

z,w |Yz,w|2

)

= 2exp

(

− 22(k−1)22m

2 · 25 · 2k−1
∑

w

(m
w

)2

)

= 2exp

(

− 2k

100
· 22m
(2m
m

)

)

≈ 2 exp

(

− 2k

100
·
√
πm

)

= 2−Ω(2k
√
n−k) ,

where we used the known fact
∑m

i=0

(m
i

)2
=
(2m
m

)

≈ 22m√
πm

.

In order to complete the proof, we apply the union bound over the k possible choices for the
asymmetric variable. Notice that for the symmetric variables it suffices to consider a single choice,
as they are symmetric. Thus the probability that any such symmetric influence would be smaller
than 0.1 is bounded by k · 2−Ω(2k

√
n−k) = 2−Ω(

√
n) as required.
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Proposition 3.3. Let f : Zn
2 → Z2 be a random (n − k)-symmetric function for some k < n, and

let J be the set of its asymmetric variables. Then with probability at least 1− 2−Ω(
√
n), f is 0.1-far

from any non-trivial permutation of itself which only moves elements within J .

Proof. Let f be a random (n−k)-partially symmetric function and assume without loss of generality
that its asymmetric variables are the first k variables. Our function f is in fact a union of n−k+1
randomly chosen k-juntas over the first k variables, where the Hamming weight of the remaining
varialbes determines which junta we are invoking. When k ≥ √

n, we can apply Proposition 2.3
over each of these k-juntas. Each such function is 0.1-far from being isomorphic to itself with
probability at least 1 − 2−Ω(k), and we apply the union bound over them. Therefore, f would be
0.1-far from any non-trivial isomorphism of itself, which only moves elements within the first k
variables, with probability at least 1− (n− k + 1) · 2−Ω(k) = 1− 2−Ω(

√
n).

Assume now that k <
√
n, and moreover that k ≥ 2 (as when k = 0 and k = 1 the proposition

trivially holds). Let f0, . . . , fn−k+1 denote the k-juntas representing f . We fix some permutation
π ∈ Sk over the first k variables. As in the proof of Proposition 2.3, for every fixed w there are
at least 2k/4 pairs of inputs x, πx ∈ Z

k
2 for which the values of the events fw(x) 6= fw(πx) are

independent. By applying the Azuma-Hoeffding inequality as before for such an input x, we have

Pr[Ew∼B(n−k,1/2) [fw(x) 6= fw(πx)] < 0.45] < 2−Ω(
√
n−k) = 2−Ω(

√
n) .

The probability of these events is very small, and therefore over our independent 2k/4 samples we

would have no more than 2k/40 of them occur, with probability at least 1− 2−Ω(
√
n·2k). So overall

for a given permutation π, the distance between f and fπ is at least 1
4 · 9

10 · 0.45 > 0.1, with this
probability.

To complete the proof, we apply the union bound over the k! permutations, and conclude that
with probability at least 1 − k! · 2−Ω(

√
n·2k) > 1 − 2−Ω(

√
n) all distances would be at least 0.1 as

required.

3.2 Finding the asymmetric sets

The asymmetric sets in the partition are those with non-zero symmetric influence. The following
algorithm estimates the symmetric influence of a given set efficiently.

Algorithm 4 Estimate-Symmetric-Influence(f, J, δ, η)

1: Set q = ⌈ ln 2/η
2δ2

⌉ and X = 0.
2: for i = 1 to q do

3: Pick a random input x ∈ Z
n
2 and a random permutation π ∈ SJ .

4: Increase X by 1 if f(x) 6= f(πx).
5: Return X/q.

Proposition 3.4. For any function f , a set of variables J and two constants δ, η ∈ (0, 1),
the algorithm Estimate-Symmetric-Influence(f, J, δ, η) returns a value within distance δ of
SymInff (J) with probability at least 1− η, by performing O(δ−2 log 1/η) non-adaptive queries to f .

Proof. The proof is a direct application of the Chernoff bound as E [X/q] = SymInff (J) and we
deviate by more than δ with probability at most 2 exp(−2δ2q).
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Since our goal is to identify the asymmetric sets in the presence of noise, we rely on the following
proposition. Similar to influence, if two functions are ε-close, the symmetric influence of every set
deviates by at most 2ε. We omit the proof as it is identical to that of Proposition 2.5.

Proposition 3.5. Let f and g be any two functions which are ε-close. Then for every set J ⊆ [n]
of variables, |SymInff (J)− SymInfg(J)| ≤ 2ε.

The first part in correcting partially symmetric functions is identifying the asymmetric sets.
This algorithm is identical to the one for identifying the influencing sets in juntas, with the only
difference of invoking Estimate-Symmetric-Influence instead of Estimate-Influence. We
require our input function to satisfy the condition of Proposition 3.2 in order to correctly identify
the asymmetric sets in spite of the noise.

The algorithm Find-Asymmetric-Sets is given a function f , a partition of the variables I, a
size parameter k and a noise parameter ε. The algorithm returns all parts in the partition I which
it considered as asymmetric with respect to ε.

Algorithm 5 Find-Asymmetric-Sets(f,I = {I1, . . . , Is}, k, ε)
1: Fix r = ⌈12k ln s⌉ and S = [s].
2: for each of r rounds do
3: Pick a random subset T ⊆ [s] by including each index independently with probability 1/k.
4: Define J = ∪i∈T Ii to be the union of sets in I according to the indices of T .
5: If Estimate-Symmetric-Influence(f, J, ǫ, 1/20r) ≤ 3ε, set S = S \ T .
6: Return {Ii}i∈S

Lemma 3.6. Let f be an (n − k)-symmetric function for k = o(n/ log n), which satisfies the
following conditions. The asymmetric variables of f are separated by the partition I, which is of
size |I| = O(k2), |I| > 5. Additionally, the symmetric influence of every asymmetric variable and
a symmetric variable is at least 6ε for some ε > 0. Then for every function g which is ε-close to f ,
Find-Asymmetric-Sets(g,I, k, ε) returns exactly the k sets containing the asymmetric variables
of f with probability at least 9/10, by performing O(k log2 k/ε2) non-adaptive queries to g.

Proof. The proof of the above lemma is identical to that of Lemma 2.6, where we replace influence
with symmetric influence when applicable. Proposition 3.5 guarantees that in the noisy function g
we would still be able to distinguish the asymmetric sets. Additionally, by the limitation over k,
with high probability in all rounds we would have at least one symmetric variable, which guarantees
the high symmetric influence (assuming there is also an asymmetric variable).

3.3 The algorithm

The second step of the algorithm is recovering the correct order of the k asymmetric sets. As
explained before, it is reasonable to query the input function over inputs which are constant over
the various parts of our random partition. In this case however, we also care about the Hamming
weight of the inputs we query. Due to this, we cannot allow our queries to be consistent over all the
parts, but rather we will dedicate one part for adjusting the distribution of the Hamming weight.
We name this special part workspace, and we choose it arbitrarily from our random partition.

Definition 3.7. Let I be some partition of [n] into an odd number of parts and let W ∈ I be
the workspace. Define the distribution DW

I over Z
n
2 to be as follows. Pick a random Hamming
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weight w according to the binomial distribution B(n, 1/2) and output, if exists, a random x ∈ Z
n
2

of Hamming weight |x| = w such that for every I ∈ I \ {W}, either xI ≡ 0 or xI ≡ 1. When no
such x exists, return the all zeros vector.

The above distribution, together with the random choice of the partition and workspace, satisfies
the following two important properties. The first, being close to uniform over the inputs of the
function. The second, having a marginal distribution over the inputs to the core of a partially
symmetric function close to typical. A typical distribution over the core of an (n − k)-symmetric
function is the product of a uniform distribution over Z

k
2 and B(n − k, 1/2). These properties are

formally written here as Proposition 3.8 which originally appeared in [8].

Proposition 3.8 ([8]). Let J = {j1, . . . , jk} ⊆ [n] be a set of size k, and s = Ω(k2) be odd. If
y ∼ DW

I for a random partition I of [n] into s parts and a random choice of the workspace W ∈ I,
then

• y is o(1/n)-close to being uniform over Z
n
2 , and

• (yJ , |yJ |) is (k/s + o(1))-close to being distributed uniformly over Z
k
2 and binomial over

{0, 1, . . . , n− k}, for a fixed partition I which separates the variables of J .

Remark. Our algorithm will choose the partition I and workspace W not entirely at random, but
rather it will consider the location of zeros and ones in the input x. However, the above proposition
still holds in this scenario, assuming we partition each of the two sets into r parts at random.

We can now describe the full algorithm, followed by its analysis. Recall that our goal is to
locally correct a given function g, which is ε-close to fσ, by returning the value fσ(x) for the given
input x. Additionally, f is an (n − k)-symmetric function whose core is known to the algorithm,
and we can and will restrict ourselves to such functions which satisfy typical conditions (namely
Propositions 3.2 and 3.3). Notice that in our scenario, the smaller ε is the easier it is to correct so
it suffices to show that for ε = 0.001, the algorithm succeeds with good probability and with the
requested query complexity.

Algorithm 6 Locally-Correct-Partially-Symmetric-Function(fcore, k, g, x)

1: Fix s = 100k2 and r = 2500⌈k log k⌉.
2: Choose a random workspace W ⊆ [n] by including each i ∈ [n] into W with probability

1/(2s + 1).
3: for j ∈ {0, 1} do

4: Let Xj = {i ∈ [n] \W | xi = j}.
5: Randomly partition Xj into Ij, consisting of (potentially) s parts.
6: Define I = I0 ∪ I1 ∪ {W} to be our partition.
7: Invoke Find-Asymmetric-Sets(g,I, k, 0.01) and assign the result into J = {Ia1 , Ia2 , . . .}.
8: If |J | 6= k, or if J contains W or an empty set, return 0.
9: Let B = (b1, . . . , bk) be an arbitrary ordered set such that bi ∈ Iai for every i ∈ [k].

10: For every ℓ ∈ [r], randomly sample yℓ ∼ DW
I and query g(yℓ).

11: Let π ∈ Sk be the permutation which maximizes the number of indices ℓ for which
g(yℓ) = fcore(y

ℓ
Bπ

, |yℓ
B
|), where Bπ = (bπ(1), . . . , bπ(k)).

12: Return fcore(xBπ , |xB |)
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Proof of Theorem 1.2. The queries of the algorithm are performed by invoking Find-Asymmetric-

Sets and by sampling according to DW
I . In both cases the queries are non-adaptive and depend

only on our choice of the partition I and workspace W . The total number of queries performed is
O(k log2 k), as required.

Let f be an (n−k)-symmetric function which satisfies the conditions of Propositions 3.2 and 3.3.
As each condition is satisfied with probability at least 1−2−Ω(

√
n), it suffices to show the algorithm

succeeds with high probability when applied to these functions. Moreover, when k = Ω(n/ log n),
Theorem 1.2 trivially holds by applying the standard non-adaptive algorithm of querying O(n log n)
uniform queries (given that Proposition 3.3 is satisfied). Therefore, we assume k = o(n/ log n)
throughout the rest of the proof.

The success of the algorithm depends on the following three events. First, we need the partition
I to separate all the asymmetric variables, and that none of them would belong to the workspace.
An asymmetric variable would be chosen to the workspace with probability at most k/s. At each
set of variables, X0 and X1, there are at most k asymmetric variables and therefore each would
have a collision with probability at most

(k
2

)

/s. Therefore, we would have a bad partition and

workspace with probability at most (k + 2
(k
2

)

)/s < 1/30 for our choice of s.

The second event is identifying the correct sets, those for which fσ has asymmetric variables.
Assuming the first event occurred, by Lemma 3.6 we will identify precisely the asymmetric sets
with probability at least 9/10.

The third and last event which remains is correctly choosing the permutation π. Here we rely on
the fact that the core of f is not close to any non trivial permutation of itself. Since our estimates
are performed using queries according to DW

I , we need to estimate how accurate they are. By
proposition 3.8, as each sample y is distributed o(1/n)-close to uniform, the distance between g(y)
and fσ(y) is at most 0.001 + o(1/n) over the choice of I and W . By applying Markov’s inequality,
our partition and workspace will satisfy Pry∼DW

I
[g(y) 6= fσ(y)] ≤ 0.02 with probability at least

9/10.

Assume from this point on that the partition and workspace satisfy the above inequality. By the
second part of proposition 3.8, the marginal distribution of y over the asymmetric variables (and
in particular over the asymmetric sets) would be 0.01-close to uniform in total variation distance.
Therefore, when π ∈ Sk is not the correct permutation we have

Ey∼DW
I

[

g(y) = fcore(yBπ , |yB |)
]

≤ 1− 0.1 + 0.02 + 0.01 = 0.93 ,

where B and Bπ are defined as in the algorithm. For the correct permutation, however, this
expectation is at least 0.97. Since our queries are independent from one another, we can apply
the Chernoff bound. When performing r such queries, we deviate from the expectation by at least
0.02 with probability at most exp(−2 · 0.022 · r) = exp(−2⌈k log k⌉). By the union bound, our
estimation for all k! permutations is within 0.02 from the expectation with probability at least
9/10. Combining this with the probability that the partition and workspace are good, the correct
permutation π is chosen with probability at least 4/5.

The failure probability of our algorithm can be bounded by the probability that one of the above
events will not occur. Therefore, the algorithm will fail with probability at most 1/30+1/10+4/5 =
1/3, meaning it will return the correct answer with probability at least 2/3, as required.

Remark. As in Theorem 1.1, this proof also holds for partially symmetric functions which do have
some non-trivial isomorphisms, but for simplicity we do not consider this here.
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4 Conclusions and open problems

In the previous sections we have shown that most juntas and partially symmetric functions can be
efficiently locally corrected from a constant error rate. Although Proposition 1.3 indicates that not
every junta or partially symmetric function satisfy this, it provides no insight on whether other
functions can be locally corrected efficiently under similar conditions.

To better understand the question of which functions can be locally corrected efficiently from
a constant noise rate, we present the proof of Theorem 1.4. This theorem does not provide a
characterization of these locally correctable functions, but rather indicates that most functions do
not fall into this category. In order to prove the theorem, we use the main results of [1], where
it is shown that testing isomorphism to almost every function requires at least a linear number of
non-adaptive queries.

Proposition 4.1 ([1]). For almost every Boolean function f the following holds. Let Q = Qb ∪Qu

be a set of n
100 balanced queries (of Hamming weight between n

3 and 2n
3 ) and n

100 unbalanced queries.
Over the choice of a random isomorphism fσ of f , with probability 1− o(1) over the output of fσ at

Qu, every possible outcome r ∈ Z
|Qb|
2 of querying fσ at Qb is obtained with probability (1± 1

3)2
−|Qb|.

Proof of Theorem 1.4. The above proposition is essentially everything needed for completing the
proof. Given a random Boolean function which satisfies the condition of the above proposition,
we can request one to locally correct some arbitrary balanced input. Let us assume there exists
an algorithm that can perform this task with good probability, using less than n

100 non-adaptive
queries. We can extend its query set to consist of n

100 balanced and n
100 unbalanced queries, including

the input we asked to correct (obviously this cannot reduce its success probability).

By the above proposition, with high probability over the output of the function over the unbal-
anced queries, the distribution of the function over the balanced queries is very close to uniform.
In fact, for every possible output over all the balanced queries except the questioned input, the
marginal distribution that remains is 1/3-close to uniform, and hence one would not be able to
predict its value with probability ≥ 2/3. Notice that for the purpose of the analysis, we assume
no noise was used, where in practice we simply override the value of the questioned input with the
value 0.

Like juntas and partially symmetric functions, there are several other families it would be
interesting to investigate with respect to local correction. One natural family is that of low degree
polynomials. It was already shown (see [4], [2]) that these can be locally corrected using an
exponential number of queries, when the noise rate is also exponentially small (in term of the
degree of the polynomial). However, whether this can be done when the noise rate is constant is
yet unknown.

Question. Fix some constant ε > 0 and a degree d > ⌈log2 1/ε⌉. Do most degree d polynomials
over n ≥ d variables require Ω(log n) queries to be locally corrected from ε noise rate?

Low degree polynomials have a rather rigid structure, although they may still be far from
symmetric with respect to any subset of the input variables (even for very small degrees). When
the noise rate is larger than 2−d (where d is the degree of the polynomial), the noisy function can
actually be another polynomial of the same degree. In such a case, making use of the structure
of the polynomial seems trickier, as one cannot simply correct according to it. Given the natural
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asymmetric nature of most low degree polynomials, it may be the case that they are similar to
random functions, in the sense that one needs a number of queries which grows with n to perform
this task, even for constant degrees.
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