
Local Correction of Juntas

Noga Alon1

Sackler School of Mathematics and Blavatnik School of Computer Science, Tel Aviv

University, Tel Aviv 69978, Israel and Institute for Advanced Study, Princeton, New Jersey

08540, USA.

Amit Weinstein2

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

Abstract

A Boolean function f over n variables is said to be q-locally correctable if, given
a black-box access to a function g which is ”close” to an isomorphism fσ of f ,
we can compute fσ(x) for any x ∈ Zn2 with good probability using q queries to
g.

We observe that any k-junta, that is, any function which depends only on
k of its input variables, is O(2k)-locally correctable. Moreover, we show that
there are examples where this is essentially best possible, and locally correcting
some k-juntas requires a number of queries which is exponential in k. These
examples, however, are far from being typical, and indeed we prove that for
almost every k-junta, O(k log k) queries suffice.

Keywords:
local correction, locally correctable codes

1. Introduction

The field of property testing of Boolean functions received a considerable
amount of attention in the last two decades. Many properties of functions have
been examined in order to estimate what is the needed query complexity for
testing them, that is, the number of inputs of the function one has to read in
order to distinguish between a function that satisfies the property and one that
is ”far” from satisfying it. In particular, one is usually interested in properties
for which the number of queries is independent of the input size. Some of these

Email addresses: nogaa@tau.ac.il (Noga Alon), amitw@tau.ac.il (Amit Weinstein)
1Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant and

by NSF grant No. DMS-0835373.
2Research supported in part by an ERC Advanced grant.

Preprint submitted to Information Processing Letters December 3, 2011

properties are linearity [7], being a dictator function [4, 11], a junta [9, 10], or
a low-degree polynomial [2].

Another property that one might consider testing is functions isomorphism,
i.e. testing if two functions are identical up to relabeling of the input variables.
A common scenario is where one function is given in advance and the goal of the
tester is to determine if the second input function is isomorphic to it or far from
any isomorphism of it. Several recent results indicate that testing this property
is hard for most functions (requires Ω(n) queries), and specifically for k-juntas
there are lower bounds which depend on k (see e.g. [6, 1, 8]).

The focus of our work is not testing such properties, but rather locally
correcting functions, that is, determining the value of a function in a given
point by reading its values in several other points. This is closely related to
random self reducibility, as pointed out already in [7]. More precisely, we care
about locally correcting specific functions which are known up to isomorphism.

Question. Given a specific Boolean function f , what is the needed query com-
plexity in order to correct an input function which is close to some isomorphism
fσ of f?

This question can be seen as a special case of locally correctable codes (see,
e.g., [12]). Namely, each codeword would be the 2n evaluations of an isomor-
phism of the input function (at most n! distinct codewords) and we would like
to correct any specific value of the given noisy codeword using as few queries as
possible.

Here we study the above question mostly for juntas. We provide both lower
and upper exponential bounds for the query complexity of locally correcting
juntas with respect to their size. However, the given lower bound is applicable
only to a small portion of the juntas and in fact we show that most k-juntas are
locally correctable using a nearly linear (in k) number of queries.

1.1. Preliminaries

In order to correct functions, we need to first define when two functions
are ”close”, as otherwise correction is hopeless. We use the common definition,
saying two Boolean functions are ε-close if they agree on all but at most an ε
fraction of the inputs. The following definition best describes the focus of our
work, indicating when a function is locally correctable.

Definition. A Boolean function f : Zn2 7→ Z2 is said to be q-locally correctable
for ε > 0 if the following holds. There exists an algorithm that given an input
function g which is ε-close to an isomorphism fσ of f , can determine the value
fσ(x) for any specific x ∈ Zn2 with probability at least 2/3, using q queries to g.

More generally, we also define a family of functions to be locally correctable
when we do not require to know which specific function from the family we are
trying to correct.

Definition. A family F of Boolean functions is said to be q-locally correctable
for ε > 0 if the following holds. There exists an algorithm that given an input

2

function g which is ε-close to an isomorphism fσ of f , for some f ∈ F from the
family, can determine the value fσ(x) for any specific x ∈ Zn2 with probability
at least 2/3, using q queries to g.

A crucial observation when looking at the above definitions is the fact that
the mentioned algorithm must hold for every input x ∈ Zn2 . Replacing this
requirement by the ability to determine the value at a uniform random x, any
function would be trivially 1-locally correctable for ε ≤ 1/3 as at least 2/3
of the inputs remain unmodified. In addition, it is useful to think of ε as a
constant independent of n, which however can depend on some property of the
function f . This dependence is often required to ensure that g is close to a
unique isomorphism of f (up to equivalent isomorphisms).

A simple result regarding juntas is an exponential upper bound for the num-
ber of queries, in terms of the junta’s size. For this upper bound, we use the
analysis of testing low-degree polynomials and therefore get the following more
general bound.

Proposition 1. Every polynomial of degree k is O(2k)-locally correctable for
ε < 2−k−3.

Proof sketch. The techniques used in testing low-degree polynomials rely on
their values on the points of random affine subcubes inside Zn2 which are defined
by random bases of k + 1 vectors and an offset in Zn2 (see [2]). Taking such a
subcube and evaluating the sum of a degree k polynomial on all 2k+1 elements
of it, always results in zero. The test itself selects several such random subcubes
and verifies that this is indeed the case. Since in our case, we are given some
specific input x ∈ Zn2 for which we want to correct the function, we can use a
similar argument.

Given the input x, we randomly select k + 1 vectors x1, x2, . . . , xk+1 and
consider the affine subcube whose basis is the set of these k + 1 vectors and
whose offset is x. Since the sum of evaluations inside this affine subcube (which
includes x) is zero, we can deduce the value at x by querying the other 2k+1− 1
locations of the cube, assuming none of them was modified. Since we select the
k+ 1 vectors in the basis randomly, relying on the (easy case in the) analysis of
[2] which is based on the fact that each input queried is uniformly random, we
can bound this probability by (2k+1 − 1)ε < 1/4 and therefore this algorithm
indicates that f is indeed O(2k)-locally correctable for ε < 2−k−3.

Corollary 2. The family of k-juntas is O(2k)-locally correctable for ε < 2−k−3.

Proof. A k-junta is in particular a polynomial of degree k and therefore is also
O(2k)-locally correctable using the above proposition. In addition, the algo-
rithm suggested by the proposition does not require any knowledge about the
input function except for it being a polynomial of degree k, thus the family of
k-juntas is O(2k)-locally correctable.

3

1.2. Our results

A natural question is whether the exponential upper bound for low-degree
polynomials, which is applicable also for juntas, is indeed tight in the case of
juntas. We show that the answer is indeed positive, but only for a small fraction
of the juntas. In other words, for some juntas the exponential upper bound is
also best possible but this is far from being the typical case.

Theorem 3. There exist some k-juntas which require 2Ω(k) (adaptive or non-
adaptive) queries in order to be locally corrected, even for ε which is exponen-
tially small in n.

In the typical case, however, i.e., for almost every junta, the lower bound
above is far from being tight and in fact one can correct a typical k-junta using
a nearly linear number of queries (in k). Formally, we prove the following.

Theorem 4. A k-junta in which every influencing variable has influence of at
least 1/50 is O(k log k)-locally correctable for ε < 2−k−3. Therefore this is the
case for almost every k-junta.

Corollary 5. The family of k-juntas in which every influencing variable has
influence of at least 1/50 is O(k log k)-locally correctable for ε < 2−k−3.

2. Local correction of k-juntas

We start this section with the proof of the lower bound for some juntas. The
juntas used in the proof are very sparse, having an exponentially small fraction
of inputs for which the value of the function is 1.

Proof of Theorem 3. Given k < n ∈ N where n is even, define f to be the
AND function of the first k literals x1, . . . , xk. In order to prove a lower bound
for the number of queries, we use Yao’s principle. To this end, we define two
distributions on functions which are all o(1)-close to being isomorphic to f , one
for which the algorithm should return zero and another for which the algorithm
should return one (denoted by D0 and D1 respectively). We further show that
any algorithm that performs only 2o(k) queries would not be able to distinguish
between the two distributions with non-negligible probability.

We first describe the distribution D0 as follows. We randomly choose a
permutation σ ∈ Sn so that σ(i) ∈ [n/2] for every i ∈ [k], meaning the k
relevant variables are all in the first half.3 The function g given to the algorithm
is defined by g(y) = fσ(y) whenever the Hamming weight of y is at most 0.3n in

each half (i.e.
∑n/2
i=1 yi ≤ 0.3n and

∑n
i=n/2+1 yi ≤ 0.3n) and otherwise g(y) = 0.

Notice that indeed g is o(1)-close to being isomorphic to f as we modified only
an o(1)-fraction of the inputs. The input x is set to be the balanced input of

3Throughout this work we use the notation [`] := {1, 2, . . . , `}.

4

n/2 zeros followed by n/2 ones. Clearly fσ(x) = 0 for every instance in D0 as
required.

The distribution D1 is similar to D0 with one modification. The permutation
σ is chosen so that σ(i) 6∈ [n/2] for every i ∈ [k]. The choice of x and the
locations where we fix g(y) = 0 are defined as before and indeed fσ(x) = 1 for
every instance in D1.

We first show that an arbitrary query to g in either distribution would out-
put one with probability at most 2−Ω(k). Let y be some query the algorithm
performs. Clearly, if the Hamming weight of y in either half is more than 0.3n,
the result would be zero according to the definition of g in both distributions.
Otherwise, the probability that g(y) = 1 is given by(

m

k

)
/

(
n/2

k

)
=

(m− k + 1)(m− k + 2) · · ·m
(n/2− k + 1)(n/2− k + 2) · · · (n/2)

≤
(

3n/10

n/2

)k
= 0.6k

where m is the Hamming weight of y in the relevant half (either the first half for
D0 or the second half for D1), which is known to be at most 0.3n. Therefore, any
algorithm that performs at most 2o(k) queries would find a y for which g(y) = 1
only with negligible probability, and it would not be able to distinguish between
D0 and D1 with noticeable probability. Notice that the proof implies that using
an adaptive algorithm would not yield any improvement as we can predict all
results to be zero in advance (and therefore this is equivalent to a non-adaptive
algorithm).

The fact that the AND junta is very sparse was crucial for the above proof.
In order to prove a better upper bound for most juntas, we need some restriction
that would ensure the function is far from being sparse. In Theorem 4 we re-
quired something even stronger, that the influence of every influencing variable,
that is, any of the k special variables of the junta, is at least 1/50.

Definition 1 (Influence). Given a Boolean function f : Zn2 7→ Z2, the influence
of i with respect to f is defined by

Infi(f) = Pr
x

[f(x) 6= f(x+ ei)]

where ei is the vector having 1 only at location i.

Thus, the influence is the probability that changing the value of the ith
variable will also change the value of the function. This probability is taken
over all values of x, and is therefore the expected influence of i in a restricted
function (when the variable i itself is not restricted). Moreover, if the influence
of some variable i is greater than 1/50, then the function is 1/100-far from being
a constant.

Given a random k-junta for which the influencing variables are the first k
variables, the influence of some variable 1 ≤ i ≤ k is determined by the bias of
the 2k−1 pairs of inputs of length k which differ only in the ith variable, where

5

the values of all other variables in [k] range over all possibilities. The expected
bias is hence 1/2, and moreover

Pr[Infi(f) < 1/50] = Pr[B(2k−1, 1/2) < 2k−1/50] < 2−c2
k

for some absolute constant c > 0, where here B is the binomial distribution and
we applied one of the standard estimates for binomial distributions (c.f., e.g.
[3], Appendix A). Therefore, by the union bound, the k influencing variables

would all have influence greater than 1/50 with probability 1− 2−Ω(2k).
Now that we defined the influence of a variable and verified that indeed

almost every junta satisfies the condition in the theorem, we describe the proof
of Theorem 4.

Proof of Theorem 4. Let f be a k-junta as in Theorem 4, and let g be the given
input function which is ε-close to fσ (we assume ε < 2−k−3 in order to guarantee
that g is close to a unique isomorphism fσ). Following the basic approach in the
known junta testing algorithms (see e.g. [10, 5]), we intend to randomly divide
the variables into parts and identify which sets have influencing variables. Here
however, mistakenly identifying a set to have influencing variables (due to fault
evaluations of the input function) or having more than one such variable in a
part is not an essential issue (as estimating the number of influencing variables
is not our goal).

Fix s = 3k and partition the set [n] into s parts uniformly at random, by
assigning to each variable one of the s sets independently. For each set we
perform r = 100 log k + 500 pairs of queries, where each pair (x, x′) is chosen
independently and uniformly at random such that x and x′ agree on all elements
outside of the current set. When a set has at least one influencing variable
(with influence at least 1/50), each such pair would yield different outcomes
with probability at least 1/100 (as the randomly restricted function over the
variables outside of the current set is expected to be at least 1/100-far from
being a constant). Therefore, the probability we would dismiss such a set is
at most 0.99r < 0.5log k · 0.99500 < 1/100k (assuming we did not hit a faulty
evaluation - a probability that we later consider). Since there are at most k sets
with influencing variables, by the union bound we would identify them all with
probability at least 99/100.

In order to estimate how many sets we would consider as influencing, we
compute the probability that a non-influencing set would mistakenly be con-
sidered otherwise. This can only occur if we query the function at a faulty
input, which happens with probability ε. During this process, we perform only
sr = O(k log k) pairs of independent non-adaptive queries and therefore we
would hit a faulty evaluation only with probability O(k log k/2k) = 2−Ω(k).

So far with good probability we have identified at most k sets which are
influencing. Let S1, . . . , Sk denote these k sets (where we add some arbitrary
randomly chosen sets if less than k were found) and define S = ∪ki=1Si to be their
union (notice that the size of S is expected to be E [|S|] = n/3). Given the input
x for which we were asked to determine fσ(x), we would like to choose an input

6

y which agrees with x on all indices from S, and yet is uniformly distributed
(except for the restriction to match x on the k influencing variables). Achieving
this would guarantee that the probability of y hitting a faulty evaluation is at
most 2k+1/2k+3 = 1/4 (even if all faulty evaluations fall into inputs which agree
with x on these k variables).

Let p = 3/4 and define y so that yi = xi for every i ∈ S, and otherwise
Pr[yi 6= xi] = p. Whenever i is not one of the special k variables, Pr[yi 6=
xi] = Pr[i 6∈ S] · p = 2

3 ·
3
4 = 1

2 and these probabilities are all independent.
The independence between the different variables and the fact that Pr[i 6∈ S]
is exactly 2/3 are crucial points which require a moment of reflection to verify.
This implies that indeed y is uniformly distributed over all inputs which agree
with x on the special k variables, as required.

Combining the two parts together, the algorithm would return the correct
answer g(y) = fσ(x) with probability at least 3/4 − 1/100 − 2−Ω(k) > 2/3 (for
large enough k).

Proof of Corollary 5. The algorithm provided here did not use any specific knowl-
edge of the function f except for the guarantee of its structure, being a k-junta
in which each influencing variable has influence at least 1/50. Therefore, this
family is O(k log k)-locally correctable for ε < 2−k−3. Hence, for every fixed k
this family forms a locally correctable code which has polynomial size in n and
constant number of queries O(k log k).

3. Conclusions and open problems

In this work we have shown that k-juntas and degree k polynomials are
q-locally correctable, where q depends on the structure parameter k of the func-
tion, and not on the number of variables n. We have also seen that q is always
at most O(2k) and that sometimes an exponential behavior is tight. The main
general open question in this subject is that of computing the query complexity
of local correction for any given function. In particular, it would be very inter-
esting to find a characterization of all functions that are ”easily” correctable,
that is, have constant query complexity (independent of n).

Although we have seen both upper and lower bounds for juntas and poly-
nomials, the lower bound is only applicable for specific functions. Symmetric
functions, for example, are always 0-locally correctable as one does not need to
query the function at all in order to correct an input. However, such functions
can have arbitrary large degree as polynomials. Taking the majority function as
an example, it is trivial to correct and yet it has high degree, but even a slight
modification of it, Majn−1 - the majority of n − 1 of the variables, makes it
hard for correcting. Given Majn−1, one can modify o(1) fraction of the inputs,
namely the balanced layer, and make this function impossible for correcting in
any number of queries.

[1] N. Alon and E. Blais, Testing boolean function isomorphism. In Proc.
RANDOM-APPROX, pages 394-405, 2010.

7

[2] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn and D. Ron, Testing low-
degree polynomials over GF(2). Proceedings of RANDOM-APPROX 2003,
188-199. Also: Testing Reed-Muller codes, IEEE Transactions on Informa-
tion Theory 51 (2005), 4032-4039.

[3] N. Alon and J. Spencer, The Probabilistic Method, Third Edition, Wiley
2008.

[4] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and non-
approximability - towards tight results. SIAM J. Comput., 27(3):804-915,
1998.

[5] E. Blais, Testing juntas nearly optimally. Proceedings of the 41st annual
ACM STOC, 2009, pp. 151-158.

[6] E. Blais and R. O’Donnell, Lower bounds for testing function isomorphism.
In IEEE Conference on Computational Complexity, pages 235-246, 2010.

[7] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with appli-
cations to numerical problems. Journal of Computer and System Sciences,
47(3):549-595, 1993.

[8] S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah, Nearly tight bounds
for testing function isomorphism. In Proc. SODA, pages 1683-1702, 2011.

[9] H. Chockler and D. Gutfreund, A lower bound for testing juntas. Informa-
tion Processing Letters, 90(6):301-305, 2004.

[10] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky, Testing
juntas. J. Comput. Syst. Sci., 68(4):753-787, 2004.

[11] M. Parnas, D. Ron, and A. Samorodnitsky, Testing basic boolean formulae.
SIAM J. Discrete Math., 16(1):20-46, 2002.

[12] S. Yekhanin, Locally decodable codes, NOW Publishers, 2010.

8

