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Abstract

A family of high-degree triangle-free pseudo-random Cayley graphs has been con-

structed in [2], motivated by a geometric question of Lovász. These graphs turned out

to be useful in tackling a variety of additional extremal problems in Graph Theory

and Coding Theory. Here we describe the graphs and their applications, and mention

several intriguing related open problems. This is mainly a survey, but it contains

several new results as well. One of these is a construction showing that the Lovász

θ-function of a graph cannot be bounded by any function of its Shannon capacity.

1 Introduction

• What is the maximum possible (Euclidean) norm of a sum of n unit vectors so that

any 3 of them contain 2 which are orthogonal ?

• What is the minimum possible size of the maxcut of a triangle-free graph with m

edges ?

• What is the maximum possible number of words in a binary code of length n so that

there is no Hamming ball of radius (1/4 + ε)n containing more than two words ?

The first question is geometric, and was posed by Lovász motivated by the study of

the θ-function of a graph. The second question is in Extremal Graph Theory, it was first

considered by Erdős and Lovász. The third question is in Coding theory, and was first

studied by Blinovskii, extending earlier results of Plotkin and Levenshtein. Somewhat

surprisingly it turns out that all three questions, and several related ones, can be solved
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asymptotically using a single construction of a family of triangle-free Cayley graphs with

extremal spectral properties. Here we describe this construction, show how it is used in

the solution of these problems and more, and describe their connection to Ramsey theory

and to questions about the Shannon capacity of graphs.

2 The graphs

For a positive integer k, let Fk = GF (2k) denote the finite field with 2k elements whose

elements are represented, as usual, by binary vectors of length k. If a, b and c are three

such vectors, let (a, b, c) denote their concatenation. Suppose k is not divisible by 3 and

put n = 23k. Let W0 be the set of all nonzero elements α ∈ Fk so that the leftmost bit in

the binary representation of α7 is 0, and let W1 be the set of all nonzero elements α ∈ Fk
for which the leftmost bit of α7 is 1. Since 3 does not divide k, 7 does not divide 2k − 1

and hence |W0| = 2k−1 − 1 and |W1| = 2k−1, as when α ranges over all nonzero elements

of Fk so does α7.

Let Gn be the Cayley graph of the elementary abelian 2-group Z3k
2 with the generating

set S = U0 + U1 = {u0 + u1 : u0 ∈ U0, u1 ∈ U1}, where U0 = {(w0, w
3
0, w

5
0) : w0 ∈ W0},

and U1 = {(w1, w
3
1, w

5
1) : w1 ∈W1} with the powers computed in the finite field Fk.

The following theorem is proved in [2].

Theorem 2.1. If k is not divisible by 3 and n = 23k then Gn is a Cayley graph of Z3k
2 ,

it has n vertices, is regular of degree

dn = 2k−1(2k−1 − 1) = (
1

4
+ o(1))n2/3,

and satisfies the following properties

1. Gn is triangle-free.

2. Every eigenvalue µ of Gn, besides the largest, satisfies

−9 · 2k − 3 · 2k/2 − 1/4 ≤ µ ≤ 4 · 2k + 2 · 2k/2 + 1/4.

The detailed proof can be found in [2]. Here is a sketch. The graph Gn is the Cayley

graph of Z3k
2 with respect to the generating set S = Sn = U0 +U1, where Ui are defined as

above. As the elements of U0 ∪U1 are the columns of the parity check matrix of a binary

BCH-code of designed distance 7 (see, e.g., [40], Chapter 9), every set of six of them is
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linearly independent. Therefore the elements of Sn are distinct and Gn is regular of degree

|Sn| = |U0||U1|.
The fact that Gn is triangle-free is equivalent to the fact that the sum (in Z3k

2 ) of

any set of 3 elements of Sn is not the zero-vector. Let u0 + u1, u
′
0 + u′1 and u”0 + u”1

be three distinct elements of Sn, where u0, u
′
0, u”0 ∈ U0 and u1, u

′
1, u”1 ∈ U1. If the sum

(modulo 2) of these six vectors is zero then, since every set of six members of U0 ∪ U1 is

linearly independent, every vector must appear an even number of times in the sequence

(u0, u
′
0, u”0, u1, u

′
1, u”1). However, since U0 and U1 are disjoint this implies that every

vector must appear an even number of times in the sequence (u0, u
′
0, u”0) and this is

clearly impossible. This proves part 1 of the theorem.

The proof of part 2 is based on the fact that the eigenvalues of Gn are given by the

following character sums: ∑
s∈Sn

χ(s),

where χ ranges over all characters of the group Z3k
2 . Indeed, such an expression holds

for any Cayley graph of an abelian group (see, e.g., [39]), where the eigenvectors are the

characters. The bounds in part 2 can now be deduced from the known results about the

weight distribution of dual BCH codes, proved using the Carlitz-Uchiyama bound (see

[40], pages 280-281). The details can be found in [2].

An (n, d, λ)-graph is a d regular graph on n vertices in which all eigenvalues but the

first are of absolute value at most λ. This notation was introduced by the author in the late

80s, motivated by the fact that if λ is much smaller than d, then the graph exhibits strong

pseudo-random properties. In particular, as shown in [8], the average degree of every

induced subgraph on a set of xn vertices deviates from xd by less than λ. By considering

the trace of the square of the adjacency matrix of any (n, d, λ)-graph, which is nd and is

also the sum of squares of its eigenvalues, it is easy to see that λ ≥
√
d(n− d)/(n− 1)

which is Ω(
√
d) whenever, say, d < n/2. Thus the smallest possible value of λ is Θ(

√
d).

The graph G = Gn described above is an (n, d, λ) where d = Θ(n2/3) and λ = Θ(
√
d), that

is, λ is as small as possible up to a constant factor. Note that by the above fact about the

distribution of edges in subsets of (n, d, λ)-graphs, it follows that any set of cn2/3 vertices

of G spans many edges, provided c > 36, implying that such a graph with somewhat larger

degrees which are still Θ(n2/3) cannot be triangle-free. Note also that in a random graph

with degrees Θ(n2/3), every edge is typically contained in Θ(n1/3) triangles, that is, the

graph includes lots of triangles. The fact that the graphs Gn are triangle-free and yet

have strong pseudo-random properties derived from their spectrum make them useful in
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tackling various extremal problems. Some of these are described in the following sections.

3 Shannon capacity and the Lovász θ-function

3.1 Shannon and Ramsey

The (and)-product of two undirected graphs G = (V,E) and G′ = (V ′, E′) is the graph

whose vertex set is V × V ′ in which two distinct vertices (u, u′) and (v, v′) are adjacent iff

(either u = v or uv are adjacent in G) and (either u′ = v′ or u′, v′ are adjacent in G′). The

power Gn of G is defined with respect to this product. It is thus the graph whose vertex set

is V n in which two distinct vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) are adjacent if and

only if for all i between 1 and n either ui = vi or uivi ∈ E. The Shannon capacity S(G) of

G is the limit limn→∞(α(Gn))1/n, where α(Gn) is the maximum size of an independent set

of vertices in Gn. This limit exists, by super-multiplicativity, it is equal to the supremum

over n of (α(Gn))1/n and hence is always at least α(G). The Shannon capacity of a graph

may be significantly larger than its independence number. In particular, there are graphs

on n vertices with independence number smaller than 2 log2 n and Shannon capacity at

least
√
n, see [25], [12]. It is not known, however, if the Shannon capacity is bounded by

any function of the independence number, that is, whether or not the maximum possible

value of the Shannon capacity of a graph whose independence number is a constant c is

finite. This is equivalent to a well known question on multicolored Ramsey numbers. Let

r(c+ 1 : `) denote the maximum number r so that there is a coloring of the edges of the

complete graph Kr on r vertices by ` colors with no monochromatic copy of Kc+1. As

shown in [25], (see also [12]), the maximum possible value of α(G`) as G ranges over all

graphs with independence number c is exactly r(c + 1 : `). It follows that the maximum

possible Shannon capacity of a graph with independence number c is exactly the limit as

` tends to infinity of r(c+ 1 : `)1/`. In particular, the question of deciding whether or not

the maximum possible Shannon capacity of a graph with independence number 2 is finite

is equivalent to an old problem of Erdős (see, e.g., [17]) asking whether or not the Ramsey

number r(3 : `) grows faster than any exponential in `.

This question is wide open. Indeed, our understanding of the Shannon capacity of

graphs is very limited. In view of this fact it is natural to replace in the question the

Shannon capacity invariant by the best known upper bound for it, which is much better

understood, and can be computed efficiently, namely by the Lovász θ-function of the graph.
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3.2 The θ-function and nearly orthogonal vectors

If G = (V,E) is a graph, an orthonormal labeling (also called orthogonal representation)

of G is a family (bv)v∈V of unit vectors in an Euclidean space so that if u and v are distinct

non-adjacent vertices, then btubv = 0, that is, bu and bv are orthogonal. The θ-function

θ(G) of G is the minimum, over all orthonormal labelings bv of G and over all unit vectors

c (called here a handle), of

maxv∈V
1

(ctbv)2
.

It is easy to check that for every G, α(G) ≤ θ(G). Indeed, in any orthonormal labeling

of G the vectors bv assigned to the vertices of any independent set are pairwise orthogonal,

and therefore for any unit vector c the square of the inner product of at least one of them

with c is at most the reciprocal of the size of the set. It is also not difficult to check that

for any two graphs G and G′, θ(G ·G′) ≤ θ(G) · θ(G′). (It is a bit more difficult to show

that in fact equality holds, see [38].) This is proved by considering the tensor product

of orthogonal representations of G and G′ and the tensor product of the two handles.

Therefore for every n, α(Gn) ≤ (θ(G))n implying that the Shannon capacity of G satisfies

S(G) ≤ θ(G).

The following lemma is proved in [38].

Lemma 3.1. Let G = (V,E) be a d-regular graph on n vertices and suppose that the most

negative eigenvalue of the adjacency matrix A of G is at least −λ. Then

θ(G) ≤ nλ

d+ λ
.

Proof: The matrix B = (A + λI)/λ is positive semi-definite and hence it is the gram

matrix of vectors (bv)v∈V . It is easy to check that these vectors form an orthogonal

representation of G. Define

c =

∑
v∈V bv

‖
∑

v∈V bv‖
.

Then for every vector bv

(ctbv)
2 =

(1 + d/λ)2

n+ nd/λ
=
λ+ d

nλ
,

completing the proof. �

By Theorem 2.1 and the above lemma, for the graph Gn in the theorem, θ(Gn) ≤
(1 + o(1))36n2/3. The complement Gn of Gn is a graph with n vertices, and independence
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number 2. Since the product Gn ·Gn contains an independent set of size n (consisting of

all vertices (v, v) for v ∈ V (Gn)), it follows that

n ≤ α(Gn ·Gn) ≤ θ(Gn ·Gn) ≤ θ(Gn)θ(Gn) ≤ (1 + o(1))36n2/3θ(Gn).

Therefore θ(Gn) ≥ (1/36 + o(1))n1/3. We have thus shown that the maximum possible

value of the θ-function of an n-vertex graph with independence number 2 is at least

Ω(n1/3). This is tight, up to a multiplicative constant, answering a question of Lovász and

improving earlier estimates of Konyagin [34] and of Kashin and Konyagin [32]. See [2] for

more details.

The n unit vectors bv described above have the following interesting geometric property.

Among any three of them, some two are orthogonal (since the graph Gn is triangle-free).

On the other hand, the square of the norm of their sum is n+n dλ where d = (1/4+o(1))n2/3

and λ = (9 + o(1))n1/3. This square norm is thus ( 1
36 + o(1))n4/3. Therefore the norm

of this sum is Ω(n2/3) which is also tight, up to a multiplicative constant, improving the

estimates in [34], [32].

Here is a quick proof of the tightness (see [34] for another proof). Let v1, . . . , vn be

n unit vectors in an Euclidean space so that among any three of them some two are

orthogonal. Let A be the gram matrix of these vectors an let λ1 ≥ · · · ≥ λn ≥ 0 be its

eigenvalues (which are all nonnegative as A is positive semi-definite). Then the square of

the norm of the sum of the vectors is jtAj where j is the all 1 vector. This is at most

λ1n. The assumption implies that the trace of (A− I)3 is 0, that is,
∑

i(λi − 1)3 = 0. As

λi − 1 ≥ −1 for all i this implies that λ1 ≤ (n− 1)1/3 implying the required bound.

3.3 Lovász and Shannon

As described above, for every graph G, α(G) ≤ S(G) ≤ θ(G) where α(G) is the indepen-

dence number of G, S(G) is its Shannon capacity, and θ(G) is the Lovász θ-function of

G. As mentioned it is not known whether or not the Shannon capacity S(G) is bounded

by any function of the independence number α(G). On the other hand by the discussion

in the previous subsection the Lovász θ function is not bounded by any function of the

independence number, and can be as large as Ω(n1/3) for an n-vertex graph with indepen-

dence number 2. Can it be bounded by any function of the Shannon capacity S(G) ? The

next result shows that the answer is negative.

Theorem 3.2. There is a sequence of graphs Hn with the following properties. Hn has n

vertices, its Shannon capacity is 3 and its θ-function is at least (1 + o(1))n1/4.

6



Proof: Let F = GF (2k) be the finite field with q = 2k elements, and let U = Un be the set

of all vectors x = (x0, x1, x2) ∈ F 3 so that the sum x0+x1+x2 (computed in F ) is nonzero,

and x is not of the form (y, y, y) for some y ∈ F . Define an equivalence relation on U by

calling two vectors equivalent if one is a multiple of the other by a field element. The vertex

set V = Vn of the graph Hn is the equivalence classes of U with respect to this relation.

Therefore |V | = n = (q3 − q2 − q + 1)/(q − 1) = q2 − 1. Two vertices x = (x0, x1, x2) and

y = (y0, y1, y2) are not connected iff x0y0 + x1y1 + x2y2 = 0, where the sum and product

are computed in F and x, y are any two representatives of the corresponding equivalence

classes. Note that this is an induced subgraph of the complement of the Erdős-Rényi graph

(which is the polarity graph of a projective plane) considered in [26]. For our purpose here

it is convenient to define it over a field of characteristic 2, see [9] for a close variant.

Claim 3.3. The Shannon capacity of Hn is at most 3.

Proof: We use a variant of the argument in [31],[5]. By definition we can assign to each

vertex v of Hn a vector xv in F 3 so that the inner product of each vector with itself

(over F ) is nonzero and for any two nonadjacent vertices u, v, the inner product of xu

and xv is zero. By taking tensor powers this supplies, for every k, an assignment with

similar properties for the vertices of the power Hk
n. For each vertex we get a vector in

F 3k so that the inner product of any vector with itself is nonzero and the inner product

of any two vectors associated to non-adjacent vertices is 0. This implies that the vectors

corresponding to an independent set are linearly independent and hence the size of each

such set is at most 3k, establishing the claim.

Claim 3.4. The θ-function of Hn is at least
√
q > n1/4.

Proof: The complement of Hn is an induced subgraph of the polarity graph of the

projective plane of order q. The eigenvalues of this polarity graph are easy to compute, as

for its adjacency matrix A, AtA = qI + J where I is the identity matrix and J is the all 1

matrix. Thus the eigenvalues of AtA are q+ 1 + q2 + q = (q+ 1)2 (with multiplicity 1) and

q (with multiplicity q2 + q). It follows that the smallest eigenvalue of A is −√q, and by

eigenvalues interlacing, the smallest eigenvalue of the adjacency matrix of the complement

of Hn is at least −√q. It is not difficult to check that this complement is regular of degree

q. Thus, by Lemma 3.1,

θ(Hn) ≤
n
√
q

q +
√
q
.

It follows that

θ(Hn) ≥
q +
√
q

√
q

=
√
q + 1 > n1/4.
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This completes the proof of the claim, which together with the previous claim imply the

assertion of the theorem. �

4 Ramsey graphs and Maxcut

4.1 The Ramsey number r(3,m)

Let r(3,m) denote the maximum number of vertices of a triangle-free graph whose inde-

pendence number is at most m. The problem of determining or estimating this function

is a well studied Ramsey type problem. Ajtai, Komlós and Szemerédi proved in [1] that

r(3,m) ≤ O(m2/ logm), (see also [43] for an estimate with a better constant). Improving

a result of Erdős who showed in [22] that r(3,m) ≥ Ω((m/ logm)2), Kim [33] proved

that the upper bound is tight up to a constant factor, that is: r(3,m) = Θ(m2/ logm).

Proofs providing a better constant appear in [14], [28]. All these lower bound proofs are

probabilistic, and do not supply any explicit construction of the corresponding graphs.

The problem of finding an explicit construction of triangle-free graphs of independence

number m and many vertices has also received a considerable amount of attention. Erdős

[23] gave an explicit construction of such graphs with

Ω(m(2 log 2)/3(log 3−log 2)) = Ω(m1.13)

vertices. This has been improved by Cleve and Dagum [16], and further improved by

Chung, Cleve and Dagum in [15], where the authors present a construction with

Ω(mlog 6/ log 4) = Ω(m1.29)

vertices. A better explicit construction is given in [3], where the number of vertices is

Ω(m4/3).

The graphs Gn described in Section 2 provide the best known explicit construction,

as shown in [2]. Indeed, the graph Gn is triangle-free, and as described in the previous

section its Shannon capacity is at most m = O(n2/3), where n is the number of its

vertices. As the Shannon capacity is an upper bound for the independence number, these

are explicit graphs showing that r(3,m) ≥ Ω(m3/2). A different construction providing

the same asymptotic bound has been given a few years later in [18]. See also [35], [19] for

more recent variants.
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4.2 Maxcut in triangle-free graphs

For a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of

G, that is, the size of the maxcut of G. Edwards [20], [21] proved that for any graph G

with m edges,

f(G) ≥ m

2
+
−1 +

√
8m+ 1

8
=
m

2
+ Ω(m1/2).

This is tight for every m =
(
s
2

)
where s is an integer.

Erdős and Lovász (see [24]) showed that if G is a triangle-free graph with m edges,

then

f(G) ≥ m/2 + Ω(m2/3(
logm

log logm
)1/3).

This has been improved by a logarithmic factor by Poljak and Tuza [41], and further

improved by Shearer [44], who proved that if G is a triangle-free graph with m edges then

f(G) ≥ m

2
+ Ω(m3/4). (1)

In [4] the exponent 3/4 is improved to 4/5. Moreover, it is shown that this is tight up

to the multiplicative constant in the error term. That is, there exists a constant C > 0 so

that for every m there exists a triangle-free graph G with m edges satisfying

f(G) ≤ m

2
+ Cm4/5.

This is proved using the graphs Gn described in Section 2 together with the following

simple lemma, whose proof can be found, for example, in [4].

Lemma 4.1. Let G = (V,E) be a d-regular graph with n vertices and m = nd/2 edges,

and let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of G. Then

f(G) ≤ (d− λn)n/4 =
m

2
− λnn/4.

The graph G = Gn is triangle-free, has n vertices, is d = (14 + o(1))n2/3-regular and

its most negative eigenvalue is λn = −λ where λ ≤ (9 + o(1)n1/3. Therefore the number

of edges of G is m = Θ(n5/3) and

f(G) ≤ m

2
+O(n4/3) =

m

2
+O(m4/5).
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5 List decodable zero-rate codes

A binary code C ⊂ {0, 1}n is < L-list decodable with normalized radius τ if any Hamming

ball with radius τn contains less than L codewords.

Define

τL =
1

2
−
(
2k
k

)
22k+1

if L = 2k or L = 2k + 1. (2)

Blinovskii [13] proved that for any fixed radius τ < τL the largest possible < L-list

decodable code with normalized radius τ in {0, 1}n is exponentially large in n, that is of

size at least 2bn for some b = b(τ, L) > 0. On the other hand he showed that for any fixed

radius τ > τL the largest < L-list decodable code with normalized radius τ (of any length

n) is of constant size, that is, of size at most some b′ = b′(τ, L). Therefore, the maximum

possible rate is positive for τ < τL, and is zero for τ > τL. How large can C be when τ is

just above the threshold τL ? Let m(L, ε) denote the maximum possible size of a < L list

decodable code with normalized radius at least τL + ε, where the maximum is taken over

all values of the length n.

Levenshtein [36] showed that the so-called Plotkin bound is sharp in the unique de-

coding case (L = 2), namely

m(2, ε) =
1

4ε
+O(1).

For larger values of L the situation is more complicated. The result of [13] is proved by

iterating Ramsey’s theorem, providing a very large (finite) bound for m(L, ε). In a recent

paper with Bukh and Polyanskiy [7] it is proved that for every even L, m(L, ε) = Θ(1/ε).

This implies that for every L, m(L, ε) ≥ Ω(1/ε). In addition, the value of m(3, ε) is

determined up to a constant factor, as stated in the following theorem.

Theorem 5.1 ([7]).

m(3, ε) = Θ(
1

ε3/2
).

The lower bound is proved using the graphs described in Section 2. Here is the argu-

ment.

Proof of the lower bound: Let G = Gm = (V,E) be the graph described in Section 2,

where m is the number of its vertices. Recall it is a Cayley graph of an elementary abelian

2-group Zr2 , let A be its adjacency matrix, and let d = λ1 ≥ λ2 ≥ · · ·λm = −λ be its

eigenvalues, where d is the degree of regularity and −λ is the smallest eigenvalue. Thus

d = (1/4 + o(1))m2/3, λ = (9 + o(1))m1/3 and G is triangle-free. As it is a Cayley graph

of an elementary abelian 2-group, it has an orthonormal basis of eigenvectors v1, v2, ..., vm
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in which each coordinate of each vector is in {−1/
√
m, 1/

√
m}. Indeed, the eigenvectors

are simply the (normalized) characters of the group. Define B = (A + λI)/λ where I is

the m-by-m identity matrix. Then B is a positive semidefinite matrix, its diagonal is the

all-1 vector, its eigenvalues are µi = (λi + λ)/λ and the corresponding eigenvectors are

the vectors vi. Let P be the m-by-m orthogonal matrix whose columns are the vectors

vi, and note that the first v1 is the constant vector 1/
√
m. Let D be the diagonal matrix

whose diagonal entries are the eigenvalues µi and let
√
D denote the diagonal matrix whose

entries are
√
µi. Then P tBP = D and thus B = (P

√
D)(
√
DP t).

The rows of the matrix P
√
D are vectors x1, x2, . . . , xm where xi = (xi1, xi2, . . . , xim).

Note that for each j, xij ∈ {−
√
µj/m,

√
µj/m} for all i, and that xi1 is positive for all i.

In addition xtixj = Bij for all i, j implying that the `2-norm of each vector xi is 1 and that

among any three vectors xi there is an orthogonal pair. Let yi be the vector obtained from

xi by removing its first coordinate (the one which is
√
µ1/m =

√
(d+ λ)/mλ). Then each

yi is a vector of `2-norm
√

1− µ1/m and among any three of them there is a pair with

inner product −µ1/m. We can normalize the vectors by dividing each entry by
√

1− µ1/m
to get m unit vectors z1, z2, . . . , zm, where any three of them contain a pair with inner

product −δ, where δ = µ1/(m− µ1). Moreover, for the vectors zi = (zij), for each fixed j

the absolute value of all zij is the same for all i. Denote this common value by tj . We can

now use the vectors zi to define functions mapping [0, 1] to {1,−1} as follows. Split [0, 1]

into disjoint intervals Ij of length t2j and define fi to be sign(zij) on the interval Ij . It is

clear that the `2-norm of each fi is 1 and the inner product between fi and fj is exactly

that between zi and zj . In particular, each three functions fi contain a pair whose inner

product is at most −δ.
One can replace the functions by vectors of 1,−1 with essentially the same property,

using an obvious rational approximation to the lengths of the intervals. Let n denote the

length of these vectors.

Put, say, ε = δ
4.01 . Plugging d = (1/4 + o(1)m2/3 and λ = (9 + o(1)m1/3 we get

ε = Θ(m−2/3) and hence the number of vectors is m = Θ
(
(1/ε)3/2

)
. This gives a binary

code with m = Θ
(
(1/ε)3/2

)
codewords of length n so that among any three codewords

there are two such that the Hamming distance between them exceeds (1/2 + 2ε)n. Thus

no Hamming ball of radius (1/4 + ε)n = (τ3 + ε)n can contain three vectors, completing

the proof. �
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6 Extensions and open problems

As described in the previous sections, if G is a graph with independence number α(G),

Shannon capacity S(G) and θ-function θ(G), then α(G) ≤ S(G) ≤ θ(G). Already in

his original paper introducing S(G) Shannon [42] proved that if χ∗(G) is the fractional

chromatic number of the complement of G, and χ(G) is the chromatic number of this

complement, then S(G) ≤ χ∗(G) ≤ χ(G). Lovász showed that θ(G) ≤ χ∗(G). Therefore,

for every graph G,

α(G) ≤ S(G) ≤ θ(G) ≤ χ∗(G) ≤ χ(G).

As mentioned in Section 3, it is not known whether or not S(G) can be bounded by any

function of α(G). On the other hand, for any other pair of invariants among the above

five, the larger one is not bounded by any function of the smaller one. Indeed as shown

in Section 3, there are graphs G on n vertices where θ(G) ≥ Ω(n1/4) and S(G) ≤ 3, and

graphs G on n vertices with θ(G) = Θ(n1/3) and α(G) = 2.

We next show that for any ε > 0 there is a δ > 0 and n-vertex graphs for which

χ∗(G) ≥ nδ and θ(G) ≤ (2 + ε). Such graphs are constructed in [10], based on a theorem

of Frankl and Rödl [29].

For a pair of integers q > s > 0 let G(q, s) denote the graph on n =
(
2q
q

)
vertices

corresponding to all q-subsets of the 2q-element set Q = {1, 2, . . . , 2q}, where two vertices

are adjacent iff the intersection of their corresponding subsets is of cardinality precisely s.

By the main result of Frankl and Rödl in [29], for every γ > 0 there is a µ = µ(γ) > 0 so

that if (1− γ)q > s > γq then every family of more than 22q(1−µ) subsets of cardinality q

of Q contains some pair of subsets whose intersection is of cardinality s. This means that

the independence number of the graph G(q, s) for q and s that satisfy (1− γ)q > s > γq

satisfies

α(G(q, s)) ≤ nc (3)

for some c = c(γ) < 1, where n =
(
2q
q

)
is the number of vertices. Therefore, the fractional

chromatic number of G(q, s) is at least n1−c = nδ.

It is shown in [10] that the parameter γ can be chosen to ensure that θ(G(q, s)) ≥ n
2+ε ,

where n is the number of vertices of G(q, s). Lovász proved in [38] that if a graph has a

vertex transitive automorphism group then the product of its θ-function with that of its

complement is the number of vertices. Since the graph G(q, s) is clearly vertex transitive,

this implies that the θ-function of its complement is at most 2+ε. Thus, this complement

is a graph showing that θ may be fixed (in fact close to 2) while the fractional chromatic

number of the complement grows as a small fixed power of the number of vertices.
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The existence of graphs with a fixed fractional chromatic number and large chromatic

number is well known. Here the gap can be only logarithmic in the number of vertices.

The Kneser graphs provide examples of graphs with fractional chromatic number 2+ε and

chromatic number Ω(log n) where n is the number of vertices. The Kneser graph K(m, r)

is the graph whose vertices are all subsets of cardinality r of an m-element set, where

two are adjacent if they are disjoint. Lovász proved in [37] that the chromatic number of

K(m, r) is m− 2r + 2, and it is easy to see that its fractional chromatic number is m/r.

Taking r = m
2+ε we get the required example.

It will be interesting to find a construction of Kk-free graphs with extremal spectral

properties for k > 3, extending that of the graphs Gn described in Section 2. It is not

difficult to show (see [9]) that if dk−1 > nk−2λ then any (n, d, λ)-graph G contains a clique

of size k. Therefore, if λ = O(
√
d) and G contains no copy of Kk, then

d ≤ O(n1−
1

2k−3 ).

This is tight for k = 3, as shown by the graphs Gn. Is it tight for larger values of k as

well?

What is the largest possible value of the θ-function of an n vertex graph with independence

number smaller than k ? In [10] it is shown that this maximum is at most O(n1−2/k).

This is tight for k = 3 but is not known to be tight for any larger value of k. The results

in [27] imply that this maximum is at least Ω(n1−O(1/ log k)). It will be interesting to close

the gap here. In a somewhat different direction it is proved in [10] that if the odd girth

of the complement of an n vertex graph G exceeds 2s + 1, then its θ-function is at most

O(n1/(2s+1)). As mentioned in [10], this is tight for all values of s, by a natural extension

of the construction of the graphs Gn.

What is the maximum possible Euclidean norm of a sum of n unit vectors in an Euclidean

space (of any dimension) so that among any k of them some two are orthogonal ? This

extends the question discussed in subsection 3.2 and is closely related to the question about

the maximum possible θ-function of a graph on n vertices with independence number

smaller than k. Denote this maximum possible norm by f(n, k). It is clear that f(n, 2) =
√
n and as discussed in Section 3, f(n, 3) = Θ(n2/3). In [10] it is shown that f(n, k) ≤

O(n1−1/k) for all k. The following theorem can be proved following the approach in [27].

Theorem 6.1. For any k > k0, n > n(k),

f(n, k) ≥ n1−O(1/ log k).
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Here is an outline of the proof. Let t = 4p, p a prime, and let F be the set of all

vectors in {−1, 1}t with an even number of −1 entries which is at most n/3. Let G denote

the tensor product of s copies of F , normalized to be unit vectors. Each vector in G has

projection at least (1/3)s in the direction of the all 1 vector. Put q = 2−0.85st and let X be

a random subset of G obtained by taking each member of G, randomly and independently,

to be a member of X with probability q. Let n denote the number of vectors in X. Clearly

their sum is of norm at least n/3s, and n is at least 2st/25 (say), with high probability. By

a result of [30], any set of more than 2H(1/4)t vectors in F contains an orthogonal pair.

Now any set in the tensor power of s copies of F that contains no such pair is a subset of a

product of its projections on the copies of F , namely of a box of the form F1×F2 · · ·×Fs,
with Fi ⊂ F with no pair of orthogonal vectors. The number of choices for such a product

is smaller than 22
ts and the probability that for, say, k = 30 · 2t/t, k members of such a

product belong to X is small, by the union bound, as

22
ts

(
2H(1/4)ts

k

)
qk < 1.

This completes the proof. �

As described in Section 4, every triangle free graph with m edges contains a bipartite

subgraph with at least m
2 + cm4/5 edges. The graphs Gn show that this is tight up to

the absolute constant c. It is natural to extend the question for other forbidden graphs

H. Let f(G) denote the maximum number of edges in a bipartite subgraph of G and let

f(m,H) denote the minimum possible value of f(G), as G ranges over all H-free graphs

with m edges. It is proved in [11] that f(m,H) = m
2 +c(H)m4/5 for all graphs H obtained

by joining a vertex to all vertices of any nontrivial forest, and this is tight up to the value

of c(H). Here, too, the tightness follows from the graphs Gn. It is also proved in the same

paper that

f(m,C2r) ≥
m

2
+ c(r)m

r
r+1 (4)

for every even cycle C2r, and this is tight for 2r ∈ {4, 6, 10}. For complete bipartite graphs

with 2 or 3 vertices in the smaller color class it is shown that

f(m,K2,s) ≥
m

2
+ c(s)m5/6

and

f(m,K3,s) ≥
m

2
+ b(s)m4/5

and both results are tight up to the constants c(s), b(s). See also [6] for some related

results. An intriguing conjecture raised in [6] is that for every fixed graph H there is an
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ε = ε(H) so that f(m,H) ≥ m
2 + Ω(m3/4+ε). This, as well as the conjecture that for every

even cycle the estimate (4) is tight, remain open.

Recall that the function m(L, ε) defined in Section 5 is the maximum possible size of a

binary code (of any length) in which every Hamming ball of normalized radius τL + ε

contains less than L codewords. Here τL, defined in (2), is the threshold normalized

radius between positive and zero rate for < L-list decodable codes. While it is proved in

[7] that for every even L, m(L, ε) = ΘL(1/ε) and that m(3, ε) = Θ(1/ε3/2), the problem

of determining or estimating m(L, ε) for odd values of L > 3 is open. The lower bound

is ΩL(1/ε) and the upper bound is an iterated exponential in 1/ε. It seems plausible to

conjecture that m(n, ε) is bounded by a polynomial in ε, for any fixed L. This remains

open.

Thucydides, who is widely considered to be the father of scientific history, wrote in the

introduction to his book on the History of the Peloponnesian War between Sparta and

Athens (431-404 BC): ”With reference to the speeches in this history; some I heard myself,

others I got from various quarters; it was in all cases difficult to carry them word for word

in one’s memory, so my habit has been to make the speakers say what was in my opinion

demanded of them by the various occasions.”

In analogy, let me conclude this short paper stating that many of the results described

here are due to Lovász, others are inspired by his questions and proofs. Regarding the

statements that are difficult to derive directly by following his work word for word, my

habit has been to try to find out how Laci would have established them. I hope this has

been at least somewhat successful.
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[24] P. Erdős, Problems and results in Graph Theory and Combinatorial Analysis, in:

Graph Theory and Related Topics, J. A. Bondy and U. S. R. Murty (Eds.), Proc.

Conf. Waterloo, 1977, Academic Press, New York, 1979, 153-163.
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