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Abstract

A hypergraph is simple if it has no two edges sharing more than a single vertex. It is s-list
colorable (or s-choosable) if for any assignment of a list of s colors to each of its vertices, there is
a vertex coloring assigning to each vertex a color from its list, so that no edge is monochromatic.
We prove that for every positive integer r, there is a function dr(s) such that no r-uniform simple
hypergraph with average degree at least dr(s) is s-list-colorable. This extends a similar result
for graphs, due to the first author, but does not give as good estimates of dr(s) as are known for
d2(s), since our proof only shows that for each fixed r ≥ 2, dr(s) ≤ 2crsr−1

. We use the result to
prove that for any finite set of points X in the plane, and for any finite integer s, one can assign
a list of s distinct colors to each point of the plane, so that any coloring of the plane that colors
each point by a color from its list contains a monochromatic isometric copy of X.
AMS Subject Classification: 05C15, 05C35, 05C65.
Keywords: Hypergraphs, list coloring, average degree, Euclidean Ramsey Theory.

1 Introduction

1.1 Background

The list chromatic number (or choice number) χ`(G) of a graph G = (V,E) is the minimum integer
s such that for every assignment of a list Lv of s colors to each vertex v of G, there is a proper
vertex coloring of G in which the color of each vertex is in its list. This notion was introduced
independently by Vizing in [22] and by Erdős, Rubin and Taylor in [10]. In both papers the authors
realized that this is a variant of usual coloring that exhibits several new properties, and that in
general χ`(G), which is always at least as large as the chromatic number of G, may be arbitrarily
large even for graphs G of chromatic number 2.
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It is natural to extend the notion of list coloring to hypergraphs, and indeed this has been done,
among other places, in [21]. The list chromatic number χ`(H) of a hypergraph H is the minimum
integer s such that for every assignment of a list of s colors to each vertex of H, there is a vertex
coloring of H assigning to each vertex a color from its list, with no monochromatic edges.

An intriguing property of list coloring of graphs, which is not shared by ordinary vertex coloring,
is the result proved by the first author in [2, 3] that the list chromatic number of any (simple) graph
with a large average degree is large. Indeed, it is shown in [3] that the list chromatic number of any
graph with average degree d is at least (1

2−o(1)) log2 d, where the o(1)-term tends to zero as d tends
to infinity. Ramamurthi [20] asked whether a similar statement holds for r-uniform hypergraphs
(r-graphs, for short). For r ≥ 3, there is no nontrivial lower bound on the list chromatic number of
an r-graph in terms of its average degree. To see this, consider, for example, a perfect matching M
consisting of n/2 isolated (graph) edges on a set of n vertices, and let H = H(M) be the r-graph on
this set of vertices consisting of all r-edges containing at least one edge of M . Then the degree of
every vertex of H is greater than

(n−2
r−2

)
, and yet its list chromatic number is 2. More generally, one

can replace the matching M by any graph G of list chromatic number bounded by t, and consider
the hypergraph H of all r-edges containing at least one edge of G, which clearly satisfies χ`(H) ≤ t.
For example, if n is divisible by 2g and we replace M with the graph G that is the disjoint union of
n/2g complete bipartite graphs Kg,g, then the degree of every vertex of the corresponding r-graph
H = H(G) is at least (1 + o(1))g

( n
r−2

)
, where for any fixed r and g, the o(1)-term tends to zero as

n tends to infinity, whereas the list chromatic number of H is only (1 + o(1)) log2 g.

1.2 Simple hypergraphs

The dense hypergraphs of bounded list chromatic number in the above examples are not simple.
Recall that a hypergraph is called simple if every two of its distinct edges share at most one vertex.
In the present paper we prove that the result of [3] can be extended to simple r-graphs. This is
stated in the following theorem.

Theorem 1.1 For every fixed r ≥ 2 and s ≥ 6r, there is d = d(r, s), such that the list chromatic
number of any simple r-graph with n vertices and nd edges is greater than s.

This extends the main result of [3] (which is the case r = 2 of the above theorem), as well as
that of Haxell and Pei, who proved in [12] that the list chromatic number of any Steiner Triple
System on n vertices is at least s, for all n ≥ n0(s). After obtaining our results we learned that
Haxell and Verstraete [13] proved a similar result for the special case of d-regular 3-uniform simple
hypergraphs.

It is worth noting that the theorem provides a linear time algorithm for computing, for a given
input simple r-graph, a number s such that its list chromatic number is at least s and at most f(s)
for some explicit function f . There is no such known result for ordinary coloring, and it is known
that there cannot be one under some plausible hardness assumptions in Complexity Theory—see
[6] and a few additional related comments in the last section of the present paper.
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In order to prove Theorem 1.1, we will prove a stronger statement — if the average degree of an
r-graph is sufficiently large, then there is a way to assign lists of s colors, from a set of not too many
colors, to all the vertices so that in any vertex coloring from the lists there are many monochromatic
edges. This statement seems to be crucial for the proof, and is stated in the following theorem.

Theorem 1.2 For every fixed r ≥ 2, there are functions dr(s), Rr(s) ≥ s and 0 < δr(s) ≤ 1/Rr(s)
such that the following holds. For each s ≥ 6r, every d > dr(s) and every n-vertex simple r-graph
G with dn edges, there is an assignment L of lists of size s from the set [Rr(s)] = {1, 2, . . . , Rr(s)}
to the vertices of G such that for every coloring of the vertices of G from these lists, the number of
monochromatic edges in G is at least δr(s) · dn.

1.3 A geometric application

A well known problem of Hadwiger and Nelson is that of determining the minimum number of
colors required to color the points of the Euclidean plane so that no two points at distance 1 have
the same color. Hadwiger showed already in 1945 that 7 colors suffice, and L. Moser and W. Moser
noted [19] that 3 colors do not suffice. These bounds have not been improved, despite a considerable
amount of effort by various researchers, see [15, pp. 150-152] and the references therein for more
on the history of the problem.

A more general problem is considered in [7], [8], [9], where the main question is the investigation
of finite point sets K in the Euclidean space for which any coloring of an Euclidean space of a
sufficiently high dimension d ≥ d0(K, r) by r colors must contain a monochromatic copy of K. The
main conjecture is that this holds for any set K that can be embedded in a sphere.

The situation is different for list coloring. As described in [16], for every integer s there is an
assignment of a list of s colors to each point of the plane such that in any coloring of the plane that
colors each point by a color from its list there are two points of distance 1 having the same color.
This can be deduced from the main result of [3]. As a corollary of our results here, we prove the
following.

Theorem 1.3 For any finite set X in the Euclidean plane and for any positive integer s, there is
an assignment of a list of size s to every point of the plane, such that whenever we color the points
of the plane from their lists, there is a monochromatic isometric copy of X.

1.4 Organization

In the next section we outline the proof of the main result. One of the difficulties in this proof is
the problem of handling r-graphs in which the minimum degree is much smaller than the average
degree. To overcome this obstacle, we prove in Section 3 a simple decomposition result showing
that any r-graph H contains a subgraph H ′ with at least, say, half the edges of H, that can be
decomposed into large r-graphs each having average degree at most r times the minimum degree.
The proof of Theorem 1.2 for r = 2 is described in Section 4 and the proof for general r in Section 5.
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Section 6 is devoted to the geometric application, and the final section contains some concluding
remarks and open problems.

2 An outline of the proof

The proof of Theorem 1.2 applies induction on r. Although it is possible to start the induction
with the trivial case r = 1, we prefer to start with r = 2, as this supplies a better estimate for the
general case. In this section we sketch the proof for the base case r = 2 and for the case r = 3.
The proof of the induction step for general r is similar to the proof for r = 3, with a few additional
technical complications described in Section 5.

First, consider the case r = 2. Let G = (V,E) be a graph with n vertices and nd edges. We (try
to) start as in [3]: choose a random set B of about n/

√
d vertices and assign a random list of size s

out of a set S of 2s− 1 colors to each vertex of B. Say that a vertex v ∈ V \B is normal, if every
subset of size s of S is assigned to at least one of B-neighbors of v. A simple computation shows
that with positive (and in fact high) probability there are many normal vertices in V \B. Fix such
a choice of the set B and the lists for its vertices. Note now that for each fixed choice of a coloring
f of the vertices of B from their lists, at least s distinct colors appear on the B-neighbors of any
normal vertex v. If we now assign a random list to a normal vertex v, then with probability at
least

(2s−1
s

)−1
> 4−s it will be a forbidden list, that is, it will consist only of colors assigned by f to

its neighbors, showing that the coloring f of the vertices in B cannot be extended to a proper list
coloring of the whole graph. There are only s|B| possible colorings of the vertices of B from their
lists, and the probability that no vertex v gets a forbidden list is small enough to ensure that this
will not happen for any of these colorings. This argument suffices to show that the list chromatic
number of G exceeds s. However, our objective is to prove a stronger result (needed for proceeding
with the case of 3-uniform hypergraphs): there is an assignment of lists of size s to the vertices of
G such that in any coloring from these lists, at least a δ2(s)-fraction of the edges is monochromatic.
With some care, the proof described above does imply that in any such coloring there are at least
some δ2(s)-fraction of the vertices such that for each such vertex v, at least a δ2(s)-fraction of the
edges incident with v are monochromatic. However, since the minimum degree in G may be much
smaller than its average degree, this does not suffice.

In order to deal with this case, we first show that G contains a subgraph consisting of at least
half the edges of G that can be decomposed into a collection of pairwise edge-disjoint graphs Gi,
such that each Gi is large and its minimum degree (which is also large) is at least half of its average
degree. It turns out that we can now select a set of vertices B and an assignment of lists to its
members so that B and its lists will be good enough to handle simultaneously all graphs Gi. This
works because the probabilistic estimates are strong enough to ensure that the events corresponding
to all graphs Gi hold. Thus each Gi will contribute its share of monochromatic edges, implying the
desired result for r = 2.

Given the result for r = 2, we sketch the proof of the case r = 3, that is, the case of simple
3-graphs. The decomposition result, that holds for 3-graphs as well, enables us to focus on one
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member of the decomposition, which is a simple 3-graph in which the minimum degree is not
much smaller than the average degree. Given such a simple 3-graph G with n vertices and nd

edges satisfying this condition, we select in it a large number M of random pairwise disjoint sets
V1, V2, . . . , VM of vertices, each of size roughly n

d1/4 . With high probability many of the vertices v
of G not selected into any of these sets, have a (graph-)edge ej,v in each Vj , such that ej,v ∪ v is an
edge of G. The assumption that G is simple implies that all these 2-edges ej,v are pairwise distinct,
that is, ej,v 6= ej,w if v 6= w.

We now apply the induction hypothesis and assign lists of s colors to the vertices in ∪jVj so that
for each fixed j, in each coloring of these vertices from their lists, a δ2(s)-fraction of all edges ej,v is
monochromatic. The sets of colors used for the different sets Vj are pairwise disjoint, to ensure that
a vertex v for which ej,v is monochromatic for many different values of j will have many distinct
forbidden colors. A double counting ensures now that in any coloring of the vertices in ∪jVj from
their lists there is at least a δ′3(s)-fraction of the vertices not in ∪jVj for which there are at least s
forbidden colors. We can now assign random lists to all remaining vertices and proceed as in the
case r = 2 (here, too, the probabilistic estimates are strong enough to handle all hypergraphs in
the decomposition simultaneously).

This completes the outline. The details are described in the following three sections.

3 A decomposition result for r-graphs

In this section we prove the following.

Lemma 3.1 Let D and d be positive integers satisfying d ≥ 4D. Let G = (V,E) be an r-graph with
n vertices and nd edges. Then there is a family of pairwise edge disjoint subgraphs Gi = (Ui, Ei)
of G, 1 ≤ i ≤ q, satisfying the following five conditions.
(i) Uq ⊆ Uq−1 ⊆ Uq−2 ⊆ . . . ⊆ U1,
(ii) |Uq| ≥ r

√
nd/4,

(iii) The minimum degree of each of the r-graphs Gi is at least D,
(iv) |Ei| ≤ |Ui| ·D for all 1 ≤ i ≤ q, and
(v) |

⋃q
i=1Ei| ≥ 1

2 |E|.

Proof: Starting with G, as long as there is a vertex of degree less than D in G, omit it until we
reach an r-graph with minimum degree at least D. Let U1 be its vertex set. To construct G1, for
each vertex u ∈ U1 pick an arbitrary set of D edges of G[U1] incident with u, and let all these
edges belong to G1. By construction, G1 has minimum degree at least D, and has at most |U1|D
edges. We now remove all the edges of G1 from G and proceed in the same manner. Namely, as
long as there is a vertex of degree less than D in (the remaining part of) G, omit it until we reach
an r-graph with minimum degree at least D. Let U2 be its vertex set, and note that U2 ⊆ U1. For
each vertex u ∈ U2 pick an arbitrary set of D edges incident with u, and let all these edges belong
to G2. Again, G2 has minimum degree at least D, and has at most |U2|D edges. Remove all the
edges of G2 and proceed to the next step.
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Continuing in this manner until the number of remaining vertices of G becomes less than
r
√
nd/4, we obtain a sequence of r-graphs G1, G2, . . . , Gq. The construction ensures that properties

(i),(ii),(iii) and (iv) hold. In addition, the edges of G that do not belong to any of the graphs Gi
are either edges incident to one of the vertices deleted during the process when its degree was less
than D (there are fewer than nD such edges), or edges contained in the set of remaining vertices
when the number of such vertices became smaller than r

√
nd/4 (there are fewer than nd/r!4 ≤ nd/8

such edges). Since by definition d > 4D, property (v) holds as well, showing that there are indeed
r-graphs Gi as claimed. 2

Observe that by Lemma 3.1(iv) and (v),

D
q∑
i=1

|Ui| ≥
q∑
i=1

|Ei| ≥
1
2
|E| = nd

2
.

So, denoting ni := |Vi|, we have
q∑
i=1

ni ≥
nd

2D
. (1)

4 List coloring of graphs

In this section, we apply Lemma 3.1 for ordinary graphs (2-graphs). We prove the basic case r = 2
of Theorem 1.2 in the following form.

Theorem 4.1 There exists a positive function δ(s) > 2−6s−11/s2 such that for every s ≥ 12 and
every d > 4·(s4s+2)2, for any graph G = (V,E) with n vertices and nd edges, there is an assignment
of a list Lv of size s from a set of 2s − 1 colors to each vertex v ∈ V such that for every coloring
assigning to each vertex a color from its list, the number of monochromatic edges is at least δ(s) ·dn.

Proof: Let G = (V,E) be a graph with n vertices and nd edges. Apply Lemma 3.1 with
D = (s4s+2)2 to G. Let G1, . . . , Gq be the edge-disjoint subgraphs of G guaranteed by the lemma.
For each i, 1 ≤ i ≤ q, define ni = |Ui|.

For a subset B of vertices of G and an assignment of a list Lv of s colors from the set S =
{1, 2, . . . , 2s − 1} to each vertex v of B, and for an integer i, 1 ≤ i ≤ q, we say that a vertex u of
G is i-normal if it belongs to Ui \B, the number of its neighbors in Gi that lie in Ui ∩B is at least
0.5
√
D, and for every subset L ⊆ S of size |L| = s, there is at least one neighbor v of u in Gi that

lies in B and whose list Lv is L. Let Ti ⊆ Ui be the set of all i-normal vertices.
First, we claim that there is a subset B of vertices of G and an assignment of lists to its vertices

such that
(a) For each i, |B ∩ Ui| ≤ 2ni√

D
, and

(b)
∑q
i=1 |Ti| > 0.9

∑q
i=1 ni.

Indeed, let B be a random set chosen by picking each vertex of G randomly and independently
with probability 1/

√
D. By the Chernoff bound (see [1, Appendix A1] or [14, p.26, (2.5)]) the
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probability that |B ∩ Ui| > 2ni√
D

is at most exp{−3ni/8
√
D}. Since ni >

√
nd/2 ≥

√
nD for all i,

this probability is at most exp{−3
√
n/8}, and each Gi has at least Dni/2 ≥ D

√
n edges. So,

q ≤ dn/D
√
n < n3/2/D, (2)

and hence the probability that (a) does not hold is at most

exp{−3
√
n/8} q ≤ exp{−3

√
n/8}n3/2/D.

By Lemma 3.1(iii), for every fixed vertex u ∈ Ui, the probability that at least
√
D/2 vertices in B

are neighbors of u in Gi is at least

1− exp{−
√
D/8} = 1− exp{−2s4s} ≥ 1− exp{−4s}.

For s ≥ 12 this is greater than 0.999. Let T ′i be the set of vertices of Gi that do not lie in B and
have, in Gi, at least

√
D/2 neighbors in B. By linearity of expectation and by Markov’s Inequality,

with probability at least 1/2 we have
q∑
i=1

(|T ′i |+ |B ∩ Ui|) ≥ 0.99
q∑
i=1

ni, (3)

so with positive probability both (3) and (a) hold. Fix a set B with these properties. By (3),
q∑
i=1

|T ′i | ≥ 0.99
q∑
i=1

ni−
q∑
i=1

|B∩Ui| ≥
q∑
i=1

ni

(
0.99− 2√

D

)
≥

q∑
i=1

ni

(
0.99− 1

4s+2

)
≥ 0.97

q∑
i=1

ni. (4)

Assign to each vertex of B a list which is a random subset of size s of S. If a vertex u belongs to
T ′i , then the probability that it is not i-normal is at most

(
2s− 1
s

)1−
(

2s− 1
s

)−1

√
D/2

≤ 4s
(
1− 4−s

)8s4s

≤ 4se−8s.

For s ≥ 12 this is less than 0.01, implying the existence of the required lists for the vertices of B
by linearity of expectation (and the fact that 0.97 · 0.99 > 0.9).

Fix B and lists Lv for each v ∈ B satisfying (a) and (b) above. Now we assign to all other
vertices of G lists that are random subsets of S of size s. To complete the proof, we will show
that with positive probability for every coloring of the vertices of G from their lists, the number of
monochromatic edges is at least δ(s)dn.

For each i-normal vertex v, and for any assignment c : B ∩ Ui 7→ S of colors to the vertices of
B ∩ Ui from their lists, there are at least s colors that appear on the neighbors of v in Gi that lie
in B. Fix an assignment f of colors to the vertices in B ∩Ui from their lists. If v is i-normal and if
we now assign a random list L ⊆ S of size s to v, then the probability of the event C(f, v, i) that
L contains only colors assigned to the B-neighbors of v in Gi is at least

(2s−1
s

)−1
> 4−s.

Let I := {i ∈ [q] : |Ti| > 0.5ni}. By (b) and the definition of I,

9
10

q∑
i=1

ni <
q∑
i=1

|Ti| =
∑
i∈I
|Ti|+

∑
i∈[q]−I

|Ti| ≤
∑
i∈I
|Ti|+

1
2

∑
i∈[q]−I

ni ≤
∑
i∈I
|Ti|+

1
2

q∑
i=1

ni −
1
2

∑
i∈I

ni.
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It follows that 0.4
∑q
i=1 ni <

∑
i∈I |Ti| − 1

2

∑
i∈I ni ≤ 1

2

∑
i∈I |Ti| and hence

∑
i∈I
|Ti| ≥ 0.8

q∑
i=1

ni. (5)

If i ∈ I, the probability of the event C ′(f, i) that C(f, v, i) occurs for fewer than 0.5|Ti|4−s vertices
v ∈ Ti is very small. Indeed, by the Chernoff bound (see [1, Appendix A1, Theorem A.1.13] or [14,
p.26, (2.6)]), it is at most e−|Ti|2−2s−3

. So, if i ∈ I, then the probability that C ′(f, i) occurs for at
least one assignment f of colors from the lists to the vertices in B ∩ Ui is at most

e−|Ti|2−2s−3
s|B∩Ui| ≤ exp{ 2ni√

D
ln s− 0.5ni2−2s−3} = exp{ ni

4s+2

(
2 ln s
s
− 1

)
}.

When s ≥ 12, this is at most

exp{−0.5ni4−s−2} ≤ exp{−0.5
√
nd/4 · 4−s−2} < exp{−0.5

√
n(s4s+2)4−s−2} ≤ e−6

√
n.

So, by (2), the probability that C ′(f, i) occurs for at least one choice of i and f is at most

qe−6
√
n ≤ n3/2

D
e−6
√
n ≤ n3/2

(s4s+2)2
e−6
√
n ≤ 1/2

for every n. It follows that with positive probability none of C ′(f, i) occurs at all. Fix a list
assignment L for G such that none of C ′(f, i) occurs for any coloring f of B from the list L. This
means that for each extension f ′ to the whole G of any such coloring f and every i ∈ I, the
number of vertices v ∈ Ti contained in monochromatic edges in Ei connecting v with B is at least
0.5|Ti|4−s. Thus by (5) and (1) and the definition of D, the total number of monochromatic edges
in any coloring of V from L is at least

∑
i∈I

0.5|Ti|4−s ≥ 0.4 · 4−s
q∑
i=1

ni ≥ 0.4 · 4−s nd
2D

= 0.2 · 4−s nd

(s4s+2)2
= 0.2

nd

s226s+8
,

which gives the desired result. 2

5 Coloring simple hypergraphs

In this section we prove Theorem 1.2 for all r. We apply induction on r. Theorem 4.1 yields the
base case r = 2 with d2(s) = 4 · (s4s+2)2, R2(s) = 2s − 1, and δ2(s) = 2−6s−11/s2. For r ≥ 3, we
will prove the theorem using

δr(s) := 2−3rr!sr−1
, dr(s) := (δr(s))−3, Rr(s) :=

4s
δ2
r−1(s)

. (6)

Let r ≥ 3, s ≥ 6r and d > dr(s). Let G be a simple r-graph with n vertices and nd edges.

8



Remark 1. Let k ∗ G be the r-graph consisting of k vertex-disjoint copies of G. Then k ∗ G
is a simple r-graph with the same average degree as G. Moreover, the statement of Theorem 1.2
holds for k ∗G if and only if it holds for G. So, we may assume that n is large, and in particular,

exp{ r
√
n} ≥ dn4. (7)

Put M = 4s
δr−1(s) , X = M2s+2 and D = Xr−1 = M (2s+2)(r−1). By (6),

DX = Xr = M2r(s+1) =
(

4s
δr−1(s)

)2r(s+1)

=
(
23r−1(r−1)!sr−2+log2 4s

)2r(s+1)
.

Since for r ≥ 3 and s ≥ 6r ≥ 18, 3r−1(r − 1)!sr−2 ≥ 10 log2 4s, we have

DX ≤
(
21.1·3r−1(r−1)!sr−2

)2r(s+1)
= 21.1·3r−1 r!sr−22(s+1) < 23r r!sr−1

= (δr(s))−1 = (dr(s))1/3. (8)

Also by (6) and the definition of M , we have

M ≥ Rr−1(s). (9)

Let G1 = (U1, E1), . . . , Gq = (Uq, Eq) be the edge-disjoint r-graphs guaranteed by Lemma 3.1. Let
ni = |Ui| for i = 1, . . . , q.

Choose randomly disjoint subsets V1, V2, . . . , VM of V , where each vertex, randomly and inde-
pendently, is chosen to lie in Vj with probability 2 lnM

D1/(r−1) = 2 lnM
X . For each vertex v ∈ V , the

i-link of v, denoted li(v), is the set of all (r − 1)-edges of the form e − {v} for all edges e ∈ Ei

that contain v. Note that for each i, if v ∈ Ui, then li(v) is an (r − 1)-matching of size at least D
(as G is simple). Say that a vertex v ∈ Ui is i-good if for every j ∈ {1, . . . ,M} some edge of li(v)
is contained in Vj , and call an i-good vertex i-great if it does not lie in ∪Mj=1Vj . By the Chernoff
bound (see [1, Appendix A1] or [14, p.26, (2.5)]), the probability of the event B(G) that the size of
at least one Vj ∩ Ui exceeds 2ni(2 lnM)

X is at most M
∑q
i=1 exp{−3ni lnM/4X}. Since G is simple,

q < n2. So, by Lemma 3.1(ii) and (7),

P(B(G)) ≤ qM exp{−3 r

√
nd

4
lnM
4X
} < n2M exp{− r

√
nX

2r−2
r

lnM
4X
} < n2M1− r√nX1/3/4 < 0.01.

(10)
The probability that a vertex v ∈ Ui is not i-good is at most

M

(
1−

(
2 lnM
X

)r−1
)D
≤M exp

{
−(2 lnM)2 D

Xr−1

}
= M exp{−(2 lnM)2} < 0.001.

Hence with probability at least 0.9 there are at least 0.99
∑q
i=1 ni vertices that are i-good for some

i (counted with multiplicities). So by (10), with probability at least 1/2 this holds and B(G) does
not hold. Fix such sets Vj . With this choice, if Ti is the set of i-great vertices in Gi, then

q∑
i=1

|Ti| ≥ 0.99
q∑
i=1

ni −
q∑
i=1

M∑
j=1

|Vj ∩ Ui| ≥
q∑
i=1

ni

(
0.99−M 4 lnM

X

)
> 0.9

q∑
i=1

ni. (11)
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Let I := {i ∈ [q] : |Ti| > 0.5ni}. Similarly to deriving (5), (11) yields

∑
i∈I
|Ti| ≥ 0.8

q∑
i=1

ni. (12)

Now, for each pair (v, i), where i ∈ I and v ∈ Ti, keep in Gi exactly M edges containing v, one
edge, call it e(v, i, j), for each j, 1 ≤ j ≤ M , with e(v, i, j) − {v} ⊆ Vj ∩ Ui, and omit all other
r-edges from Gi. Let G′i be the resulting hypergraph, and let G′ =

⋃
i∈I G

′
i. For j = 1, . . . ,M

and i ∈ I, let G′′i (j) be the (r − 1)-uniform hypergraph with V (G′′i (j)) = Vj ∩ Ui and E(G′′i (j)) :=
{e ∩ Vj ∩Ui : e ∈ E(G′i) and |e ∩ Vj | = r− 1}. Let G′′(j) =

⋃
i∈I G

′′
i (j) and G′′i =

⋃M
j=1G

′′
i (j). Let

G′′ :=
⋃M
j=1G

′′(j) =
⋃
i∈I G

′′
i . Then |E(G′′i (j))| = |Ti| > 0.5ni for each i ∈ I and j ∈ {1, . . . ,M},

and by (12) and (1) for every j = 1, . . . ,M ,

|E(G′′(j))| =
∑
i∈I
|E(G′′i (j))| =

∑
i∈I
|Ti| ≥ 0.8 ·

q∑
i=1

ni ≥
2nd
5D

. (13)

Since |Vj ∩ U1| ≤ 4n1 lnM
X ,

|E(G′′(j))|/|V (G′′(j))| ≥ 2nd
5D

X

4n lnM
=

dX

10D lnM
.

By (6) and (8), this is at most

δr(s)
dX2

10 lnM
> δr(s)d ≥ δr(s)dr(s) ≥ dr−1(s).

So, by the induction assumption, there is an assignment Lj of lists of size s from the set Sj =
{(j− 1)Rr−1(s) + 1, (j− 1)Rr−1(s) + 2, . . . , jRr−1(s)} to the vertices in Vj ∩U1 such that for every
coloring of Vj ∩ U1 from these lists, the number of monochromatic edges in G′′(j) is at least

|E(G′′(j))|δr−1(s) =
∑
i∈I
|Ti|δr−1(s) ≥ 2nd

5D
δr−1(s). (14)

Fix such assignments L1, . . . , Lm. It is important that all Sj are disjoint. Let F denote the set of
all colorings of vertices in V (G′′) from these lists. For every f ∈ F , let zi(f) denote the number of
monochromatic edges in G′′i under f and let I(f) be the set of indices i ∈ I such that

zi(f) ≥ 0.5δr−1(s)|E(G′′i )| = 0.5δr−1(s)M |Ti| = 2s|Ti|. (15)

To every vertex v ∈ U1−V (G′′) we assign a list chosen at random among all subsets of size s of
{1, 2, . . . ,MRr−1(s)} uniformly and independently from all other vertices. We will show that with
positive probability this choice will satisfy the statement of our theorem.

Consider a coloring f ∈ F and i ∈ I(f). Say that a vertex v ∈ Ti is (i, f)-dangerous if at least
s (r− 1)-edges from its link in G′i are monochromatic in G′′i under f . Let xi(f) denote the number
of (i, f)-dangerous vertices in Ti. By definition, at most s|Ti| monochromatic edges in G′′i under f
belong to the links of not-(i, f)-dangerous vertices in Ti, and the link of each vertex in Ti has M
edges. So, xi(f) ≥ (zi(f)− s|Ti|)/M . Since i ∈ I(f), by (15) we have

xi(f) ≥ (zi(f)− s|Ti|)/M ≥ (zi(f)− 0.5zi(f))/M =
zi(f)
2M

≥ s|Ti|
M

. (16)
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Since all the ground sets S1, . . . , SM of the lists L1, . . . , LM are disjoint, the probability that an
(i, f)-dangerous vertex will get a list consisting only of s colors that appear as the color of a
monochromatic edge in its link in G′′i is at least

(MRr−1(s)
s

)−1
≥M−2s. Hence again by the Chernoff

bound, the probability of the event Ci(f) that this occurs for fewer than 0.5M−2sxi(f) (i, f)-
dangerous vertices is at most exp{−M−2s xi(f)

8 }. Using (16) and the facts that i ∈ I and s ≥ 6r ≥
18, this does not exceed

exp{−M−2s s|Ti|
8M
} ≤ exp{−0.5sM−2s−1ni

8
} ≤ exp{−M−2s−1ni}.

Since |Vj ∩Ui| ≤ 4ni lnM
X , the probability of the event Ci that at least one of Ci(f) occurs is at most

s4ni lnM/X exp{−M−2s−1ni} = exp
{
−ni
X

(
X

M2s+1
− 4 ln s lnM

)}
≤ exp

{
−ni
X

}
.

Thus the probability of the event C that at least one of Ci occurs is at most q exp
{
−nq

X

}
. Recall

that q < n2 and (by Lemma 3.1(ii)) nq ≥ r
√
nd/4. So by (7), q exp

{
−nq

X

}
< 1. Thus, there exists

a list assignment L for V (G) such that none of Ci(f) occurs.
Let f̃ be any L-coloring of G and f ∈ F be its restriction to V (G′′). We will prove that there

are at least nd
DX monochromatic edges in f̃ . By (14), for the number Z of monochromatic edges in

coloring f of G′′ we have

Z ≥M
∑
i∈I
|Ti|δr−1(s) ≥M 2nd

5D
δr−1(s) ≥ 8snd

5D
. (17)

By the definition of I(f),∑
i∈I−I(f)

zi(f) <
∑

i∈I−I(f)

0.5δr−1(s)M |Ti| ≤
∑
i∈I

0.5δr−1(s)M |Ti| ≤ Z/2. (18)

By (16), xi(f) ≥ zi(f)/2M for each i ∈ I(f). Since Ci(f) does not occur, the number of monochro-
matic edges in Gi under f̃ is at least 0.5M−2sxi(f). So by (18) and (17), the total number of
monochromatic edges in G is at least

∑
i∈I(f)

0.5M−2sxi(f) ≥
∑
i∈I(f)

0.5M−2s zi(f)
2M

≥ 1
4
M−2s−1Z

2
≥M−2s−1nd

D
≥ nd

DX
.

By (6), the theorem is proved. 2

6 A geometric application

In this section, we prove Theorem 1.3. For convenience, we restate it here.

Theorem 6.1 For any finite set X in the Euclidean plane and for any positive integer s, there is
an assignment of a list of size s to every point of the plane, such that whenever we color the points
of the plane from their lists, there is a monochromatic isometric copy of X.
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Proof: Put r = |X|. By Theorem 1.1, it suffices to show that for any d there is a d-regular simple
r-uniform hypergraph whose vertex set is a finite set of points in the plane, such that the vertices
of each edge form an isometric copy of X.

Let {v11, v12, . . . , v1r} be r points in R2 that form a copy of X. For each i, 2 ≤ i ≤ d, let
{vi1, vi2, . . . , vir} be a set obtained from X by applying to it a rotation. The rotations are chosen
in a generic manner, to ensure that no difference between two vectors of one copy is equal to a
difference between two vectors of another copy. The set of vertices of our hypergraph is the following
set of rd sums:

{v1j1 + v2j2 + v3j3 + · · ·+ vdjd : 1 ≤ jt ≤ r for all t}

and the set of edges is the set of all drd−1 r-tuples

{v1j1 + v2j2 + v3j3 + · · ·+ vdjd : 1 ≤ jt ≤ r}.

Note that in each such edge, all summands but the tth are fixed, hence every edge forms an isometric
copy of X.

It is not difficult to check that the above hypergraph is simple, r-uniform and d-regular, and
the result thus follows from Theorem 1.1. 2

7 Concluding remarks and open problems

• By (6), for any fixed r, dr(s) ≤ 2O(sr−1). In other words, for any fixed r, the list chromatic
number of any simple n-vertex r-graph with dn edges is at least Θ(ln1/(r−1) d).

It is not difficult to check that dr(s) ≥ rΩ(s): for r = 2 we know that χ`(Kd,d) = (1 +
o(1)) log2 d. For bigger r one can use transversal designs, that is, r-partite r-uniform simple
hypergraphs on dr vertices, partitioned into r vertex classes of size d each, which have d2

edges. One way to construct those is as follows. Let p = d be a prime, and consider the p2

polynomials of degree at most 1 over the finite field Zp. Let each vertex class Vi be a copy
of Zp, and assign to each linear polynomial P as above an edge consisting of P (i) ∈ Vi for
i = 1, 2, . . . , r. This r-graph is simple and d-regular. We claim that its list chromatic number
is at most 2 log d/ log r. Indeed, given a list Sv of size s to each vertex v, assign each color in
the union of all lists randomly to all vertex classes Vi but one. This provides a proper coloring
if for every vertex v ∈ Vi there is a color in Sv assigned to Vi. The probability this fails for a
fixed vertex is precisely (1/r)s, and thus if d2(1/r)s < 1 then with positive probability there
are no failures, proving the claim.

It seems plausible to conjecture that for any fixed r, dr(s) = rO(s). This holds for r = 2 by
the results in [3] and [10] (or more generally, [4]), but remains open for any fixed r ≥ 3.

• As mentioned in the introduction, our main result provides a linear time algorithm for com-
puting, for a given input simple r-graph, a number s such that its list chromatic number is

12



at least s and at most f(s) for some explicit function f . The same result implies that if a
simple r-graph is s-list colorable, then there is a linear time algorithm for finding a proper list
coloring of it from lists of size f(s). There is no such known result for ordinary coloring, even
for r = 2. Indeed, the minimum number Q = Q(3, n) for which there is a polynomial time
algorithm that colors properly a given 3-colorable graph on n vertices by Q colors, is about
Θ(n0.207). This is shown in [5], improving several earlier results. It is known that if P 6= NP

then there is no polynomial time algorithm that finds a proper 4-coloring of a 3-colorable
graph (see [17], [11]), and there is no polynomial time algorithm that finds a proper q(log q)/25-
coloring of a q-colorable graph, as shown in [18]. Moreover, under some plausible hardness
assumptions in Complexity Theory, there is no polynomial time algorithm that produces a
proper Q-coloring of a q colorable graph for any fixed 3 ≤ q ≤ Q, as shown in [6].

• The analog of Theorem 6.1 holds for Rm with any m ≥ 2 (and in fact for m ≥ 3 it is enough
to only allow translations and rotations in one direction). An appropriate version works for
any infinite group acting on a set.

Acknowledgment. The authors thank both referees for helpful comments and suggestions.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, Third Edition, Wiley, 2008, xv+352 pp.

[2] N. Alon, Restricted colorings of graphs. In: Surveys in Combinatorics, Proc. 14th British
Combinatorial Conference Vol. 187 of London Math. Soc. Lecture Notes (K. Walker, ed.),
1993, Cambridge University Press, 1–33.

[3] N. Alon, Degrees and choice numbers, Random Structures & Algorithms 16 (2000), 364–368.

[4] N. Alon and M. Krivelevich, The choice number of random bipartite graphs, Ann. Comb. 2
(1998), 291–297.

[5] S. Arora, E. Chlamtac, and M. Charikar, New approximation guarantee for chromatic number,
Proc. 38th Annual ACM Symposium on Theory of computing, pages 215–224, 2006.

[6] I. Dinur, E. Mossel and O. Regev, Conditional hardness for approximate coloring, Proc. of
STOC 2006. Also: SIAM J. Comput. 39 (2009), no. 3, 843–873.
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