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Abstract

We employ the probabilistic method to prove a stronger version of a result of Helm, related to a
conjecture of Erdős and Turán about additive bases of the positive integers. We show that for a class of
random sequences of positive integers A, which satisfy |A ∩ [1, x]| �

√
x with probability 1, all integers

in any interval [1, N ] can be written in at least c1 logN and at most c2 logN ways as a difference of
elements of A∩ [1, N2]. We also prove several results related to another result of Helm. We show that for
every sequence of positive integers M , with counting function M(x), there is always another sequence of
positive integers A such that M ∩ (A−A) = ∅ and A(x) > x/(M(x) + 1). We also show that this result
is essentially best possible, and we show how to construct a sequence A with A(x) > cx/(M(x) + 1) for
which every element of M is represented exactly as many times as we wish as a difference of elements of
A.

Mathematics Subject Classification: 11B13

Notation
All sequences we consider are sequences of distinct nonnegative integers. We write N = {0, 1, 2, . . .}. We
denote by the lower case indexed letter the members of the sequence and by the capital letter the sequence
as a set as well as its counting function. For example A = {a0, a1, a2, . . .} denotes a sequence of distinct
nonnegative integers and A(x) = |A ∩ [0, x]| denotes its counting function. The initial segment A ∩ [0, x] is
denoted by A≤x. The positive difference set {a− b : a, b ∈ A, a > b} is denoted by A− A and the sumset
{a+ b : a ∈ A, b ∈ B} by A+B. We denote by C an arbitrary positive constant and we write a� b, if there
exists a constant C such that a ≤ Cb. By a ∼ b or a = (1+o(1))b we mean lim a/b = 1 as a certain quantity,
which will be clear from the context, approaches a limit. Similarly we write a . b for a ≤ (1 + o(1))b. We
define several “representation” functions for a given set A:

δA(x) = |{(a, b) : a, b ∈ A, x = a− b}|,

hA,N (x) =
∣∣{(a, b) : a, b ∈ A ∩ [1, N2], x = a− b}

∣∣,
HA(N) =

N∑
x=1

hA,N (x),

and
rA(x) = |{(a, b) : a, b ∈ A, a ≤ b, x = a+ b}|.
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1 Introduction

A conjecture of Erdős and Turán [2] asserts that for any asymptotic basis (of order 2) of the positive integers,
that is for any set E ⊆ N for which rE(x) > 0 for all sufficiently large x, we have

lim sup
x→∞

rE(x) =∞.

Erdős (c.f. [5]) has proved that it cannot be true that rE(x) = 1 for all sufficiently large x, by showing that
for any sequence E, with E(x)�

√
x, we have

HE(N)� N logN. (1)

Indeed, any asymptotic basis E satisfies E(x)�
√
x and if rE(x) = 1 all sums we can form with two elements

of E (with the exception of a finite number of elements of E) are distinct. This in turn implies that so are
all the differences, that is δE(x) ≤ 1 for all x, which makes (1) impossible.

Recently Helm [4] proved that (1) is best possible by explicitly constructing a sequence A, with A(x)�√
x, for which

HA(N)� N logN. (2)

Helm’s proof does not provide any upper or lower bound on the individual hA,N (x) for x ∈ [1, N ], but only
describes the average behaviour.

In addition to the above result Helm [4] constructed two sequences B and M , with B(x) �
√
x and

M(x)� log x, for which δB(mk) = 1, for all k sufficiently large.

In this paper we improve both results of Helm.

We prove

Theorem 1 Let a random sequence A be defined by letting x ∈ A with probability px = K/
√
x for x ≥ K2,

px = 0 if x < K2, for a constant K, independently for all x. Then, if the constant K is sufficiently large
and with probability 1, there is an integer N0 and positive constants c1, c2, c3, c4 such that

c1
√
x ≤ A(x) ≤ c2

√
x (3)

and
c3 logN ≤ hA,N (m) ≤ c4 logN (4)

for all x,N ≥ N0 and 1 ≤ m ≤ N .

This implies the first result of Helm and with upper and lower estimates on the individual hA,N (m).

We also prove some results related to the second result of Helm mentioned above. Theorems 2–4 deal
with the question of which sequences are avoidable by difference sets of dense sequences.

Theorem 2 Let M = {m0,m1, . . .} be a sequence of positive integers. Then there is a sequence A ⊆ N such
that M ∩ (A−A) = ∅ and A is dense, that is:

A(x) ≥ x

M(x) + 1
, for all x ∈ N. (5)

The proof of Theorem 2 is a straightforward construction. As an example, perhaps relevant to the Erdős-
Turán conjecture, we see that if M(x) ≤

√
x then there is a sequence A, with A(x) ≥

√
x − 1, such that

M ∩ (A−A) = ∅.
The following result shows that Theorem 2 is essentially best possible.

Theorem 3 Let f(x) > 0 be defined on N and assume that both f(x) and x/f(x) are non-decreasing and
tend to infinity. Then there is a sequence of positive integers M , with M(x) . x/f(x), such that for every
sequence A, with A(x) ≥ f(x) for x sufficiently large, we have

|M ∩ (A−A)| =∞.
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That is for every lower bound – the function f(x) – for the growth of A(x) there is a not-very-dense
sequence M that intersects infinitely often the difference set of every sequence A that meets the lower bound
requirement. Again, in the case of quadratic growth we see that there is a sequence M , with M(x) .

√
x,

which intersects infinitely often the difference set of any sequence A which satisfies A(x) ≥
√
x for sufficiently

large x.

Finally, we prove a result concerning the representation of the elements of a given sequence M as differ-
ences of elements from another sequence.

Theorem 4 Let M = {m0,m1, . . .} ⊆ N and assume M(x) = o(x). Then there is A = {a0, a1, . . .} ⊆ N
such that δA(mk) = 1 for all k and

A(x) ≥ c x

M(x) + 1
(6)

for all x, where c is a fixed positive constant.

The proof of Theorem 4 can also give us, for any given sequence dk ∈ {0, 1, 2, . . . ,∞} (infinity included), a
sequence A which satisfies the growth condition (6) and is such that δA(mk) = dk for all k.

2 Proofs

We need the following Lemma [1, p. 239] to bound the probability of large deviation of certain random
variables.

Lemma 1 If Y = X1 + · · ·+Xk, and the Xj are independent indicator random variables, then for all ε > 0

Pr [|Y −EY | > εEY ] ≤ 2 exp(−cεEY ),

where cε > 0 is a function of ε alone.

We call a random variable Y which, as above, is a Sum of Indepenent Indicator Random Variables a SIIRV.

Remark: Observe that if Y = Y1 + Y2, where Y1 and Y2 are SIIRV then we have

Pr [|Y −EY | > εEY ] ≤ 4 exp(−cε min {EY1,EY2}).

Proof of Theorem 1: Write χj = 1 if j ∈ A, χj = 0 otherwise, so that Eχj = pj . Notice that

A(x) =
x∑
j=1

χj ,

hA,N (m) =
N2−m∑
j=1

χjχj+m

so that A(x) is a SIIRV and hA,N (m) is the sum of two SIIRV:

hA,N (m) = heA,N (m) + hoA,N (m),

where

heA,N (m) =
m∑
j=1

∑
k even

χj+kmχj+(k+1)m

and

hoA,N (m) =
m∑
j=1

∑
k odd

χj+kmχj+(k+1)m.
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(We broke up hA,N (m) so that each χj appears at most once in each of the terms heA,N (m) and hoA,N (m).)
Then, as x→∞,

EA(x) =
x∑
j=1

pj ∼
x∑
j=1

K√
j

= K
√
x

x∑
j=1

1
x

1√
j/x

∼ 2K
√
x,

since 2 =
∫ 1

0
ds/
√
s. We also have, for m ≤ N and N →∞,

EhA,N (m) =
N2−m∑
j=1

pjpj+m

∼ K2
N2−m∑
j=1

1√
j(j +m)

≤ K2
N2−m∑
j=1

1
j

∼ 2K2 logN,

and

EhA,N (m) & K2
N2−m∑
j=1

1
j +m

& K2 logN.

So we have
EA(x) ∼ 2K

√
x (7)

as x→∞ and
K2 logN . EhA,N (m) . 2K2 logN (8)

as N →∞, and for all m ≤ N . Notice that EheA,N (m) ∼ 1
2EhA,N (m) and EhoA,N (m) ∼ 1

2EhA,N (m).

Now fix ε = 1/2 and define the “bad” events

Px = {|A(x)−EA(x)| > εEA(x)},
QN,m = {|hA,N (m)−EhA,N (m)| > εEhA,N (m)},

for all x,N and m ≤ N . Using Lemma 1 and the remark following it we have

Pr [Px] ≤ 2 exp (−cεEA(x)) ≤ 2 exp (−1
2
cε2K

√
x)

and
Pr [QN,m] ≤ 4 exp (−1

3
cεEhA,N (m)) ≤ 4 exp (−1

6
cεK

2 logN) = 4N−
1
6 cεK

2

for x and N sufficiently large. Thus

∞∑
x=1

Pr [Px] +
∞∑
N=1

N∑
m=1

Pr [QN,m]�
∞∑
x=1

exp (−cεK
√
x) +

∞∑
N=1

N1− 1
6 cεK

2
.
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The first term in the right hand side is finite, and we choose K large enough to make the second term also
finite, that is large enough to make 1− 1

6cεK
2 < −1. Let now ε′ ∈ (0, 1) be arbitrary. Since the right hand

side above is finite, we can find N0 so that

∑
x≥N0

Pr [Px] +
∑
N≥N0

N∑
m=1

Pr [QN,m] < ε′ (9)

which means that, with probability at least 1−ε′, none of the events which appear in (9) holds. We conclude
that, with probability at least 1− ε′,

K
√
x . A(x) . 3K

√
x,

and
1
2
K2 logN . hA,N (m) . 3K2 logN,

for all x,N ≥ N0 and 1 ≤ m ≤ N . Since ε′ was arbitrary this concludes the proof. 2

Proof of Theorem 2: We construct the sequence A with a “greedy” algorithm. Let a0 = 0 and define
inductively

an+1 = min{y ∈ N : y > an & y /∈ {a0, . . . , an}+M}. (10)

In words, we take an+1 to be the least integer that does not destroy the desired property of the sequence
A, namely that δA(mk) = 0 for all k. It is obvious that the set A defined by the above induction satisfies
M ∩ (A−A) = ∅.

We now bound from below the counting function of A. Assume that y ∈ [0, x]\A. But then, by the way
we construct A, there are ak and ml, both ≤ x, such that y = ak +ml. Thus

|[0, x]\A| ≤ |{ak +ml : ak ≤ x, ml ≤ x}| ≤ A(x)M(x),

from which we conclude
A(x) = x+ 1− |[0, x]\A| ≥ x−A(x)M(x),

which proves the desired A(x) ≥ x/(M(x) + 1). 2

Proof of Theorem 3: For s ∈ N define t = t(s) by

t = min{y ∈ N : y > s & f(y) > s}

and the set Ms by
Ms = {y ∈ N : 0 < y < t & s|y}.

Define the sequences sn, tn ∈ N inductively by s1 = 1 and

sn+1 = min

y ∈ N : y > t(sn) &
y

f(y)
≥

(
n∑
k=1

tk
f(tk)

)2
 ,

and by setting tn = t(sn) for all n. Finally define M =
⋃∞
n=1Msn .

We need to bound the counting functions of each Msn . We claim that for each x ∈ N we have Msn(x) ≤
x/f(x). Indeed, if x < tn we have

Msn(x) =
⌊
x

sn

⌋
≤ x

sn
≤ x

f(x)
,

because for this range of x we have f(x) ≤ sn. On the other hand, if x ≥ tn we have

Msn(x) = Msn(tn − 1) ≤ tn − 1
f(tn − 1)

≤ x

f(x)
,

since the integer tn − 1 is covered by the previous case and x/f(x) is non-decreasing.
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We now bound the counting function of M . Assume first that sn+1 ≤ x < tn+1 for some n ≥ 0. Then,
by the previous calculation for Msn(x),

M(x) ≤
n+1∑
k=1

Msk(x)

=
n∑
k=1

Msk(tk) +Msn+1(x)

≤
n∑
k=1

tk
f(tk)

+
x

f(x)

≤
(

x

f(x)

)1/2

+
x

f(x)

∼ x

f(x)
.

If we have tn ≤ x < sn+1 for some n ≥ 1 then we still have

M(x) = M(tn − 1) ≤ tn − 1
f(tn − 1)

≤ x

f(x)
,

which completes the proof of M(x) . x/f(x) for all x.

We still have to verify that |M ∩ (A−A)| = ∞ for each sequence A of positive integers for which
A(x) ≥ f(x) for all x ≥ x0. For this it suffices to show that A−A intersects M in every [sn, tn) interval, for
large n. Look at n such that sn ≥ x0. Since A(tn) ≥ f(tn) > sn there exist two elements a, b of A ∩ (0, tn],
a < b, which are equal mod sn. But then sn|b− a and 0 < b− a < tn which implies that b− a is in Msn and
consequently in M , which we had to prove. 2

Proof of Theorem 4: We construct A with a greedy algorithm which is a variation of the algorithm we
used in the proof of Theorem 2. Loosely speaking, we construct a sequence A such that any new element
we add does not create any new representations of any mk as a difference from A. But occasionally we stop
to add a pair of elements of the form x, x + mk to our set A so as to represent mk once. What makes the
construction work is that we are free to put off representing mk until very late in the construction.

We need the following lemma.

Lemma 2 Let M and a0, . . . , an be given and be such that

n ≥ α an
M(an) + 1

.

Then we can extend a0, . . . , an to an infinite sequence A = {a0, . . . , an, an+1, . . .} without adding any more
representations of any elements of M , that is δA(mk) = δ{a0,...,an}(mk) for all k, and such that

A(x) &
x

M(x) + 1
, as x→∞, (11)

and
A(x) ≥ α

α+ 1
x

M(x) + 1
, for all x > an. (12)

Proof of Lemma 2: For k = n, n+ 1, . . ., we define, as in the proof of Theorem 2,

ak+1 = min{y ∈ N : y > ak & y /∈ {a0, . . . , ak}+M}.

The sequence A thus constructed obviously adds no new representations of any mk as a difference from A.
For x > an we have (with the same reasoning as in the proof of Theorem 2)

A(x) ≥ x− an −A(x)M(x),
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which implies

A(x) ≥ x− an
M(x) + 1

. (13)

If x ≥ (α+ 1)an then (13) gives (12). If an < x ≤ (α+ 1)an then we have

A(x) ≥ A(an) ≥ α an
M(an) + 1

≥ α

α+ 1
x

M(x) + 1
,

which completes the proof of (12) for all x. The asymptotic inequality (11) is immediate from (13). 2

We now proceed with the construction of the set A for Theorem 4. Let λ ∈ (0, 1) be a fixed number
(0.9 will do) and set a0 = k = 0. We define the infinite set A by alternatingly applying the following two
operations that take an initial segment of A and extend it.

1. If we have already defined {a0, . . . , an} then we use Lemma 2 to define an+1, . . . , am, such that

(i) m > λam/(M(am) + 1), (ii) am > 100mk, and (iii) M(am) > 100mk.

2. Having defined {a0, . . . , an} we define the numbers an+1 and an+2 by

an+1 = min{y ∈ N : y > an & y, y +mk /∈ {a0, . . . , an}+M}
an+2 = an+1 +mk.

We then increment k by 1.

We apply operations 1 and 2 to the set A alternatingly, starting with operation 1.

Clearly the set A satisfies δA(mk) = 1 for all k, provided that it is infinite. We only have to verify that
it satisfies the growth condition A(x) ≥ cx/(M(x) + 1), which, of course, implies that A is infinite, since
M(x) = o(x). It suffices to show that the inequality is satisfied for x < N where N is the largest defined
element of A at the end of each operation. We shall determine a value for the constant c at the end of the
proof but we make no effort of getting the best value. (We believe that c can be arbitrarily close to 1.)

Analysis of operation 2: Operation 2 follows an application of operation 1, so we may assume that the
elements a0, . . . , an of A have been defined and satisfy conditions (i), (ii), and (iii) with n in place of m. We
have to show that for all x ∈ (an, an+2] we have the inequality

A(x) ≥ c x

M(x) + 1
.

Assume first that x ∈ (an, an+1). For each y ∈ (an, x] we must either have y ∈ A≤an + M≤x or y + mk ∈
A≤an+mk +M≤x+mk . Since A(an +mk) ≤ n+ 2, this implies that

x− an ≤ 2(n+ 2)M(x+mk) ≤ 2(n+ 2)(M(x) +mk) ≤ 4nM(x),

from which we get

n ≥ 1
4

x− an
M(x) + 1

. (14)

If x ≥ µan then n ≥ 1/4(1− 1/µ)x(M(x) + 1)−1 which implies

A(x) ≥ 1
4

(1− 1/µ)
x

M(x) + 1
. (15)

If, on the other hand, an < x ≤ µan then A(x) ≥ n ≥ λan(M(an) + 1)−1 ≥ (λ/µ)x(M(x) + 1)−1. For λ
close to 1 and for µ = 2 we get

A(x) ≥ min{λ/2, 1/8} x

M(x) + 1
≥ 1

8
x

M(x) + 1
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for all x ∈ (an, an+1). The remaining case x ∈ [an+1, an+2] is easier. Since we have proved a lower bound
for x = an+1 − 1 we have

A(x) ≥ A(an+1 − 1) ≥ 1
8

an+1 − 1
M(an+1 − 1) + 1

≥ 1
8
an+1 − 1
M(x) + 1

≥ 1
8
x−mk − 1
M(x) + 1

≥ 1
8

0.9 x
M(x) + 1

.

We have proved that for all x ∈ (an, an+2] we have

A(x) ≥ 0.9
8

x

M(x) + 1
,

which completes the analysis of operation 2.

Analysis of operation 1: We only have to use Lemma 2 with α = 0.9/8. We conclude that for all x ∈ (an, am]
we have

A(x) ≥ 0.9/8
0.9/8 + 1

x

M(x) + 1
.

Thus we have proved Theorem 4 with c = 0.9/8 · (0.9/8 + 1)−1. 2

Now suppose we want to achieve δA(mk) = dk, where dk ∈ N ∪ {∞} is a given sequence, and have A(x)
satisfy the same bound as in Theorem 4. Notice that in the previous proof we did not need the fact that the
numbers mk were distinct or non-decreasing.

All we have to do is construct a sequence M ′ = {m′0,m′1, . . .} in which each mk appears exactly dk
times and apply our Theorem 4 to this sequence. We only need to assume M(x) = o(x) as before, not that
M ′(x) = o(x) (as a multiset).
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