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Abstract

We construct weak ε-nets of almost linear size for certain types of point sets.
Specifically, for planar point sets in convex position we construct weak 1

r -nets of
size O(rα(r)), where α(r) denotes the inverse Ackermann function. For point sets
along the moment curve in Rd we construct weak 1

r -nets of size r · 2poly(α(r)), where
the degree of the polynomial in the exponent depends (quadratically) on d.

Our constructions result from a reduction to a new problem, which we call
stabbing interval chains with j-tuples. Given the range of integers N = [1, n], an
interval chain of length k is a sequence of k consecutive, disjoint, nonempty intervals
contained in N . A j-tuple p = (p1, . . . , pj) is said to stab an interval chain C =
I1 · · · Ik if each pi falls on a different interval of C. The problem is to construct a
small-size family Z of j-tuples that stabs all k-interval chains in N .

Let z
(j)
k (n) denote the minimum size of such a family Z. We derive almost-

tight upper and lower bounds for z
(j)
k (n) for every fixed j; our bounds involve

functions αm(n) of the inverse Ackermann hierarchy. Specifically, we show that
for j = 3 we have z

(3)
k (n) = Θ

(
nαbk/2c(n)

)
for all k ≥ 6. For each j ≥ 4 we

derive a pair of functions P ′
j(m), Q′

j(m), almost equal asymptotically, such that

z
(j)
P ′

j(m)(n) = O(nαm(n)) and z
(j)
Q′

j(m)(n) = Ω(nαm(n)).
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1 Introduction

Let S be an n-point set in Rd, and let ε be a real number, 0 < ε < 1. A weak ε-net for
S with respect to convex sets is a set of points N ⊂ Rd, such that every convex set in
Rd that contains at least εn points of S contains a point of N .3

In this paper we only consider weak ε-nets with respect to convex sets, so we simply
call them “weak ε-nets”. Also, for convenience, we let r = 1/ε, and we speak of weak
1
r -nets, r > 1, so our bounds increase with r.

Alon et al. [2] showed that for every finite S ⊂ Rd and every r > 1 there exists a
weak 1

r -net of size at most fd(r), for some family of functions fd, each depending only
on r.

The best known upper bound for the planar case is f2(r) = O(r2), by Alon et al. [2]
(see also Chazelle et al. [7]). For general d ≥ 3 we have fd(r) = O

(
rd(log r)c(d)

)
, for some

constants c(d). This was first shown by Chazelle et al. [7], and later on by Matoušek
and Wagner [12] via an alternative, simpler technique (which significantly reduced the
exponents c(d), to c(d) = O(d3 log d)).

On the other hand, there are no known lower bounds for fixed d, besides the trivial
fd(r) = Ω(r). (Matoušek [10] showed, though, that fd(r) increases exponentially in d

for fixed r; specifically, fd(50) = Ω
(
e
√

d/2
)
.)

If the points of S lie in certain special configurations, better bounds exist on the
size of the weak ε-net. For example, Chazelle et al. [7] showed that if S ⊂ R2 is in
convex position, then S has a weak 1

r -net of size O
(
r(log r)log2 3

)
= O

(
r(log r)1.59

)
.

Furthermore, if S is the vertex set of a regular n-gon, then S admits a weak 1
r -net of

size Θ(r).
The techniques of Matoušek and Wagner [12] also yield improved bounds for some

special cases. Thus, they showed that if the points of S ⊂ Rd lie along the moment
curve

µd = {(t, t2, . . . , td) | t ∈ R}, (1)

then S has a weak 1
r -net of size O

(
r(log r)c′(d)

)
, for some constants c′(d) ≈ 2d2 ln d.

They also obtained improved bounds for point sets on algebraic varieties of bounded
degree, among other cases.

Bradford and Capoyleas [5] showed that if S is, in some sense, uniformly distributed
on the (d− 1)-dimensional sphere, then S has a weak 1

r -net of size O(r log2 r) (with the
constant of proportionality depending on d).

(Aronov et al. [1] have tackled the weak ε-net problem from another angle, for the
planar case: They seek to determine, given an integer k ≥ 1, the maximum value rk

for which every set S ⊂ R2 has a weak 1
rk

-net of size k. They derive upper and lower

3The set N is called a weak ε-net because we do not necessarily have N ⊆ S; otherwise, N would
be a regular (or “strong”) ε-net. The need to consider weak ε-nets here stems from the fact that the
system of all convex sets in Rd has infinite VC-dimension. In contrast, consider a set system with finite
VC-dimension, such as the system of all ellipsoids or all axis-parallel boxes in Rd. Then, every finite
set S ⊂ Rd has a strong ε-net of size O

�
1
ε
log 1

ε

�
with respect to such a set system. See Matoušek [11,

Ch. 10] for details.
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bounds for rk, for small values of k. Babazadeh and Zarrabi-Zadeh [4] extended this
work to the case d = 3.

Mustafa and Ray [13] have found a connection between weak ε-nets with respect
to convex sets, and “strong” ε-nets with respect to other set systems with finite VC-
dimension.)

Algorithmic aspects. The constructions of Matoušek and Wagner [12] yield an al-
gorithm for building, for a given n-point set S ⊂ Rd, d ≥ 2, a weak 1

r -net of size
O(rdpolylog(r)) in time O(n log r). For the case d = 2, a weak 1

r -net of size O(r2) can
be constructed in time O(nr2), as was shown earlier by Chazelle et al. [6].

Chazelle et al. [6] also show how to determine, in time O(n3), the largest r for which
a given set N is a weak 1

r -net of a given planar n-point set S. There is no known
polynomial-time algorithm for this problem for dimensions 3 and larger.

Our results. In this paper we derive improved upper bounds for two of the above-
mentioned cases: namely, for planar point sets in convex position, and for point sets
along the moment curve µd (1). Our bounds involve the inverse Ackermann function
α(r), a function that grows extremely slowly. Our bounds are as follows:

Theorem 1.1 Let S be an n-point set in convex position in the plane. Then, S has a
weak 1

r -net of size O(rα(r)).

Theorem 1.2 Let S be a set of n points along the d-dimensional moment curve µd,
d ≥ 3. Let

j =
{

(d2 + d)/2, d even;
(d2 + 1)/2, d odd;

and let s = b(j − 2)/2c. Then, S has a weak 1
r -net of size

r · 2O(α(r)s), j even;
r · 2O(α(r)s log α(r)), j odd .

(Note that j is even if and only if d is divisible by 4.)

Furthermore, these weak 1
r -nets can easily be constructed in time O(n log r), as we

will show.

1.1 The inverse Ackermann function

Let us introduce (our version of) the inverse Ackermann functions αk(x) and α(x).
The inverse Ackermann hierarchy is a sequence of functions αk(x), for k = 1, 2, 3, . . .

and real x ≥ 0, defined as follows. We let α1(x) = x/2, and for each k ≥ 2, we let αk(x)
be the number of times we have to apply αk−1, starting from x, until we reach a value
not larger than 1. Formally, for k ≥ 2, we let

αk(x) =
{

0, if x ≤ 1;
1 + αk(αk−1(x)), otherwise.
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Figure 1: A 9-chain stabbed by a 5-tuple.

Then, we have α2(x) = dlog2 xe for x ≥ 1, and α3(x) = log∗ x. (Note that αk(x) is
always an integer for k ≥ 2.)

Each function in this hierarchy grows much more slowly than the previous one. In
particular, for all fixed k and j, we have αk+1(x) = o

(
α

(j)
k (x)

)
. (Here f (j) denotes the

j-fold composition of f .)
Now, for every fixed x ≥ 6, the sequence α1(x), α2(x), α3(x), . . . decreases strictly

until it settles at 3. The inverse Ackermann function4 α(x) assigns to each real number
x the smallest integer k for which αk(x) ≤ 3:

α(x) = min {k | αk(x) ≤ 3}.

The inverse Ackermann function satisfies α(x) = o(αk(x)) for every fixed k.
In our constructions, we will sometimes work with variants α̂k(x) of the inverse

Ackermann function, which better suit our specific purposes (Lemmas 3.5 and 3.8).
This makes no asymptotic difference, for in each case there exists an absolute constant
c such that

|α̂k(x)− αk(x)| ≤ c

for all large enough k and all x. We address this issue in Appendix B.

1.2 Interval chains

Our constructions of weak ε-nets follow by a reduction to a new problem, which we call
stabbing interval chains.

Let [i, j] denote the interval of integers {i, i+1, . . . , j}; the case i = j is also denoted
as [i]. An interval chain5 of size k (also called a k-chain) is a sequence of k consecutive,
disjoint, nonempty intervals

C = I1I2 · · · Ik

= [a1, a2][a2 + 1, a3] · · · [ak + 1, ak+1],

where a1 ≤ a2 < a3 < · · · < ak+1. We say that a j-tuple of integers (p1, . . . , pj) stabs an
interval chain C if each pi lies on a different interval of C (see Figure 1).

4We follow Seidel [14, slide 85]. The inverse Ackermann function is usually defined as follows (see,
for example, [11, p. 173], though there are other definitions). Define Ak(n) for integers k, n ≥ 1

by A1(n) = 2n, and Ak(n) = A
(n)
k−1(1) for k ≥ 2. Then, let α′(x) = min {m | Am(m) ≥ x}. Now,

we have αk(x) = min {m | Ak(m) ≥ x} for k ≥ 2, and α(x) = min {m | Am(3) ≥ x}. Thus, since
Am−2(m − 2) ≤ Am(3) ≤ Am(m) for m ≥ 3, it follows that 0 ≤ α(x) − α′(x) ≤ 2 for x > 8. We note
that we make no explicit use of the functions Ak(n) in this paper.

5An identical definition of interval chains has already been given by Condon and Saks [9, sec. 2.2],
for an unrelated application.
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Our problem is to stab, with as few j-tuples as possible, all interval chains of size k
that lie within a given range [1, n].

Definition 1.3: Let z
(j)
k (n) denote the minimum size of a collection Z of j-tuples that

stab all k-chains that lie in [1, n].

Note that z
(j)
k (n) is increasing in n, decreasing in k, and increasing in j.

In this paper we derive almost-tight upper and lower bounds for z
(j)
k (n), involving

functions in the inverse Ackermann hierarchy. Our upper bounds for z
(j)
k (n) are used

in the proofs of Theorems 1.1 and 1.2 above. The case j = 3 (which is the one needed
for Theorem 1.1) is simpler (and tighter) than the general case j ≥ 4, and we treat this
case separately, both in the upper and the lower bounds.

Our bounds for stabbing interval chains are as follows:

Theorem 1.4 z
(3)
k (n) satisfies the following bounds:

z
(3)
3 (n) =

(
n− 1

2

)
; z

(3)
4 (n) = Θ(n log n); z

(3)
5 (n) = Θ(n log log n);

and, for every k ≥ 6, we have

z
(3)
k (n) ≤ cnαbk/2c(n) for all n;

z
(3)
k (n) ≥ c′nαbk/2c(n) for all n ≥ nk;

for some absolute constants c and c′, and some constants nk depending on k.

Theorem 1.5 Let j ≥ 4 be fixed, and let s = b(j − 2)/2c. Then there exist functions
P ′

j(m), Q′
j(m), both of the form

P ′
j(m), Q′

j(m) =
{

2(1/s!)ms+O(ms−1), j even;
2(1/s!)ms log2 m+O(ms), j odd;

(2)

such that, for every m ≥ 2, we have

z
(j)
P ′

j(m)
(n) ≤ cnαm(n) for all n;

z
(j)
Q′

j(m)
(n) ≥ nαm(n) for all n ≥ nm.

Here c = c(j) is a constant that depends only on j, and nm = nm(j) are constants that
depend on j and m.

Thus, for every fixed j, once k is sufficiently large, z
(j)
k (n) becomes barely superlinear

in n. Moreover, if we let k grow as an appropriate function of α(n), then the upper
bounds become linear. Namely, we have z

(3)
k (n) = O(n) for k ≥ 2α(n); and for j ≥ 4,

we have z
(j)
k (n) = O(n) for k ≥ P ′

j(α(n)).
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Figure 2: The case of planar point sets in convex position: (a) “Separator” points pj

between consecutive blocks. (b) The intersection between two chords joining pairs of
points from four different intervals falls inside CH(S′).

The rest of this paper is organized as follows. In Section 2 we reduce the problem
of building weak ε-nets for our special point sets to problems of stabbing interval chains
with j-tuples. In Section 3 we derive our upper bounds for stabbing interval chains, as
asserted in Theorems 1.4 and 1.5, thus completing the proofs of Theorems 1.1 and 1.2 on
the size of the weak ε-nets. At the end of Section 3 we address the issue of constructing
our weak ε-nets efficiently.

In Section 4 we derive our almost-matching lower bounds for stabbing interval chains,
as provided in Theorems 1.4 and 1.5. We end with a discussion of some open and related
problems in Section 5.

Appendix A addresses the case j = 2 of the interval-chain stabbing problem (stabbing
with pairs). Finally, Appendix B contains a technical lemma, used in bounding the
difference between variants of the inverse Ackermann functions.

2 From weak ε-nets to interval chains

In this section we present constructions of weak ε-nets that reduce to problems of stab-
bing interval chains with j-tuples. We first address the case when S is planar and in
convex position, and then we tackle the case where S lies on the moment curve in Rd

(as well as some related cases).

Lemma 2.1 Let S be a set of n points in convex position in the plane, and let r > 1.
Then S has a weak 1

r -net of size z
(3)
`/r−1(`), where ` < n is a free parameter.
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Proof: Partition the points of S into ` “blocks” B0, B1, . . . , B`−1 of n/` consecutive
points, clockwise along the boundary of CH(S) (we ignore the rounding to integers).
Construct a set of points P = {p0, p1, . . . , p`−1}, where each pj lies on the boundary of
CH(S) between the last point of Bj−1 and the first point of Bj . (Indices are modulo `.
See Figure 2(a).)

Consider a subset S′ ⊂ S of size at least n/r. S′ must contain m = `/r points
q0, q1, . . . , qm−1 lying on m distinct blocks. Let Bjk

be the block containing qk; assume
without loss of generality that 0 ≤ j0 < j1 < · · · < jm−1 < `. The blocks Bjk

partition
P cyclically into m nonempty intervals

Ik = {pjk+1, pjk+2, . . . , pjk+1
}, for 0 ≤ k < m.

(Indices are modulo ` or modulo m as appropriate.) Let pa, pb, pc, pd ∈ P be four points
belonging to four different intervals Ik, listed in cyclic order. Then the intersection
between the segments papc and pbpd must lie inside CH(q0, . . . , qm−1) ⊆ CH(S′). See
Figure 2(b).6

Thus, it is enough to construct a set of quadruples of points of P , such that, no
matter how P is cyclically partitioned into m intervals I0I1 · · · Im−1, some quadruple
will “stab” four different intervals. The set of chord-intersection points corresponding
to these quadruples is our desired weak 1

r -net.
We take point p0 as the first point for all the quadruples; by construction, p0 lies in

the last interval Im−1. Thus, it only remains to build a family Z of triples of the form
(pa, pb, pc), with 1 ≤ a < b < c < `, such that some triple is guaranteed to fall on three
distinct intervals among I0, . . . , Im−2, in any given cyclic chain I0, . . . , Im−1.

But this is isomorphic to the problem of stabbing all (m− 1)-chains in [1, `− 1] with
triples. Thus, there exists a family Z of size at most z

(3)
m−1(`) = z

(3)
`/r−1(`).

Remark: Including point p0 in all the quadruples entails a penalty of at most a factor of
2 in the number of quadruples. Indeed, given an optimal family Z of quadruples that stab
all cyclic partitions into m intervals, we can replace each quadruple q = (pa, pb, pc, pd) ∈
Z, with 0 < a < b < c < d < `, by the two quadruples q1 = (p0, pb, pc, pd), q2 =
(p0, pa, pb, pc). If q stabs four different intervals in such a partition, then one of q1, q2

must also do so.

Proof of Theorem 1.1: By Theorem 1.4 we have

z
(3)
`/r−1(`) = O(`α`/(2r)−1(`)). (3)

Thus, we want to choose ` as a function of r so as to minimize this expression.
Let ` = 2r(1 + α(r)), so `/(2r)− 1 = α(r). We claim that αα(r)(`) ≤ 4 for all large

enough r. Indeed, for all k ≥ 3 and r ≥ 0 we have αk

(
r2

)
≤ 1 + αk(r). Thus, once r is

large enough, we have

αα(r)(`) = αα(r)(2r(1 + α(r))) ≤ αα(r)

(
r2

)
≤ 1 + αα(r)(r)
= 1 + 3 = 4,

6This basic idea, initially observed by Emo Welzl, already appears in [7].
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since αα(r)(r) ≤ 3 by definition. Hence, the expression (3) becomes O(rα(r)).

2.1 Point sets along the moment curve

A similar reduction applies to the case when S is a set of n points along the moment
curve µd (1). This curve has the property that every hyperplane intersects it in at most
d points (see, e.g., Matoušek [11, p. 97]). In fact, our analysis applies to any curve that
satisfies this property.

We can consider points along the moment curve to be ordered by increasing param-
eter t. If A and B are two finite sets of points along µd, we say that A and B are
interleaving if between every two points of A there is a point of B and vice versa. In
such a case, we must have

∣∣∣|A| − |B|
∣∣∣ ≤ 1.

Lemma 2.2 Let s = d(d+1)/2e, and let j = (s−1)(d+1)+1. (Thus, j = (d2+d+2)/2
for d even, and j = (d2 + 1)/2 for d odd.)

Let A be a set of j points along the moment curve µd ⊂ Rd. Then there exists a
point x ∈ CH(A) with the following property: For every point set B ⊂ µd interleaving
with A, with

|B| =
{

j, d even,
j + 1, d odd,

we have x ∈ CH(B).

Proof: By Tverberg’s Theorem (see, e.g., [11, p. 200]), A can be partitioned into s
pairwise disjoint subsets A1, . . . , As, whose convex hulls all contain some common point
x. This point x satisfies the assertion of the lemma, for if x 6∈ CH(B), then there would
exist a hyperplane h that separates x from B. But there must be at least s points of
A in the same side of h as x (one for each part Ai). By continuity, and since A and B
are interleaving, it follows that the curve µd must intersect h at least 2s − 1 times if d
is even, or 2s times if d is odd. In either case, this quantity equals d + 1.

This is a contradiction, since no hyperplane can intersect the moment curve more
than d times.7

Remark: We can derive a slightly weaker version of Lemma 2.2 more simply, by applying
the Centerpoint Theorem [11, p. 14], instead of Tverberg’s Theorem. Let j = (d2 + d +
2)/2, let A be a j-point set along µd, and let x ∈ Rd be a centerpoint of A. If x ∈ h+

for some hyperplane h, then there must be at least dj/(d + 1)e = d(d + 1)/2e points of
A in h+. Proceed as above. The resulting bound is slightly weaker than the one given
above when d is odd.

Using Lemma 2.2, the reduction from weak ε-nets to stabbing interval chains with
j-tuples is straightforward:

7The above argument is very similar to the one used by Matoušek and Wagner [12], applied to a
different construction.
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Lemma 2.3 Let S be a set of n points along the moment curve µd, and let r > 1. Let

j′ =
{

(d2 + d)/2, d even;
(d2 + 1)/2, d odd.

Then S has a weak 1
r -net of size at most z

(j′)
`/r−1(`), where ` < n is a free parameter.

Proof: Partition S into ` blocks B0, B1, . . . , B`−1 of n/` consecutive points. Construct
a set of points P = {p1, . . . , p`−1} ⊂ µd, where each pi lies between the last point of
Bi−1 and the first point of Bi. Take also a point p` ∈ µd lying after B`−1.

Consider a set S′ ⊂ S of size at least n/r. S′ must contain m = `/r points q1, . . . , qm,
lying on m different blocks Bi1 , . . . , Bim . These points define on P an (m − 1)-chain
C = I1 · · · Im−1, where

Ik = {pik+1, pik+2, . . . , pik+1
}, for 1 ≤ k ≤ m− 1.

Construct an optimal family Z ′ of j′-tuples of points in P that stab all (m−1)-chains
in P . Append the point p` to every j′-tuple in Z ′, obtaining a family Z of (j′+1)-tuples
(actually, this is necessary only for d even). We have |Z| = z

(j′)
m−1(`− 1).

There must exist some p ∈ Z whose first j′ points stab the chain C. Thus, the j′+1
points of p are interleaving with some (j′+1)-point subset of {q1, . . . , qm}. By the choice
of j′, Lemma 2.2 applies, so the point x = x(p) guaranteed by the lemma lies in CH(S′).
Therefore, the set of all points x(p), p ∈ Z, is our desired weak 1

r -net.

Proof of Theorem 1.2: We want to choose ` as a function of r so as to minimize
z
(j′)
`/r−1(`). Take ` = r(1 + P ′

j′(α(r))), with P ′
j′(m) as given in Theorem 1.5. Then,

arguing as in the proof of Theorem 1.1,

z
(j′)
`/r−1(`) = z

(j′)
P ′

j′ (α(r))
(`) ≤ c`αα(r)(`) ≤ 4c`.

The claim follows.

Remark: The results in this section can be generalized to curves γ ⊂ Rd with the
property that every hyperplane intersects γ at most q times, for some integer q. (We
must have q ≥ d, since we can always pass a hyperplane through d given points.)
In Lemma 2.2, we take instead s = d(q + 1)/2e, and we let |B| = j for q even and
|B| = j + 1 for q odd. Lemma 2.3 is also modified accordingly. We obtain weak 1

r -nets
of size r · 2poly(α(r)) for point sets along these curves γ. (Note that the methods of [12]
yield weak 1

r -nets of size O(r polylog(r)) for these point sets.)

3 Upper bounds for stabbing interval chains

In this section we derive upper bounds on z
(j)
k (n), the minimum number of j-tuples

needed to stab all k-interval chains contained in the range [1, n]. We will always take
j to be a constant, noting that the constants implicit in the asymptotic notations do
depend on j (though neither on k nor on n).

We start with the easy case k = j, for which we have an exact bound.
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Lemma 3.1 We have

z
(j)
j (n) =

(
n− bj/2c
dj/2e

)
= Θ

(
ndj/2e

)
for all j ≥ 2.

Proof: Suppose first that j is odd. Consider all j-chains of the form

[a1][a1 + 1, a2 − 1][a2][a2 + 1, a3 − 1][a3] · · · [a(j+1)/2],

where 1 ≤ ai ≤ n and ai + 2 ≤ ai+1 for all i. There are
(n−(j−1)/2

(j+1)/2

)
such chains, each

of which must be stabbed by a different j-tuple. On the other hand, we can stab all
j-chains by taking all j-tuples of the form

(b1, b1 + 1, b2, b2 + 1, b3, . . . , b(j+1)/2),

where 1 ≤ bi ≤ n and bi + 2 ≤ bi+1 for all i. There are
(n−(j−1)/2

(j+1)/2

)
such j-tuples.

Therefore, for j odd we have z
(j)
j (n) =

(n−(j−1)/2
(j+1)/2

)
=

(n−bj/2c
dj/2e

)
.

The case where j is even is similar. For the lower bound, we consider all j-chains of
the form

[a1][a1 + 1, a2 − 1][a2] · · · [aj/2][aj/2+1, n],

and, for the upper bound, we take all j-tuples of the form

(b1, b1 + 1, . . . , bj/2, bj/2 + 1).

We get z
(j)
j (n) =

(n−j/2
j/2

)
.

Once k is large enough with respect to j, the number of j-tuples required to stab all
k-chains becomes O(n polylog(n)):

Lemma 3.2 For every fixed j ≥ 2 we have8

z
(j)

2j−1(n) = O
(
n logj−2 n

)
.

Proof: By induction on j. The base case j = 2 is given by Lemma 3.1, so let j ≥ 3,
and put k = 2j−1.

Divide the range [1, n] into two blocks B1, B2, each of size at most n/2, leaving
between them the element y = dn/2e.

For each block Bi we build an optimal family of j-tuples that stab all k-chains
entirely contained in Bi. This requires at most 2z

(j)
k (n/2) j-tuples in total.

It remains to stab those k-chains that contain the element y. Every such chain C
must have k/2 = 2j−2 intervals entirely contained in either B1 or B2. Thus, it suffices

8A more careful analysis shows that the constant of proportionality actually decreases exponentially
with j.
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Figure 3: Range [1, n] partitioned into blocks and separators.

to build on each Bi an optimal family of (j − 1)-tuples that stab all k/2-chains in Bi,
and append the element y to each (j − 1)-tuple. The number of resulting j-tuples is at
most 2z

(j−1)
k/2 (n/2), which is O

(
n logj−3 n

)
by the induction hypothesis.

We obtain the recurrence relation

z
(j)
k (n) ≤ 2z

(j)
k

(n

2

)
+ O

(
n logj−3 n

)
,

which implies z
(j)
k (n) = O

(
n logj−2 n

)
.

We now derive upper bounds for z
(j)
k (n) for all k. We first tackle the case j = 3

(which is the one used in the proof of Theorem 1.1), and then we address the general
case j ≥ 4. For completeness, we address the case j = 2 in Appendix A.

Our derivations below (and of the lower bounds in Section 4) follow a recurring
pattern: We first derive a recurrence relation for z

(j)
k (n), and then we apply it with

appropriately chosen parameters. For added clarity, we identify the lemmas stating the
recurrence relations by the name Recurrence.

3.1 Upper bounds for triples

We have already established that z
(3)
3 (n) =

(
n−1

2

)
(Lemma 3.1) and z

(3)
4 (n) = O(n log n)

(Lemma 3.2). Our bounds for stabbing k-chains with triples, k ≥ 5, are based on the
following recurrence relation.

Recurrence 3.3 Let t be an integer parameter, with 1 ≤ t ≤
√

n/2− 1. Then,

z
(3)
k (n) ≤ n

t
z
(3)
k (t) + z

(3)
k−2

(n

t

)
+ 2n.

Proof: Partition the range [1, n] into blocks B1, B2, . . . , Bb of size t (except for the last
block, which might be smaller), leaving between each pair of adjacent blocks, as well as
before the first block and after the last one, a single “separator” element. Let the set of
separators be Y = {y0, . . . , yb}, such that block Bi lies between separators yi−1 and yi

(see Figure 3).
The number of blocks is b =

⌈
n−1
t+1

⌉
. We have b ≤ n/t−1, since n ≥ 2(t+1)2 ≥ 2t2+t.

Consider an arbitrary k-chain C = I1 · · · Ik. C must satisfy exactly one of the
following properties (see Figure 4):

1. C is entirely contained within a block Bi.

10



Figure 4: A k-chain C must satisfy exactly one of these properties: Either C is contained
within a block (a); or every interval of C, except possibly the first and last, contains
a separator (b); or some interval of C, besides the first and last, falls entirely within a
block, and another interval contains an adjacent separator (c).

2. Every interval of C, except possibly the first and the last, contains a separator.

3. Some interval Ij of C, 2 ≤ j ≤ k − 1, falls entirely within a block Bi, but not all
of C is contained in the block. Thus, some other interval of C contains either yi−1

or yi.

We can take care of the first case by constructing within each block Bi an optimal
family of triples that stab all k-chains. This requires at most bz

(3)
k (t) ≤ (n/t)z(3)

k (t)
triples.

The second case is handled by constructing on the separators Y an optimal family
of triples that stab all (k − 2)-chains. This requires at most z

(3)
k−2(b + 1) ≤ z

(3)
k−2(n/t)

triples.
Finally, the third case is handled by taking all triples of the forms

(a, a + 1, yi), for yi−1 ≤ a ≤ yi − 2,

(yi−1, a, a + 1), for yi−1 < a ≤ yi − 1,

for all yi. There are at most 2n such triples.

Lemma 3.4 We have z
(3)
5 (n) = O(n log log n).

Proof: Apply Recurrence 3.3 with k = 5 and t =
√

n/3, and use Lemma 3.1.

Lemma 3.5 There exists an absolute constant c such that, for every k ≥ 6, we have

z
(3)
k (n) ≤ cnαbk/2c(n) for all n.

Proof: Here it is convenient to work with a slight variant of the inverse Ackermann
function. Let n0 = 2000. For this proof, let α̂m(x), m ≥ 2, be given by α̂2(x) = α2(x) =

11



dlog2 xe, and, for m ≥ 3, by the recurrence

α̂m(x) =
{

1, if x ≤ n0;
1 + α̂m(2α̂m−1(x)), otherwise.

There exists a constant c0 such that |α̂m(x)−αm(x)| ≤ c0 for all m and x (see Appendix
B).

Let k ≥ 4, and let m = bk/2c. We prove, by induction on k, that

z
(3)
k (n) ≤ c1nα̂m(n) for all n,

for some absolute constant c1. The base cases of the induction are z
(3)
4 (n), z(3)

5 (n) =
O(n log n), by Lemmas 3.2 and 3.4, respectively. Without loss of generality, assume
that c1 ≥ 4 and that c1 ≥ z

(3)
4 (n)/n for all n ≤ n0.

Let now k ≥ 6, and assume that the bound holds for k − 2. To establish the bound
for k, assume first that n ≤ n0. Then, we have

z
(3)
k (n) ≤ z

(3)
4 (n) ≤ c1n = c1nα̂m(n).

Thus, let n > n0. We apply Recurrence 3.3 with t = 2α̂m−1(n). (Note that t ≤
√

n/2−1
for n > n0.) Letting z

(3)
k (n) = ng(n), and using the fact that c1 ≥ 4, we obtain

g(n) ≤ g(t) +
c1

t
α̂m−1

(n

t

)
+ 2 ≤ g(t) +

c1

t
α̂m−1(n) + 2

= g(t) +
c1

2
+ 2

≤ g(t) + c1.

Since α̂m(t) = α̂m(n)− 1, it follows by induction on n (with base case n ≤ n0) that

g(n) ≤ c1α̂m(n) for all n.

Therefore,
z
(3)
k (n) ≤ c1nα̂m(n) for all n.

This proves the upper bounds of Theorem 1.4.

Remark: Had we not been careful to add the factor 2 in the definition of α̂m(x) and in
the choice of t, we would have got a weaker bound of z

(3)
k (n) = O(nkαbk/2c(n)). Then,

the bound of Theorem 1.1 would have deteriorated to O(rα2(r)).

3.2 From triples to j-tuples

We now extend our techniques of the previous section and derive upper bounds for
z
(j)
k (n), the minimum number of j-tuples needed to stab all k-chains in [1, n], for j ≥ 4.

Our bounds are based on the following recurrence relation.

12



Figure 5: A chain which violates all three properties, like the one shown, can have at
most k − 1 intervals.

Recurrence 3.6 Let j ≥ 4 be fixed. Let t be a parameter, 1 ≤ t ≤
√

n/2 − 1, and let
k1, k2, k3 be integers. Put k = 2k1 + k2(k3 − 2). Then,

z
(j)
k (n) ≤ n

t

(
z
(j)
k (t) + 2z

(j−1)
k1

(t) + z
(j−2)
k2

(t)
)

+ z
(j)
k3

(n

t

)
.

Proof: As before, partition the range [1, n] into blocks B1, . . . , Bb of size t (except
for the last block, which might be smaller), such that each block Bi is surrounded by
separator elements yi−1, yi. Denote the set of separators by Y = {y0, . . . , yb}. Again,
since t ≤

√
n/2− 1, we have b ≤ n/t− 1.

Let k1, k2, k3 be given, and put k = 2k1+k2(k3−2). Then, every k-chain C = I1 · · · Ik

satisfies at least one of the following properties:

1. C is entirely contained within a block Bi.

2. The first k1 intervals of C, or the last k1 intervals of C, fall entirely within a block
Bi, and some other interval of C contains the separator yi or yi−1, respectively.

3. Some k2 consecutive intervals of C fall within a block Bi, and two other intervals
contain the separators yi−1 and yi.

4. At least k3 distinct intervals of C contain separators.

Indeed, the largest number of intervals for which a chain might possibly violate all the
above properties is

(k3 − 1) + (k3 − 2)(k2 − 1) + 2(k1 − 1) = k − 1.

(See Figure 5.) Hence, by our choice of k, one of the above properties must hold.
Thus, we can stab all k-chains by building the following family of j-tuples. Within

each block Bi we build

• an optimal family of j-tuples that stab all k-chains;

• an optimal family of (j−1)-tuples that stab all k1-chains, where each of these tuples
is extended into a j-tuple in two ways, by appending either of the surrounding
separators yi−1, yi;

• an optimal family of (j − 2)-tuples that stab all k2-chains, where each of these
tuples is extended into a j-tuple by appending both separators yi−1, yi.

13



m = 2 3 4 5 6 7
P2(m) = 2 2 2 2 2 2
P3(m) = 4 6 8 10 12 14
P4(m) = 8 24 60 136 292 608
P5(m) = 16 132 1160 11852 142784 2000164
P6(m) = 32 984 61240 8352072 · · ·

Table 1: Values of Pj(m) for small j and m.

So far we have, in total, at most

n

t

(
z
(j)
k (t) + 2z

(j−1)
k1

(t) + z
(j−2)
k2

(t)
)

j-tuples. In addition, we construct on the set of separators Y an optimal family of
j-tuples that stab all k3-chains. The number of such j-tuples is at most z

(j)
k3

(n/t). Every
k-chain C must be stabbed by some j-tuple in this family.

Define integer-valued functions Pj(m), j, m ≥ 2, by

P2(m) = 2; P3(m) = 2m;

Pj(m) =
{

2j−1, m = 2;
2Pj−1(m) + Pj−2(m) (Pj(m− 1)− 2) , m ≥ 3;

for j ≥ 4.

See Table 1. We can give an explicit formula for P4(m):

P4(m) = 5 · 2m − 4m− 4.

Lemma 3.7 Let j ≥ 3 be fixed, and let s = b(j − 2)/2c. Then,

Pj(m) =
{

2(1/s!)ms+O(ms−1), for j even;
2(1/s!)ms log2 m+O(ms), for j odd.

Proof: By induction on j. The base cases j = 3, 4 are clear, so let j ≥ 5. Let
pj(m) = log2 Pj(m). Using the bounds

log2 x ≤ log2(x + y) ≤ 1
ln 2

· y

x
+ log2 x, for y ≥ 0,

we obtain

pj−2(m) + pj(m− 1) ≤ pj(m) ≤ Rj(m) + pj−2(m) + pj(m− 1), (4)

where
Rj(m) =

2Pj−1(m)
ln 2 · Pj−2(m)Pj(m− 1)

.
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Thus, by the left-hand side of (4), we have

pj(m) ≥
m∑

i=3

pj−2(i).

The lower bound for Pj(m) follows by bounding this sum by an integral, since∫ (
1

(s− 1)!
xs−1 log2 x + cxs−1

)
dx =

1
s!

xs log2 x + O(xs), for s ≥ 1;∫ (
1

(s− 1)!
xs−1 + cxs−2

)
dx =

1
s!

xs + O
(
xs−1

)
, for s ≥ 2.

Thus, applying the lower bound for Pj(m), and assuming by induction the upper bound
for Pj−1(m), it follows that limm→∞ Pj−1(m)/Pj(m − 1) = 0, so Rj(m) tends to zero
with m. Therefore, by the right-hand side of (4),

pj(m) = o(m) +
m∑

i=3

pj−2(i),

and the upper bound for Pj(m) follows similarly.

Lemma 3.8 Let j ≥ 2 be fixed. Then, there exists a constant c = c(j) such that, for
every m ≥ 2, we have

z
(j)
Pj(m)(n) ≤ cnαm(n)j−2 for all n. (5)

Proof: We proceed along the lines of the proof of Lemma 3.5, except that now we also
use induction on j. The case j = 3 was proven already (Lemmas 3.2 and 3.5), so let
j ≥ 4 be fixed.

We again work with a slight variant of the inverse Ackermann function. Let n0 = j4j .
For this proof, let α̂m(x), m ≥ 2, be given by α̂2(x) = α2(x) = dlog2 xe, and for m ≥ 3
by the recurrence

α̂m(x) =
{

1, if x ≤ n0;
1 + α̂m

(
4α̂m−1(x)j−2

)
, otherwise.

Again, there exists a constant c0 (depending only on j) such that |α̂k(x)− αk(x)| ≤ c0

for all k and x (see Appendix B).
We will show, by induction on m, that there exists a constant c1 (depending only on

j) such that
z
(j)
Pj(m)(n) ≤ c1n

(
2α̂m(n)j−2 + α̂m(n)j−3 + α̂m(n)

)
(6)

for all m ≥ 2 and all n. This is easily seen to imply the claim.
The base case m = 2 is given by Lemma 3.2, so assume c1 is large enough that (6)

holds for m = 2. Assume further that

c1 ≥ z
(j)
Pj(3)

(n)/(4n), for n ≤ n0. (7)
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By induction on j, we know there exist constants c2, c3 (depending on j), such that

z
(j−1)
Pj−1(m)(n) ≤ c2nα̂m(n)j−3,

z
(j−2)
Pj−2(m)(n) ≤ c3nα̂m(n)j−4,

for all m ≥ 3 and all n. Without loss of generality, assume c1 ≥ c2, c3.
Now, let m ≥ 3, and suppose (6) holds for m − 1. To establish (6) for m, assume

first that n ≤ n0. Then, by (7), we have

z
(j)
Pj(m)(n) ≤ z

(j)
Pj(3)(n) ≤ 4c1n

= c1n
(
2α̂m(n)j−2 + α̂m(n)j−3 + α̂m(n)

)
.

Thus, let n > n0. Apply Recurrence 3.6 with the following parameters:

k1 = Pj−1(m), k2 = Pj−2(m), k3 = Pj(m− 1),
k = Pj(m), t = 4α̂m−1(n)j−2.

(By our choice of n0, we have t ≤
√

n/2− 1 for n > n0.) Using t ≤ n and n/t ≤ n, we
have

2z
(j−1)
k1

(t) ≤ 2c1tα̂m(n)j−3;

z
(j−2)
k2

(t) ≤ c1tα̂m(n)j−4;

z
(j)
k3

(n

t

)
≤ c1n

t

(
2α̂m−1(n)j−2 + α̂m−1(n)j−3 + α̂m−1(n)

)
=

c1n

4
(
2 + α̂m−1(n)−1 + α̂m−1(n)−j+3

)
≤ c1n.

Plugging these expressions into Recurrence 3.6 and letting z
(j)
k (n) = ng(n), we get

g(n) ≤ g(t) + 2c1α̂m(n)j−3 + c1α̂m(n)j−4 + c1.

Since α̂m(t) = α̂m(n)− 1, it follows by induction on n that

g(n) ≤ c1

(
2α̂m(n)j−2 + α̂m(n)j−3 + α̂m(n)

)
.

(The base case n ≤ n0 follows from (7), and for the induction on n we apply

(α̂m(n)− 1)j−x ≤ (α̂m(n)− 1)α̂m(n)j−x−1

for x = 2, 3.) Thus,

z
(j)
Pj(m)(n) ≤ c1n

(
2α̂m(n)j−2 + α̂m(n)j−3 + α̂m(n)

)
,

as claimed.

Let P ′
j(m) = Pj(m + 1) for j ≥ 4, m ≥ 2. Clearly, P ′

j(m) satisfies (2). There exists
a constant c′, depending only on j, such that αm+1(n)j−2 ≤ c′αm(n) for all m and n.
Therefore,

z
(j)
P ′

j(m)
(n) ≤ c′′nαm(n) for all n,

for some constant c′′ = c′′(j). This proves the upper bounds of Theorem 1.5.
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Figure 6: Blocks and contracted blocks defined on the range [1, n].

Computational aspects. The upper bound constructions given in this Section yield
algorithms for building stabbing families of j-tuples in linear time in the size of the
output.

Thus, the weak 1
r -nets of Theorems 1.1 and 1.2 can be easily built in time O(n log r),

for a given n-point set S with the appropriate properties. Consider first the planar case
(of Theorem 1.1):

Let S = (q0, . . . , qn−1) be a given list of n points in the plane in convex position
(listed in no particular order). We arbitrarily fix q0 as the first point of S around the
boundary of CH(S). Then, we can determine the relative order of any two other points
qa, qb, a, b ≥ 1, around this boundary, by testing whether q0qaqb makes a right or a left
turn. With this comparison predicate, we can build the `-point list P = (p0, . . . , p`−1),
as given in the proof of Lemma 2.1, in time O(n log `); we do this by divide and conquer,
applying linear-time selection in each step.

From the list P , we can obtain our desired weak 1
r -net, of size O(`) = O(rα(r)), in

time O(`). Thus, the total running time is O(`+n log `) = O(n log r). (We may assume
that ` ≤ n, for otherwise we can just return S itself as the desired weak 1

r -net.)
The case of the moment curve is analogous. (Finding the point x of Lemma 2.2

involves examining a finite number of partitions—a constant-time operation, since d is
constant.)

4 Lower bounds for stabbing interval chains

We now derive asymptotic lower bounds for z
(j)
k (n). As before, we take j to be fixed,

recalling that the implicit constants do depend on j.
As a warm-up, we first derive lower bounds of the form z

(j)
k (n) = Ω(n log n) for

appropriate k, for each j ≥ 3. (We do not use these bounds in our later arguments, but
we are interested in the case j = 3, since it yields z

(3)
4 (n) = Θ(n log n).)

Lemma 4.1 For every fixed j ≥ 3 we have

z
(j)
(j−1)2

(n) = Ω(n log n),

where the constant of proportionality depends on j.

Proof: Let t = dn/je. We define on the range [1, n] a sequence of j blocks of size
t, in which every two consecutive blocks overlap on exactly one element. For this, let
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yi = 1 + i(t− 1) for 0 ≤ i ≤ j. Note that y0 = 1 and yj ≤ n. Then let

Bi = [yi−1, yi], for 1 ≤ i ≤ j.

We also define “contracted blocks” that do not contain the elements yi:

B′
i = [yi−1 + 1, yi − 1], for 1 ≤ i ≤ j.

(See Figure 6.) We have |B′
i| = t− 2 for all i.

Let k = (j − 1)2, and let Z be a family of j-tuples that stab all k-chains in [1, n]. Z
must contain families Z1, . . . ,Zj of “local” j-tuples that stab all k-chains in B1, . . . , Bj ,
respectively. Further, these local families must be disjoint, since every two blocks overlap
on at most one element. Thus,

|Z1 ∪ · · · ∪ Zj | ≥ jz
(j)
k (t) ≥ jz

(j)
k

(
n

j

)
.

Now, consider the “global” j-tuples of Z—those that are not contained in any block Bi.
Consider the elements of the contracted blocks B′

i that are not contained in any global
j-tuple. Call these elements “unused”.

Suppose each of the blocks B′
1, B′

j contains a run of j−2 consecutive unused elements,
and each of the intermediate blocks B′

2, . . . , B
′
j−1 contains a run of j − 3 consecutive

unused elements. Construct an interval chain C that has these j2 − 3j + 2 unused
elements as singleton intervals, plus j−1 “long” intervals between the runs of singletons.
(If j = 3 then the two long intervals meet at an arbitrary place in B′

2.) Note that each
long interval is nonempty, since it contains an element yi.

The chain C has j2 − 2j + 1 = k intervals, but it cannot be stabbed by any j-tuple
in Z: It cannot be stabbed by a local j-tuple, since each block Bi contains at most j−1
intervals or parts thereof; and it cannot be stabbed by a global j-tuple, since the global
j-tuples can only stab the long intervals, which number only j − 1.

Therefore, there cannot exist such runs of unused elements. This implies that there
are Ω(n) global j-tuples: At the very least, there must exist some B′

i in which every
(j − 2)-nd element is “used” by some global j-tuple.

We obtain the following recurrence relation:

z
(j)
k (n) ≥ jz

(j)
k

(
n

j

)
+ Ω(n).

Thus, z
(j)
k (n) = Ω(n log n).

We now derive lower bounds for z
(j)
k (n) for all k. As in the case of the upper bounds,

we first deal with j = 3, and then with j ≥ 4.

4.1 Lower bounds for triples

Our asymptotically tight lower bounds for triples are based on the following recurrence
relation.
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Figure 7: The m unused elements x1, . . . , xm, from m distinct blocks, define m − 1
nonempty “links” L1, . . . , Lm−1.

Recurrence 4.2 Let t be an integer parameter, with 3 ≤ t ≤
√

n. Then,

z
(3)
k+2(n) ≥ n

t
z
(3)
k+2(t) + min

( n

18
, z

(3)
k

( n

3t

))
for all n ≥ 36.

Proof: Let b = dn/te. We define on the range [1, n] a sequence of b blocks of size t, in
which every two consecutive blocks overlap on exactly one element: Let yi = 1+ i(t−1)
for 0 ≤ i ≤ b. Note that y0 = 1; and it can be checked that yb ≤ n, since n ≥ t2. Then
let

Bi = [yi−1, yi],

for 1 ≤ i ≤ b. As before, we also let

B′
i = [yi−1 + 1, yi − 1],

for 1 ≤ i ≤ b (refer again to Figure 6). Then, |Bi| = t and |B′
i| = t− 2 for all i.

Let Z be a family of triples that stab all (k + 2)-chains in [1, n]. As before, Z must
contain b disjoint families of “local” triples that stab all chains in each block Bi. The
total size of these families is at least bz

(3)
k+2(t) ≥ (n/t)z(3)

k+2(t).
Now consider the “global” triples of Z—those that are not contained in any block

Bi. As before, consider the elements of the contracted blocks B′
i that are not contained

in any global triple, and call them “unused”.
Suppose that at most half the blocks B′

i contain unused elements. Then there must
be Ω(n) global triples. More precisely, the number of global triples must be at least

1
3
· b

2
(t− 2) ≥ n

6

(
1− 2

t

)
≥ n

18
,

since t ≥ 3. In this case we are done.
Thus, suppose that at least half the blocks B′

i contain unused elements. Let x1, . . . , xm

be m unused elements from m distinct blocks, with m ≥ b/2. These elements define a
sequence of m − 1 intervals Li = [xi + 1, xi+1 − 1] for 1 ≤ i ≤ m − 1, which we call
“links” (see Figure 7). Each link Li contains at least one element yi′ , so the links are
nonempty.

Consider a k-chain C ′ = I ′1 · · · I ′k on the links, where I ′i = [Lai , Lai+1−1] for some
integers ai, 1 ≤ i ≤ k + 1. We can translate C ′ into a (k + 2)-chain C = I0I1 · · · Ik+1

on [1, n], as follows: We make the unused elements right before I ′1 and after I ′k into
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Figure 8: Every k-chain C ′ on the links (a) can be translated into a (k + 2)-chain C on
[1, n] (b). A global triple (marked by x’s) must stab C on three links. We can translate
this triple back into a triple of links that stabs C ′ (c).

singleton intervals, and we append each intermediate unused element to the link at its
right. Then we fuse the links in each I ′i into one interval. See Figure 8(a,b).

This chain C cannot be stabbed by any local triple, since each block Bi contains
parts of at most two intervals of C. Thus, C must be stabbed by a global triple τ .
Since τ does not contain any unused elements, it cannot stab the singleton intervals I0

or Ik+1. Therefore, τ must stab three links on three different intervals among I1, . . . , Ik.
Thus, we can translate τ back into a triple of links τ ′ that stabs C ′. See Figure 8(c).

Hence, we have enough triples of links τ ′ to stab all k-chains on the m−1 links. The
number of original global triples τ must be at least as large. Thus, there are at least
z
(3)
k (m− 1) global triples. Finally, note that m− 1 ≥ n/(3t), since n ≥ 6

√
n for n ≥ 36.

Lemma 4.3 We have
z
(3)
5 (n) = Ω(n log log n).

Proof: Apply Recurrence 4.2 with k = 3 and t =
√

n, and use Lemma 3.1.

Lemma 4.4 There exists an absolute constant c1 such that, for all k ≥ 6, we have

z
(3)
k (n) ≥ c1nαbk/2c(n) for all n ≥ nk, (8)

for some integers nk that depend on k.

Proof: By induction from k to k +2. The base cases are k = 6, 7, which we derive from
Recurrence 4.2 with k = 4 and t = log n, and with k = 5 and t = log log n, respectively.
We use the lower bounds for z

(3)
4 (n) and z

(3)
5 (n) of Lemmas 4.1 and 4.3, respectively,

and we obtain
z
(3)
6 (n), z(3)

7 (n) = Ω(n log∗ n) = Ω(nα3(n)).

(The recursion depth is log∗ n for z
(3)
6 (n) and 1

2 log∗ n for z
(3)
7 (n).)

Now, let k ≥ 6, and let m = bk/2c. Assume by induction that

z
(3)
k (n) ≥ c1nαm(n), for all n ≥ nk, (9)
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for some constants c1 and nk. Assume without loss of generality that 2c1 ≤ 1/18. We
apply Recurrence 4.2 with

t =
1
6
(αm(n)− 1).

Note that αm(n) grows slowly enough that αm(n/(3t)) ≥ αm(n)− 1 for all large enough
n. Thus, let n′ be a large enough constant (depending on k) such that this holds for all
n ≥ n′. Assume further that n′ is large enough so that 3 ≤ t ≤

√
n and n/(3t) ≥ nk for

all n ≥ n′.
Then, by (9), for all n ≥ n′ we have

z
(3)
k

( n

3t

)
≥ c1

n

3t
αm

( n

3t

)
≥ c1

n

3t
(αm(n)− 1) = 2c1n.

Plugging this into Recurrence 4.2 and letting z
(3)
k+2(n) = ng(n), we obtain

g(n) ≥ g(t) + 2c1, for all n ≥ n′.

It follows by Lemma B.1, given in Appendix B, that

g(n) ≥ 2c1αm+1(n)−O(1).

Thus, there exists an integer nk+2 ≥ n′, such that g(n) ≥ c1αm+1(n) for all n ≥ nk+2.
We conclude that

z
(3)
k+2(n) ≥ c1nαm+1(n), for all n ≥ nk+2,

completing our induction on k.

Remark: We cannot expect (8) to hold for all n, since z
(3)
k (k) = 1. The integers nk

implied by the proof above actually grow very fast with k; the condition t ≥ 3 for n ≥ n′,
together with nk+2 ≥ n′, implies that αbk/2c(nk+2) ≥ 19.

This proves the lower bounds of Theorem 1.4.

4.2 Lower bounds for j-tuples, j ≥ 4

We now derive general lower bounds for z
(j)
k (n), j ≥ 4. We will construct a sequence of

integer-valued functions Qj(m), m ≥ 2, such that

z
(j)
Qj(2)(n) = Ω

(
n log(j−1) n

)
; (10)

z
(j)
Qj(m)(n) = Ω

(
nα(j−2)

m (n)
)

= ω(nαm+1(n)), m ≥ 3; (11)

for all j ≥ 4. (Recall that f (j) denotes the j-fold composition of f .) Our arguments
become more involved, because we now divide each block into sub-blocks. Let us start
with the case m = 2 given by (10).
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Figure 9: Sub-blocks defined within a contracted block B′
i.

Recurrence 4.5 Let j ≥ 3 be fixed. Let q be a parameter, with q ≤ n/(3j)− 2. Let k1,
k2 be integers, and put k = 2k1 + (j − 2)k2 + j − 1. Then,

z
(j)
k (n) ≥ min

(
n

3jq
z
(j−1)
k1

(q),
n

3jq
z
(j−2)
k2

(q), jz
(j)
k

(
n

j

)
+

n

3j2q

)
for all n ≥ 6j.

Proof: Let t = dn/je. Define the elements y0, . . . , yj , the blocks B1, . . . , Bj , and the
contracted blocks B′

1, . . . , B
′
j , as in the proof of Lemma 4.1. We have |Bi| = t and

|B′
i| = t− 2 for all i.
Define on each contracted block B′

i a sequence Di1, . . . , Did of d = b(t−2)/qc disjoint
sub-blocks of size q (these sub-blocks do not necessarily cover B′

i completely; see Figure
9). Note that d ≥ 2n/(3jq), since q ≤ n/(3j)− 2.

Let Z be a family of j-tuples that stab all k-chains in [1, n]. For each i, let Zi contain
those j-tuples of Z that lie entirely inside Bi. Note that the families Zi are pairwise
disjoint.

Let Z ′
1 (resp., Z ′

j) be the family of (j−1)-tuples obtained by deleting the last (resp.,
first) element of each j-tuple in Z1 (resp., Zj). For each 2 ≤ i ≤ j − 1, let Z ′

i be the
family of (j − 2)-tuples obtained by deleting the first and last elements of each j-tuple
in Zi.

We say that a sub-block Di`, i ∈ {1, j}, is cleared if the (j − 1)-tuples in Z ′
i stab all

the k1-chains in Di`. And a sub-block Di`, 2 ≤ i ≤ j − 1 is cleared if the (j − 2)-tuples
in Z ′

i stab all the k2-chains in Di`.
A block Bi is cleared if at least half of its sub-blocks are cleared.
Now consider the “global” j-tuples of Z—those that are not contained in any Zi.

Let B′
i be an uncleared block. We say that B′

i is safe if every uncleared sub-block Di`

within B′
i (of which there are at least d/2) contains some point of a global j-tuple.

Suppose all the blocks are uncleared and unsafe. Then we can build a k-chain C
that cannot be stabbed by any j-tuple in Z: For each 1 ≤ i ≤ j, we take an uncleared
sub-block Di`i

of block B′
i that is not “touched” by any global j-tuple. We take a

“hardy” k1-chain from each of the sub-blocks D1`1 , Dj`j
, and a “hardy” k2-chain from

each intermediate block Di`i
, 2 ≤ i ≤ j − 1. These “hardy” chains are chains that are

not stabbed by any tuple in the respective families Z ′
i, and are also not touched any

global j-tuple.
We connect the hardy chains together with j − 1 “long intervals” (see Figure 10).

As before, the long intervals are nonempty, since each one contains an element yi. The
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Figure 10: A k-chain which cannot be stabbed by any j-tuple, local or global.

total length of C is
2k1 + (j − 2)k2 + j − 1 = k.

Now, C cannot be stabbed by a local j-tuple, because then the corresponding (j − 1)-
or (j − 2)-tuple in Z ′

i would stab a hardy chain. And C cannot be stabbed by a global
j-tuple, since the global j-tuples can only stab the long intervals, which number only
j − 1.

Therefore, there are two possibilities. The first one is that all the blocks are un-
cleared, but at least one of them is safe. This implies that there are at least

1
j
· d

2
≥ n

3j2q

global j-tuples. There must also be at least jz
(j)
k (t) local j-tuples.9

The second possibility is that some block B′
i is cleared. If i ∈ {1, j}, this implies

that
|Zi| ≥ |Z ′

i| ≥
d

2
z
(j−1)
k1

(q) ≥ n

3jq
z
(j−1)
k1

(q).

And if 2 ≤ i ≤ j − 1, this implies that

|Zi| ≥ |Z ′
i| ≥

n

3jq
z
(j−2)
k2

(q).

Now, let

Q2(2) = 1; Q3(2) = 5;
Qj(2) = 2Qj−1(2) + (j − 2)Qj−2(2) + j − 1, j ≥ 4.

For j ≥ 4 we have Qj(2) = 15, 49, 163, 577, 2139, . . ..

Lemma 4.6 For every fixed j ≥ 2 we have

z
(j)
Qj(2)

(n) = Ω
(
n log(j−1) n

)
,

where the constant of proportionality depends on j.
9This of course holds in any case.
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Proof: By induction on j. The case j = 2 is trivial, since it is impossible to stab a
1-chain with a pair, so z

(2)
1 (n) = ∞. And the case j = 3 is given by Lemma 4.3. So let

j ≥ 4. Apply Recurrence 4.5 with

k1 = Qj−1(2), k2 = Qj−2(2), k = Qj(2), q = log n.

By induction, we have

n

3jq
z
(j−1)
k1

(q) = Ω
(
n log(j−1) n

)
;

n

3jq
z
(j−2)
k2

(q) = Ω
(
n log(j−2) n

)
= ω

(
n log(j−1) n

)
.

Now, consider the recurrence relation10

f(n) ≥ jf

(
n

j

)
+

n

log n
.

This recurrence has solution f(n) = Ω(n log log n) = ω
(
n log(j−1) n

)
. Therefore, substi-

tuting into Recurrence 4.5, we get z
(j)
Qj(2)(n) = Ω

(
n log(j−1) n

)
, as desired.

We now derive the bounds (11). We use the following recurrence.

Recurrence 4.7 Let j be fixed. Let t and q be parameters, with t ≤
√

n and q ≤ t/9−2.
Let k1, k2, k3 be integers, and put k = 2k1 + (k2 + 1)(k3 − 1) + 1. Then,

z
(j)
k (n) ≥ min

(
n

9q
z
(j−1)
k1

(q),
n

9q
z
(j−2)
k2

(q),
n

t
z
(j)
k (t) + min

(
n

9jq
, z

(j)
k3

( n

3t

)))
for all n ≥ 36.

Proof: Let b = dn/te, and define the elements y0, . . . , yb, the blocks B1, . . . , Bb, and the
contracted blocks B′

1, . . . , B
′
b as in the proof of Recurrence 4.2. We have |Bi| = t and

|B′
i| = t− 2 for all i.
As in the proof of Recurrence 4.5, define on each contracted block B′

i a sequence
Di1, . . . , Did of d = b(t− 2)/qc disjoint “sub-blocks” of size q.

Let Z be a family of j-tuples that stab all k-chains in [1, n]. For each i, let Zi be
the family of j-tuples of Z that are entirely contained in block Bi. The families Zi are
pairwise disjoint, and each one has size at least z

(j)
k (t).

For each i, let Z(1)
i be the family of (j − 1)-tuples obtained by removing the last

element of each j-tuple in Zi. Let Z(2)
i be the family of (j − 2)-tuples obtained by

removing the first and last elements of each j-tuple in Zi. And let Z(3)
i be the family

of (j − 1)-tuples obtained by removing the first element of each j-tuple in Zi.
10It is correct, in a recurrence like Recurrence 4.5, to consider each case separately and then take the

minimum.
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Let Di` be a sub-block within block B′
i. We say that Di` is left-cleared (resp., right-

cleared) if the (j − 1)-tuples of Z(1)
i (resp., Z(3)

i ) stab all the k1-chains in Di`. And we
say that Di` is middle-cleared if the (j − 2)-tuples of Z(2)

i stab all the k2-chains in Di`.
Now consider the “global” j-tuples of Z—those that are not contained in any block

Bi. We say that a sub-block Di` is visited if it contains some point of a global j-tuple.
If a sub-block Di` is neither left-, middle-, nor right-cleared, nor is it visited, then

Di` is hot ; otherwise, it is cold. A hot sub-block contains three hardy chains H(1), H(2),
H(3) (not necessarily disjoint), of lengths k1, k2, and k1, respectively, which are not
stabbed by any tuple in Z(1)

i , Z(2)
i , Z(3)

i , respectively, and are not “touched” by any
global j-tuple.

A block B′
i is hot if it contains some hot sub-block Di`; otherwise, it is cold.

Now, suppose that at least half the blocks B′
i are cold. Then, there is a total of at

least bd/2 cold sub-blocks. Therefore, there must be at least

1
4
· bd

2
≥ n

9q

sub-blocks which are either all left-cleared, or all middle-cleared, or all right-cleared, or
all visited. (Note that d ≥ 8t/(9q), since q ≤ t/9− 2.)

The first or third case implies

|Z| ≥ n

9q
z
(j−1)
k1

(q);

while the second case implies
|Z| ≥ n

9q
z
(j−2)
k2

(q).

Finally, the fourth case implies that Z contains at least n/(9jq) global j-tuples, plus at
least (n/t)z(j)

k (t) local j-tuples.
Suppose, then, that there are m ≥ n/(2t) hot blocks B′

i. Let K1, . . . ,Km be m hot
sub-blocks from m distinct such blocks. These sub-blocks define a sequence of m − 1
nonempty “links” L1, . . . , Lm−1 between them, as in the proof of Recurrence 4.2. Each
sub-block Ki contains the hardy chains H

(1)
i , H

(2)
i , H

(3)
i mentioned above.

Consider a k3-chain C ′ = I ′1 . . . I ′k3
on the links. This chain is uniquely determined

by a sequence of k3 + 1 sub-blocks

Ka1 ,Ka2 , . . . ,Kak3+1
, (12)

where each interval I ′i contains those links that lie between Kai and Kai+1 .
We can translate C ′ into the k-chain

C = H(1)
a1

I1H
(2)
a2

I2 · · · Ik3−1H
(2)
ak3

Ik3H
(3)
ak3+1

,

on [1, n], where each interval Ii extends from the end of one hardy chain to the beginning
of the next. The number of intervals in C is

2k1 + (k3 − 1)k2 + k3 = k.
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m = 2 3 4 5 6 7
Q2(m) = 1 1 1 1 1 1
Q3(m) = 5 7 9 11 13 15
Q4(m) = 15 43 103 227 479 987
Q5(m) = 49 471 4907 59327 831523 13306327
Q6(m) = 163 8071 849095 193712087 · · ·

Table 2: Values of Qj(m) for small j and m.

Now, C cannot be stabbed by any local j-tuple from a block Kai , since then the cor-
responding hardy chain H

(x)
ai would be stabbed by a tuple from Z(x)

ai (for an appropriate
x ∈ {1, 2, 3}). Therefore, C must be stabbed by a global j-tuple τ ∈ Z. Further, τ must
stab j links from j different intervals Ii (since none of the chains H

(x)
ai is touched by τ).

Thus, we can translate τ back into a j-tuple of links τ ′ that stabs C ′.
Hence, there are at least z

(j)
k3

(m − 1) ≥ z
(j)
k3

(n/(3t)) global j-tuples, plus at least

(n/t)z(j)
k (t) local j-tuples.

Define integer-valued functions Qj(m), for j,m ≥ 2, by

Q2(m) = 1; Q3(m) = 2m + 1;

and for j ≥ 4,

Qj(m) = 2Qj−1(m) +
(
1 + Qj−2(m)

)(
Qj(m− 1)− 1

)
+ 1, m ≥ 3;

with Qj(2) as defined above. See Table 2.
We have Q4(m) = 8 · 2m − 4m− 9, and in general, letting s = b(j − 2)/2c,

Qj(m) =
{

2(1/s!)ms+O(ms−1), for j ≥ 4 even;
2(1/s!)ms log2 m+O(ms), for j ≥ 3 odd;

just as in the case of Pj(m).

Lemma 4.8 For every j ≥ 2 and m ≥ 3 we have

z
(j)
Qj(m)(n) = Ω

(
nα(j−2)

m (n)
)

(where the implicit constants might depend on both m and j).

Proof: The case j = 2 is trivial, and the case j = 3 is given by Lemma 4.4. So let
j ≥ 4.

We apply Recurrence 4.7 with the following parameters:

k1 = Qj−1(m), k2 = Qj−2(m), k3 = Qj(m− 1), k = Qj(m).
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We first handle the case m = 3, by induction on j. For this, let t = log(j−1) n and
q = α3(n). Then, by induction we have

n

9q
z
(j−1)
k1

(q) = Ω
(
nα

(j−2)
3 (n)

)
,

n

9q
z
(j−2)
k2

(q) = Ω
(
nα

(j−3)
3 (n)

)
= ω

(
nα

(j−2)
3 (n)

)
.

Now, consider the recurrence relation

f(n) ≥ n

t
f(t) +

n

q
. (13)

We have α3

(
log(i) n

)
= α3(n) − i for every integer i ≥ 0. Hence, (13) expands into an

harmonic-like series, which yields f(n) = Ω(n log α3(n)) = ω
(
nα

(j−2)
3 (n)

)
. Finally, by

Lemma 4.6 we have
z
(j)
k3

( n

3t

)
= Ω

(n

t
log(j−1) n

3t

)
= Ω(n).

The solution of the recurrence f(n) ≥ (n/t)f(t) + Ω(n) is f(n) = Ω(nα3(n)), which is
also ω

(
nα

(j−2)
3 (n)

)
. Plugging into Recurrence 4.7, we get z

(j)
Qj(3)

(n) = Ω
(
nα

(j−2)
3 (n)

)
,

as desired.
Now we handle the general case m ≥ 4 by induction. Let t = α

(j−2)
m−1 (n) and q =

αm(n). Then, by induction on j we have
n

9q
z
(j−1)
k1

(q) = Ω
(
nα(j−2)

m (n)
)
,

n

9q
z
(j−2)
k2

(q) = Ω
(
nα(j−3)

m (n)
)

= ω
(
nα(j−2)

m (n)
)
.

Again, consider the recurrence relation (13). This time, we get f(n) = Ω(n log αm(n)) =
ω
(
nα

(j−2)
m (n)

)
. And by induction on m we have

z
(j)
k3

( n

3t

)
= Ω

(n

t
α

(j−2)
m−1

( n

3t

))
= Ω(n).

The solution of the recurrence f(n) ≥ (n/t)f(t) + Ω(n), for our choice of t, is f(n) =
Ω(nαm(n)), which is ω

(
nα

(j−2)
m (n)

)
. Plugging into Recurrence 4.7, we get z

(j)
Qj(m)(n) =

Ω
(
nα

(j−2)
m (n)

)
, as desired.

Define Q′
j(m) for j ≥ 4, m ≥ 2, by

Q′
j(2) = j;

Q′
j(m) = Qj(m− 1), m ≥ 3.

Then, using the fact that α
(j−1)
m−1 (n) = ω(αm(n)) for m ≥ 2, we conclude by Lemmas 3.1,

4.6, and 4.8 that

z
(j)
Q′

j(m)
(n) = ω(nαm(n)), for all j ≥ 4,m ≥ 2.

This proves the lower bounds in Theorem 1.5.

27



Remark: We could have derived the asymptotic lower bounds of Theorem 1.5 somewhat
more simply, as follows: We omit Recurrence 4.5 and the resulting Lemma 4.6, and
instead we start our induction on m with the Ω(n log n) bound of Lemma 4.1. Further,
in Recurrence 4.7 we can omit the role of the k1-chains and the families of (j−1)-tuples
Z(1)

i and Z(3)
i . This would not have affected the asymptotic growth of the sequences

Qj(m), Q′
j(m).

However, we chose to present the largest values of Q′
j(m) we were able to obtain

with our techniques, especially since the extra effort involved is not significant.

5 Discussion

Open problems. The most pressing issue is to close the gap between the bounds Ω(r)
and O(rα(r)) for the size of weak 1

r -nets for planar sets in convex position. A worst-case
bound of Θ(rα(r)) would be a major achievement, since there are no known superlinear
lower bounds for weak ε-nets for any fixed dimension d, even for arbitrary point sets.

Another open issue is to determine how tight the bounds are for the case of point
sets along the moment curve µd. For example, does j really have to be quadratic in d
in Lemma 2.2?

It would also be nice to find the exact asymptotic form of z
(j)
k (n) for every fixed j

and k.

Partial sums in semigroups. Our divide-and-conquer approach to the problem of
stabbing interval chains with triples (j = 3) is very similar to the approach of Alon and
Schieber [3], for a problem related to offline computation of partial sums in semigroups
(see also [8, 16]). The problem there can be abstractly formulated as follows.

We are given the range [1, n] and an integer k. We want to construct a family Y of
subsets of [1, n], with |Y| as small as possible, such that every interval [a, b], 1 ≤ a ≤
b ≤ n, can be expressed as the union of at most k sets from Y. Let yk(n) denote the
minimum size of such a family Y. Then,

y1(n) =
(

n + 1
2

)
; y2(n) = Θ(n log n); y3(n) = Θ(n log log n);

yk(n) = Θ
(
nαbk/2c+1(n)

)
, k ≥ 4.

In fact, these upper bounds can be achieved even if we require the sets in Y to be
intervals, and we require every [a, b] to be expressed as a disjoint union of such intervals.
(We note that, even though the proof techniques are very similar, we are not aware of
any explicit reduction between the two problems.)

Davenport–Schinzel sequences. The similarities between our bounds for interval
chains and the bounds for Davenport–Schinzel sequences are nothing short of remark-
able.
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The current bounds for λs(n), the maximum length of a Davenport–Schinzel sequence
of order s on n symbols, are as follows (Sharir and Agarwal [15]). Let t = b(s− 2)/2c.
Then,

λ3(n) = Θ(nα(n)); λ4(n) = Θ
(
n · 2α(n)

)
.

For s ≥ 5 there are upper bounds of

λs(n) ≤ n · 2α(n)t+Cs(n), for s even;
λs(n) ≤ n · 2α(n)t log2 α(n)+Cs(n), for s odd;

where Cs(n) are functions of α(n) of lower order than the first term in the exponent.
And for s ≥ 6 there is a lower bound of

λs(n) ≥ n · 2(1/t!)α(n)t+O(α(n)t−1).

Note that, for s even, there are gaps in the coefficients of α(n)t between the upper and
lower bounds, and for s odd there are no lower bounds with the log α(n) factor in the
exponent.

Compare these bounds to our bounds for P ′
j(m), Q′

j(m) in (2), and to the resulting
bounds for weak ε-nets in Theorems 1.1 and 1.2. The similarity is striking.

There is a significant difference, however. The bounds for λs(n) involve the inverse
Ackermann function α(n), while the bounds for interval chains involve functions αm(n)
of the inverse Ackermann hierarchy. However, once we go from interval chains to weak
1
r -nets, we obtain upper bounds involving α(r).

In any case, in light of these similarities, the following conjecture suggests itself (and
perhaps also a line of attack for proving it):

Conjecture 5.1 The true bounds for λs(n), s ≥ 5, are

λs(n) = n · 2(1/t!)α(n)t+O(α(n)t−1), for s even;
λs(n) = n · 2(1/t!)α(n)t log2 α(n)+O(α(n)t), for s odd;

where t = b(s− 2)/2c.

Acknowledgements. We are grateful to Gil Kalai, who suggested to us the extension
to point sets along the moment curve, and provided some ideas on how to implement
this extension.
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A Bounds for stabbing with pairs

We give almost-tight bounds on the number of pairs needed to stab all k-chains in [1, n].
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Lemma A.1 We have
n

bk/2c
− 3 ≤ z

(2)
k (n) ≤ n

bk/2c
− 1.

Proof: For the upper bound, let k be even, and let q = k/2. Take the family of pairs

Z = {(iq, (i + 1)q) | 1 ≤ i ≤ n/q − 1}.

It is easily verified that in any k-chain C, there must be at least two different intervals
that contain elements of the form iq. Therefore, there must be two adjacent elements
iq, (i + 1)q that fall on two different intervals, so C is stabbed. We have

|Z| =
⌊

n

q
− 1

⌋
≤ n

bk/2c
− 1,

and we are done.
For the lower bound, let k be odd, and let q = (k − 1)/2. Let

Z = {(xi, yi) | 1 ≤ i ≤ m}

be a family of pairs that stabs all k-chains in [1, n], with xi < yi for all i. Let X = {xi |
1 ≤ i ≤ m}.

We may assume that there exists an integer a1 ∈ [1, n− q + 1] such that

X ∩ [a1, a1 + q − 1] = ∅,

for otherwise we have |Z| = |X| ≥ bn/qc ≥ n/q − 1 and we are done. Let a1 be the
smallest integer with the above property. Partition X into

X1 = X ∩ [1, a1 − 1],
X2 = X ∩ [a1, n].

By the minimality of a1, we have

|X1| ≥
⌊

a1 − 1
q

⌋
≥ a1

q
− 1.

Let Y = {yi | xi ∈ X2}. Suppose there exists an integer a2 ∈ [a1 + q + 1, n− q + 1] such
that

Y ∩ [a2, a2 + q − 1] = ∅.

Then the k-chain consisting of the q singletons [a1] · · · [a1+q−1], followed by the interval
[a1 + q, a2 − 1], followed by the q singletons [a2] · · · [a2 + q − 1], cannot be stabbed by
any pair in Z, as is easily checked.

Thus, such an integer a2 cannot exist, so we have

|X2| = |Y | ≥
⌊

n− a1 − q

q

⌋
≥ n− a1

q
− 2,

so |X| = |X1|+ |X2| ≥ n/q − 3.
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B Comparing functions defined by recurrence relations

Let f(x) and g(x) be functions satisfying f(x), g(x) < x for all large enough x, and let
f∗(x), g∗(x) be given by the recurrence relations

f∗(x) = 1 + f∗(f(x)),
g∗(x) = 1 + g∗(g(x)),

with appropriate initial conditions for small enough x. In this appendix we show a
sufficient condition for establishing that

|f∗(x)− g∗(x)| = O(1). (14)

In this paper we make frequent use of bounds of this type.
Let us assume for simplicity that g(x) ≥ f(x) for all large enough x. Then, it is

enough to establish an upper bound on g∗(x)− f∗(x).

Lemma B.1 Let f(x), g(x), f∗(x), g∗(x) be functions as given above. Suppose there
exists a function δ(x) and a real number x1 such that

x ≤ δ(x), (15)
g(δ(x)) ≤ δ(f(x)), (16)

for all x ≥ x1. Then,

g∗(x)− f∗(x) ≤ 1 + g∗(δ(x1))− f∗(x1) (17)

for all x ≥ x1.

Proof: Given x ≥ x1, let j = j(x) be the smallest integer such that f (j)(x) < x1. (Here
f (j) denotes the j-fold composition of f .) Thus, f (j−1)(x) ≥ x1, so

f∗(x) = (j − 1) + f∗
(
f (j−1)(x)

)
≥ (j − 1) + f∗(x1). (18)

Then, by (15) and repeated application of (16),

g(j)(x) ≤ g(j)(δ(x)) = g(j−1)(g(δ(x)))
≤ g(j−1)(δ(f(x)))
...
≤ g

(
δ
(
f (j−1)(x)

))
≤ δ

(
f (j)(x)

)
≤ δ(x1).

Thus,
g∗(x) = j + g∗

(
g(j)(x)

)
≤ j + g∗(δ(x1)).

This, together with (18), yields (17), as desired.
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Thus, the problem of establishing a bound of the form (14) reduces to finding an
appropriate function δ. We illustrate the utility of Lemma B.1 with a few examples.

Example 1: Let f(x) = cx and g(x) = cx + d, for some constants 0 < c < 1 and
d > 0. If we let δ(x) = x + d/(1− c), then we have g(δ(x)) = δ(f(x)). Thus, by Lemma
B.1, we have |f∗(x)− g∗(x)| = O(1). Since we have f∗(x) = log1/c x + O(1) (where the
additive constant depends on the initial condition for small x), we conclude that also
g∗(x) = log1/c x + O(1).

Example 2: Let f(x) = xc and g(x) = dxc, for some constants 0 < c < 1 and d > 1.
If we let δ(x) = d1/(1−c)x1/c, then again we have g(δ(x)) = δ(f(x)). Thus, f∗(x) and
g∗(x) are both of the form log1/c log x + O(1).

Example 3: Let f(x) = αk(x) and g(x) = αk(x)c, for some integer k ≥ 2 and some
c > 1. Suppose first that k = 2 (and recall that α2(x) = dlog2 xe). Let

δ(x) = (cx + c log2 c + c + 1)c.

Using the fact that log2(cx+k) ≤ 1+log2 cx for x ≥ k/c, we have for all large enough x,

g(δ(x)) ≤ (1 + log2 δ(x))c

= (1 + c log2(cx + c log2 c + c + 1))c

≤ (1 + c(log2 cx + 1))c

= δ(log2 x) ≤ δ(f(x)),

so δ(x) satisfies (16). We conclude that f∗(x) and g∗(x) are both of the form log∗ x +
O(1).

If k ≥ 3, then we simply take δ(x) = (x + 1)c. Once x is large enough, we have
αk(δ(x)) ≤ 1 + αk(x), so

g(δ(x)) ≤ (1 + αk(x))c = δ(f(x)),

again satisfying (16). Thus, f∗(x) and g∗(x) are both of the form αk+1(x) + O(1).

It can be shown that the functions α̂k(x) used in the proofs of Lemmas 3.5 and 3.8
satisfy

|α̂k(x)− αk(x)| ≤ c

for all large enough k and all x, for some absolute constant c. This is done by an
argument similar to that of Example 3 above, though slightly more involved, using
induction on k. We omit the details.
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