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Abstract

We prove that the minimum number of vertices of a graph that contains every

graph on k vertices as an induced subgraph is (1 + o(1))2(k−1)/2. This improves ear-

lier estimates of Moon, of Bollobás and Thomason, of Brightwell and Kohayakawa

and of Alstrup, Kaplan, Thorup and Zwick. The method supplies similarly sharp esti-

mates for the analogous problems for directed graphs, tournaments, bipartite graphs,

oriented graphs and more. We also show that if
(
n
k

)
2−(k

2) = λ (where λ can be a

function of k) then the probability that the random graph G(n, 0.5) contains every

graph on k vertices as an induced subgraph is (1− e−λ)2 + o(1).

The proofs combine combinatorial and probabilistic arguments with tools from

group theory.

1 Introduction

Let F be a finite family of graphs. A graph G is induced universal for F if every member

F of F is an induced subgraph of G. The definition naturally extends to digraphs, tour-

naments or oriented graphs. This notion was introduced by Rado [29]. There is a vast

literature about the question of determining or estimating the minimum possible number

of vertices of an induced universal graph for given families of k-vertex graphs or digraphs.

See [26], [27], [11], [15], [21], [24], [20], [18], [14], [5], [4] and the references therein. In

some of these papers the minimum investigated is determined up to a constant factor, but

there is no known nontrivial example in which the correct constant is known.

The most basic question, and the one with the longest history deals with the family

of all undirected graphs on a given number of vertices. Let F(k) denote the family of all

k-vertex undirected graphs, and let f(k) denote the smallest possible number of vertices of
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an induced universal graph for F(k). Moon [26] observed that a simple counting argument

gives f(k) ≥ 2(k−1)/2 and proved that f(k) ≤ O(k2k/2). Alstrup, Kaplan, Thorup and

Zwick [4] determined f(k) up to a constant factor, showing that f(k) ≤ 16 ·2k/2. Bollobás

and Thomason [11] proved that the random graph G(n, 0.5) on n = k22k/2 vertices is

induced universal for F(k) with high probability, that is, with probability that tends to 1

as k tends to infinity. This was improved to n = O(k2k/2) by Brightwell and Kohayakawa

in [13]. The question of finding tighter bounds for f(k), suggested by the work of Moon,

is mentioned by Vizing in [30] and by Alstrup et. al (whose work determines it up to a

constant factor of 16
√

2) in [4]. Here we show that the lower bound is tight, up to a lower

order additive term.

Theorem 1.1

f(k) = (1 + o(1))2(k−1)/2.

The proof combines probabilistic and combinatorial arguments with some group theo-

retical facts about graphs with large automorphism groups. Similar arguments supply

asymptotically tight estimates for the analogous questions for directed graphs, oriented

graphs, tournaments, bipartite graphs or complete graphs with colored edges, improving

results in [27], [24], [4]. Since the proofs in all cases, besides possibly that of bipartite

graphs, are similar, we focus here on the undirected case and merely include the statements

and sketches of proofs of these variants, with more details about the family of bipartite

graphs.

As a byproduct of (a variant of) the first part of the proof we show that the minimum

number of vertices n so that the random graph on n vertices is induced universal for F(k)

with high probability is (1 + o(1))ke2(k−1)/2, improving the estimate in [11]. This was

harder to improve in 1981, when [11] was written, but is simpler now, using some of the

more recently developed high deviation inequalities. The bound above also improves the

estimate in [13] by a constant factor. Combining our argument with some group theoretic

tools and the Stein-Chen method we prove a more precise statement, as follows.

Theorem 1.2 Let n > k > 1, let G = G(n, 0.5) be the binomial random graph, and put

λ =

(
n

k

)
2−(k2).

Then the probability that G is induced universal for F(k) is (1 − e−λ)2 + o(1), where the

o(1) term tends to 0 (uniformly in k = k(n)) as n tends to infinity. Here λ can be either

a constant or a growing or vanishing function of k.
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The rest of this paper is organized as follows. Theorem 1.1 is proved in Section 2

and Section 3 deals with the minimum possible n so that the random graph G(n, 0.5) is

induced universal for F(k) with high probability. The proof of Theorem 1.2 appears in the

second part of this section. In Section 4 we describe several variants of Theorem 1.1 that

can be proved using a similar approach, and the final Section 5 contains some concluding

remarks and open problems.

In order to simplify the presentation we omit all floor and ceiling signs whenever these

are not essential, and assume, whenever needed, that k is sufficiently large. Throughout

the proof we make no attempt to optimize the absolute constants whenever these are not

crucial. All logarithms are in base 2, unless otherwise specified.

2 The main proof

In this section we prove Theorem 1.1. It is convenient to split the proof into two main

parts corresponding to the structure of the desired universal graph described in the rest

of the section. This graph consists of two vertex disjoint parts. The larger one, on

n = (1 + o(1))2(k−1)/2 vertices, is a random graph G(n, 0.5). Using Talagrand’s Inequality

(applied to appropriately defined random variables) we show that with high probability it

contains an induced copy of every k-vertex graph in which no induced subgraph has “too

many” automorphisms (the precise quantitative definition of “too many” is given below).

The smaller one, on o(2k) vertices, contains induced copies of all k-vertex graphs containing

subgraphs with lots of automorphisms, and is constructed explicitly. This construction

is based on some group theoretic tools used to deduce enough structural information

about these graphs that, together with the known connection between adjacency labeling

schemes and induced universal graphs pointed out in [21], can be applied to obtain the

desired construction. We proceed with the details.

2.1 Asymmetric graphs

Call a graph on k vertices asymmetric if every induced subgraph of it has at most k4m

automorphisms, where

m = 2
√
k log k.

Note that, in particular, the number of automorphisms of any such graph is at most k4m.

Let H(k) denote the family of all asymmetric graphs on k vertices.

In this subsection we prove that there are small induced universal graphs for H(k): in

fact, the random graph with the appropriate number of vertices is, with high probability,
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such a universal graph.

Let n be the smallest integer that satisfies the following inequality(
n

k

)
k!

k8m
2−(k2) ≥ 1. (1)

Since the ratio between
(n+1
k

)
and

(n
k

)
is n+1

n−k+1 which is very close to 1 for the relevant

parameters, the left-hand-side of (1) for this smallest n is 1 + o(1), and thus one can solve

for n and see that it satisfies

n = 2(k−1)/2(1 +O(
log3/2 k√

k
)).

In particular, n = (1 + o(1))2(k−1)/2.

Theorem 2.1 Let n be as above and let G = (V,E) = G(n, 0.5) be the random graph on a

set V of n vertices obtained by picking, randomly and independently, each pair of vertices

to be an edge with probability 1/2. Then, with high probability (that is, with probability

that tends to 1 as k, and hence n, tend to infinity), G is an induced universal graph for

H(k).

In the proof of the above theorem we apply (a known consequence of) Talagrand’s

Inequality, described, for example, in [3], Theorem 7.7.1. The statement follows.

Theorem 2.2 (Talagrand’s Inequality) Let Ω =
∏p
i=1 Ωi, where each Ωi is a proba-

bility space and Ω has the product measure, and let h : Ω → R be a function. Assume

that h is Lipschitz, that is, |h(x) − h(y)| ≤ 1 whenever x, y differ in at most one coor-

dinate. For a function f : N → N , h is f -certifiable if whenever h(x) ≥ s there exists

I ⊆ {1, . . . , p} with |I| ≤ f(s) so that for every y ∈ Ω that agrees with x on the coordinates

I we have h(y) ≥ s. Suppose that h is f -certifiable and let Y be the random variable given

by Y (x) = h(x) for x ∈ Ω. Then for every b and t

Prob[Y ≤ b− t
√
f(b)] · Prob[Y ≥ b] ≤ e−t2/4.

We also need the following simple lemma.

Lemma 2.3 Let H ∈ H(k). Let K and K ′ be two sets of labelled vertices, each of size

k, where |K ∩ K ′| = k − i. Then the number of ways to choose the edges and nonedges

among all 2
(k

2

)
−
( k
k−i
)

pairs that lie in K or in K ′ so that the induced subgraph on K is

isomorphic to H and the induced subgraph on K ′ is also isomorphic to H is at most

k!

|Aut(H)|
kik4m.
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Proof: There are exactly k!
|Aut(H)| copies of H on K. For each such fixed copy, we bound

the number of embeddings of H in K ′. There are at most k(k − 1) · · · (k − i + 1) < ki

ways to choose the vertices of H mapped to the vertices of K ′−K. Fix a set T of these i

vertices and their embedding. In order to complete the embedding, the induced subgraph

of the copy of H placed in K on the set of vertices K ∩K ′ has to be isomorphic to the

induced subgraph of H on V (H)−T . If so, then the number of ways to embed these k− i
vertices is the number of automorphisms of this induced subgraph of H, which is, by the

definition of H, at most k4m. 2

Proof of Theorem 2.1: Let H be a fixed member of H(k) and let s = |Aut(H)| be the

size of its automorphsim group. Then

s ≤ k4m = k8
√
k log k.

Let G = (V,E) be the random graph G(n, 0.5), where n is as chosen in (1). For every

subset K ⊂ V of size |K| = k let XK denote the indicator random variable whose value is

1 if the induced subgraph of G on K is isomorphic to H and let X =
∑
K XK , where the

summation is over all subsets K ⊂ V of cardinality k. Thus X is the number of copies of

H in G. The expectation of each XK is clearly

E(XK) =
k!

s
2−(k2).

Thus, by linearity of expectation,

E(X) =

(
n

k

)
k!

s
2−(k2) ≥ k4m

where in the last inequality we used (1) and the fact that s ≤ k4m. Note also that since(
n

k

)
k!

k8m
2−(k2) = 1 + o(1)

it follows that the expectation of X is at most (1 + o(1))k8m < n0.01 (even if s = 1).

We say that two copies of H in G have a nontrivial intersection if they share at least

two vertices. Put µ = E(X). Let Z denote the random variable Z =
∑
K,K′ XKXK′

where the summation is over all (ordered) pairs of k-subsets K,K ′ of V that satisfy

2 ≤ |K ∩ K ′| ≤ k − 1. Thus, Z is the number of pairs of copies of H in G that have a

nontrivial intersection. We next compute the expectation of Z and show that it is much

smaller than µ (and hence also much smaller than µ2). Put ∆ = E(Z) and note that
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∆ =
∑k−1
j=2 ∆j where ∆j is the expected number of pairs K,K ′ with XK = XK′ = 1 and

|K ∩K ′| = j.

Claim: For each 2 ≤ j ≤ k − 1

∆j ≤ µ
1

n0.48
(2)

Proof of Claim: Consider two possible cases, as follows.

Case 1: 2 ≤ j ≤ 3k/4.

In this case

∆j ≤
(
n

k

)
k!

s
2−(k2)

(
k

j

)(
n− k
k − j

)
k!

s
2−(k2)+(j2).

Indeed, there are
(n
k

)
ways to choose the set K, and

(k
j

)(n−k
k−j
)

ways to choose K ′ with

|K ∩K ′| = j. There are k!
s ways to place a copy of H in K and k!

s ways to place a copy

of H in K ′ (this is an overcount, as these two copies have to agree on the edges in their

common part). This determines all the edges and nonedges in the induced graph on K

and on K ′, and the probability that G indeed has exactly these edges is

2−(k2) · 2−(k2)+(j2).

Therefore,

∆j

µ2
≤
(k
j

)(n−k
k−j
)
2(j2)(n

k

) ≤ (
k22(j−1)/2

n
)j ≤ (

1

n1/4−0.005
)j ≤ 1

n0.49
.

Here we used the fact that k = (2 + o(1)) log2 n and that since j ≤ 3k/4 it follows that

2(j−1)/2 ≤ n3/4+o(1). Recall that µ ≤ n0.01 and thus

∆j

µ
= µ

∆j

µ2
≤ 1

n0.48

as claimed.

Case 2: j = k − i, i ≤ k/4.

In this case we have, by Lemma 2.3

∆j ≤
(
n

k

)(
k

j

)(
n− k
k − j

)
k!

s
kik4m2−2(k2)+(j2).

Indeed, there are (
n

k

)(
k

j

)(
n− k
k − j

)
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ways to choose the sets K,K ′ having intersection j = k − i, and by Lemma 2.3 for each

such choice there are at most k!
s k

ik4m ways to place copies of H in each of them. The

probability that this coincides with all edges and nonedges of the induced subgraph of G

on K and on K ′ is 2−2(k2)+(j2).

Since µ ≥ k4m > 1 this implies that

∆j

µ2
<

∆j

µ
≤
(
k

j

)(
n− k
k − j

)
kik4m2−(k2)+(j2)

≤
(
k

i

)(
n− k
i

)
kik4m2−i(k−i) ≤ (k2n2−(k−i))ik4m ≤ 1

n0.5−o(1)
≤ 1

n0.48
.

This completes the proof of the claim.

Returning to the proof of the theorem, note that the variance of the random variable

X satisfies

V ar(X) ≤ E(X) +
∑
K,K′

Cov(XK , XK′)

where the summation is over all ordered pairs K,K ′ where 2 ≤ |K ∩K ′| ≤ k − 1 (since

for all other pairs the covariance is zero). Since

Cov(XK , XK′) = E(XKXK′)− E(XK)E(XK′) ≤ E(XKXK′)

it follows from the claim above that

V ar(X) ≤ µ+ ∆ ≤ (1 + o(1))µ.

Therefore, by Chebyshev’s Inequality (and the fact that µ is large), the probability that

X ≥ 3µ/4 is (much) bigger than 3/4. By Markov’s inequality, the probability that ∆ ≤ µ/4
is also (much) bigger than 3/4 and hence with probability larger than 1/2, both events

happen simultaneously, that is, the number of copies of H in G is at least 3µ/4 and

the number of pairs of copies of H with nontrivial intersection is smaller than µ/4. By

removing one copy of H from each pair with a nontrivial intersection we conclude that if

this is the case, then G contains a family of at least µ/2 copies of H with no two having

a nontrivial intersection.

Let h(G) be the maximum cardinality of a family of copies of H in G in which no two

members have a nontrivial intersection, and let Y be the random variable Y = h(G). Our

objective is to apply Talagrand’s Inequality (Theorem 2.2) to deduce that the probability

that Y is zero is tiny.
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By the above discussion, the probability that Y is at least µ/2 exceeds 1/2. It is also

clear that the value of Y = h(G) can change by at most 1 if we add or delete one edge to

G, and that h is f -certifiable where f(s) = s
(k

2

)
. Therefore, by Theorem 2.2 with b = µ/2

and t =
√
µ/k we conclude that the probability that Y = 0 is smaller than

e−µ/4k
2

which is much much smaller than 2−k
2
. As Y = 0 if and only if there is no copy of H in

G, and as the total number of graphs in H(k) is smaller than 2(k2), we conclude that G is

induced universal for H(k) with high probability. This completes the proof of Theorem

2.1. 2

2.2 Symmetric graphs

Recall that we called a graph on k vertices asymmetric if no induced subgraph of it has

more than k4m automorphisms, wherem = 2
√
k log k. Call a graph on k vertices symmetric

if it is not asymmetric. Let T(k) = F(k) −H(k) denote the set of all symmetric graphs

on k vertices

In this subsection we construct a small induced universal graph for the family T(k).

To this end it is desirable to obtain some useful structural properties of graphs with a large

automorphism group by utilizing known results about large subgroups of the symmetric

group. There is a rich literature about automorphism groups of graphs, see, for example [7]

and its many references. It seems, however, hopeless to try to characterize all graphs with

at most k vertices and at least k8
√
k log k automorphisms. Fortunately, for our purpose here

it suffices to prove and apply some partial information about their structure, as described

in what follows.

The minimal degree of a permutation group is the size of the minimum support of a

nontrivial element in it. There are several results stating that large permutation groups

have nontrivial elements with small supports (or equivalently, many fixed points), see, for

example, [22] and the references therein. For our purpose here the following simple fact

suffices.

Lemma 2.4 For any p > 1 and t, any subgroup S of size at least p4t of the symmetric

group Sp contains a permutation with at least t and at most p− 3t fixed points.

Proof: Consider the subgroup as a group of permutations of [p] = {1, 2, . . . , p}. By

the pigeonhole principle there is a subset A = {a1, a2, . . . , at} of t elements of [p] so that

there are at least |S|
p(p−1)···(p−t+1) > p3t permutations σ in S satisfying σ(i) = ai for all
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i ∈ [t] = {1, 2, . . . , t}. For any two such permutations σ1, σ2, the product σ1σ
−1
2 fixes all

points of A . Let S′ be the subgroup of S that fixes all points of A. Then |S′| > p3t.

The number of permutations in S′ that fixes all points but at most i is clearly at most(p−t
i

)
i! < pi, and since p3t−1 < p3t there is an element of S′ that fixes at most p−3t points.

2

Corollary 2.5 Let T = (V,E) be a graph in T(k). Then there are three pairwise disjoint

sets of vertices A,B,C of T , each of cardinality m, so that the following holds. There is

a numbering of the elements of A,B,C: A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bm} and

C = {c1, c2, . . . , cm} such that for any 1 ≤ i, j ≤ m, aibj is an edge of T if and only if aicj

is an edge of T . That is, for each 1 ≤ j ≤ m, bj and cj have exactly the same neighbors

in the set A.

Proof: By the definition of T(k) there is an induced subgraph T ′ of T on p ≤ k vertices

whose group of automorphisms S is of size at least k4m ≥ p4m. By Lemma 2.4 this

group contains a permutation σ with at least m and at most p − 3m fixed points. Let

A = {a1, a2, . . . am} be m of these fixed points and consider the expression of σ as a

product of (nontrivial) cycles. The total length of these cycles is at least 3m. From each

cycle (w1, w2, . . . , wr) of length r, define br/2c disjoint pairs

(w1, w2), (w3, w4), . . . (w2br/2c−1, w2br/2c).

Altogether we get at least m such pairs, let (bi, ci), (1 ≤ i ≤ m) be m of them. Observe,

now, that for every 1 ≤ j ≤ m, σ maps bj to cj and fixes all elements ai. As σ is an

automorphism of T this means that for every i, aibj is an edge of T if and only if so is

aicj . 2

Lemma 2.6 Let T ′ be the graph obtained from a complete graph on k vertices by removing

all edges of a complete bipartite graph Km,m in it, where, as before, m = 2
√
k log k. Let

[k] = {1, 2, . . . , k} be the set of vertices of T ′ and suppose A′ = {1, 2, . . . ,m}, B′ =

{m+ 1, . . . , 2m}, C ′ = {2m+ 1, 2m+ 2, . . . , 3m} and D′ = {3m+ 1, 3m+ 2, . . . , k}, where

there are no edges between A′ and C ′ and all other pairs of vertices of T ′ are adjacent.

Then there is an orientation T ′′ of the edges of T ′ in which all edges between A′ and

B′ are oriented from A′ to B′ and the maximum outdegree of a vertex in T ′′ is at most
k
2 −

m2

k +O(1) < k
2 − 2 log k.

Proof: We need two simple facts, as follows.
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Fact 1: For any integer g > 1 the edges of the complete graph Kg on g vertices can be

oriented so that every outdegree is at most g/2.

Indeed, if g is odd then Kg has an Eulerian orientation in which every outdegree is exactly

(g − 1)/2, and if g is even, omit a vertex from an Eulerian orientation of Kg+1 to get an

orientation as needed.

Fact 2: For any positive integers p, q and r ≤ q there is a bipartite graph with classes

of vertices P and Q of sizes p and q, respectively, so that every vertex of P has degree

exactly r and every vertex of Q has degree either bpr/qc or dpr/qe.

One simple way to prove this fact is to number the vertices of Q: u1, u2, . . . , uq and to

connect, for each i, vertex number i of P to the vertices

u(i−1)r+1, u(i−1)r+2, . . . , uir

where the indices are reduced modulo q.

Using these two facts construct an orientation T ′′ of T ′ as follows. Orient the edges of

the complete graph on A′, using Fact 1, so that each outdegree is at most m/2. Similarly,

orient the edges of the complete graph on B′ ∪ C ′ so that every outdegree is at most

m, and orient the edges of the complete graph on D′ so that every outdegree is at most

(k − 3m)/2. All edges between A′ and B′ are oriented from A′ to B′. By Fact 2, for any

real x ∈ (0, 1) the edges of the complete bipartite graph with vertex classes A′ and D′ can

be oriented so that the outdegree of each vertex of A′ is at most x|D′|+ 1 = x(k−3m) + 1

and the outdegree of each vertex of D′ is at most (1− x)m+O(1). Similarly, for any real

y ∈ (0, 1) the edges of the complete bipartite graph with vertex classes B′∪C ′ and D′ can

be oriented so that the outdegree of each vertex of B′∪C ′ is at most y(k−3m)+1 and the

outdegree of each vertex of D′ is at most (1 − y)2m + O(1). In the resulting orientation

the outdegrees of the vertices of A′, B′∪C ′ and D′ are bounded, up to absolutely bounded

additive terms, by

3

2
m+ x(k − 3m), m+ y(k − 3m) and

k − 3m

2
+ (1− x)m+ (1− y)2m,

respectively. Since m = o(k) it is not difficult to check that there are x, y ∈ (0, 1) (which

are both 1/2 +o(1)) so that these 3 quantities are equal. Although the precise expressions

for x and y are not needed, we note here that these are:

x =
1

2
− m2

k(k − 3m)
, y =

1

2
− m2

k(k − 3m)
+

m

2(k − 3m)
.

With these x and y all three quantities above are exactly k
2 −

m2

k .
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It follows that there is an orientation T ′′ in which all outdegrees are equal, up to

an O(1) additive error, and as the total number of edges is
(k

2

)
−m2 this (as well as the

explicit computation above) implies that every outdegree in T ′′ is at most k
2−

m2

k +O(1) <
k
2 − 2 log k, completing the proof of the lemma. 2

Theorem 2.7 There is an induced universal graph for T(k) whose number of vertices is

at most 2k/2−log k.

Proof: An adjacency labeling scheme for a family of graphs is a way of assigning labels

to the vertices of each graph in the family such that given the labels of two vertices

in the graph it is possible to determine whether or not they are adjacent in the graph,

without using any additional information besides the labels. It is easy and well known

that a family of graphs has a labeling scheme in which every label contains L bits if and

only if there is an induced universal graph for the family with at most 2L bits. This

is implicit in the work of Moon [26] and is mentioned explicitly in lots of subsequent

papers starting with [21]. Indeed, for a given labeling scheme for a family, the graph

whose vertices are all possible labels in which two vertices are adjacent if and only if their

labels correspond to adjacent vertices is an induced universal graph for the family (and

the converse is equally simple). It thus suffices to describe a labeling scheme for the family

T(k) in which each label consists of at most k/2 − log k bits. Given a graph T ∈ T(k)

we describe the labels of its vertices. By Corollary 2.5 T contains three disjoint subsets

of vertices A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bm} and C = {c1, c2, . . . , cm} satisfying

the assertion of the lemma. Number the vertices of T by the integers 1, 2, . . . , k so that

ai gets the number i, bi the number m + i and ci the number 2m + i, where the rest of

the numbering is arbitrary. Let T ′′ be the graph constructed in Lemma 2.6. The label of

vertex number i of T is the number i followed by one bit for each outneighbor j of i in

T ′′, in order. This bit is 0 if i and j are not adjacent in T , and is 1 if they are adjacent.

Note that the length of each label is at most log k+ k/2− 2 log k ≤ k/2− log k, where the

first log k bits are used to present the number of the vertex.

It is not difficult to check that this is a valid labeling scheme. Given the labels of two

vertices, if it is not the case that one of them lies in A and the other in C, one of the labels

contains the information about the adjacency between the two vertices, and the labels

(together with the graph T ′′ which is known as part of the labeling scheme) determine

this information. The only exceptional case is when one of the two vertices is ai and the

other is cj . But in this case the label of ai determines whether or not ai is adjacent to bj ,

and this determines the information about the adjacency between ai and cj as well, by

Corollary 2.5. This completes the proof of the theorem. 2
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2.3 The proof of Theorem 1.1

The assertion of Theorem 1.1 clearly follows from that of Theorem 2.1 together with that

of Theorem 2.7. The required induced universal graph is simply the vertex disjoint union

of the graph in Theorem 2.1 and the one in Theorem 2.7. Note that the size of the second

graph is negligible compared to that of the first one, and thus the proof gives that the

minimum possible number of vertices of an induced universal graph for F(k), namely, the

function f(k), satisfies

f(k) ≤ 2(k−1)/2(1 +O(
log3/2 k√

k
)).

2

3 Random graphs

In this section we establish a sharp estimate for the minimum integer n = n(k) so that

the random graph G(n, 0.5) is induced universal for F(k) with high probability. We first

establish this estimate in Subsection 3.1, and then prove a stronger hitting time result in

Subsection 3.2. The basic argument in the first subsection is similar to the one used in the

proof of Theorem 2.1, with one additional simple trick that simplifies the computation.

The idea is to insist on getting each labelled k-vertex graph F ∈ F(k) as an induced

subgraph of the labelled random graph G = G(n, 0.5) on the set of vertices [n] by an order

preserving mapping, namely, the embedding of H in G respects the order of the labels.

Note that for such embeddings, for every fixed labelled F and every set K of k vertices of G,

the probability that the labelled induced subgraph of G on K is (monotonely) isomorphic

to F is exactly 2−(k2), independently of the number of automorphisms of F .

3.1 A tight estimate

Let n be the smallest integer that satisfies(
n

k

)
2−(k2) ≥ 4k4. (3)

As in Subsection 2.1, since the ratio between
(n+1
k

)
and

(n
k

)
is n+1

n−k+1 which is very close

to 1 for the relevant parameters, the left-hand-side of (3) for this smallest n is 1 + o(1)

and thus, by Stirling’s Formula

n =
k

e
2(k−1)/2(1 +O(

log k

k
)),

12



and in particular, n = (1 + o(1))ke2(k−1)/2.

Theorem 3.1 Let n be as above and let G = (V,E) = G(n, 0.5) be the random graph on

a set V = {1, 2, . . . , n} of n labelled vertices. Then, with high probability every labelled

F ∈ F(k) is an induced subgraph of G with an order preserving embedding. In particular,

G is an induced universal graph for F(k) with high probability.

Proof: Let F be a fixed member of F(k) considered as a labelled graph on [k] =

{1, 2, . . . , k}, and let G be the random graph G(n, 0.5) on [n] = {1, 2, . . . , n}, where n

is as chosen in (3). For every subset K ⊂ V of size |K| = k let XK denote the indicator

random variable whose value is 1 if the induced subgraph of G on K is isomorphic to F

with a monotone embedding and let X =
∑
K XK , where the summation is over all subsets

K ⊂ V of cardinality k. Thus X is the number of copies of F in G. The expectation of

each XK is clearly

E(XK) = 2−(k2),

and thus, by linearity of expectation,

E(X) =

(
n

k

)
2−(k2) ≥ 4k4

where the last inequality follows from (3).

As before, say that two copies of F in G have a nontrivial intersection if they share

at least two vertices. Put µ = E(X), then µ = (1 + o(1))4k4. Let Z denote the random

variable Z =
∑
K,K′ XKXK′ where the summation is over all (ordered) pairs of k-subsets

K,K ′ of V that satisfy 2 ≤ |K ∩K ′| ≤ k − 1. Thus, Z is the number of pairs of copies

of F in G that have a nontrivial intersection. We next compute the expectation of Z

and show that it is much smaller than µ (and hence also much smaller than µ2). Put

∆ = E(Z) and note that ∆ =
∑k−1
j=2 ∆j where ∆j is the expected number of pairs K,K ′

with XK = XK′ = 1 and |K ∩K ′| = j.

Claim: For each 2 ≤ j ≤ k − 1

∆j ≤ µ
1

n0.48
(4)

Proof of Claim: Consider two possible cases, as follows.

Case 1: 2 ≤ j ≤ 3k/4.

13



In this case

∆j ≤
(
n

k

)
2−(k2)

(
k

j

)(
n− k
k − j

)
2−(k2)+(j2).

Indeed, there are
(n
k

)
ways to choose the set K, and

(k
j

)(n−k
k−j
)

ways to choose K ′ with

|K ∩K ′| = j. There is a unique way to place a copy of F monotonely in K and a unique

way to place a copy of F in K ′. This is an overcount, as these two copies have to agree on

the edges in their common part. This determines all the edges in the induced graph on K

and on K ′, and the probability that G indeed has exactly these edges and nonedges is

2−(k2) · 2−(k2)+(j2)

Therefore,

∆j

µ2
≤
(k
j

)(n−k
k−j
)
2(j2)(n

k

) ≤ (
k22(j−1)/2

n
)j ≤ (

1

n1/4−0.005
)j ≤ 1

n0.49
.

Here we used the fact that k = (2 + o(1)) log2 n and that since j ≤ 3k/4 it follows that

2(j−1)/2 ≤ n3/4+o(1). Recall that µ = (1 + o(1))4k4 ≤ n0.01 and thus

∆j

µ
≤ µ∆j

µ2
≤ 1

n0.48

as claimed.

Case 2: j = k − i, i ≤ k/4.

In this case we also have

∆j ≤
(
n

k

)(
k

j

)(
n− k
k − j

)
2−2(k2)+(j2).

Indeed, there are (
n

k

)(
k

j

)(
n− k
k − j

)
ways to choose the sets K,K ′ having intersection j = k− i, and for each such choice there

is at most one way to place copies of F in each of them monotonely. The probability that

this coincides with all edges and nonedges of the induced subgraph of G on K and on K ′

is 2−2(k2)+(j2). Since µ ≥ 4k4 > 1 this implies that

∆j

µ2
<

∆j

µ
≤
(
k

j

)(
n− k
k − j

)
2−(k2)+(j2)

14



≤
(
k

i

)(
n− k
i

)
2−i(k−i) ≤ (kn2−(k−i))i ≤ 1

n0.5−o(1)
≤ 1

n0.48
.

This completes the proof of the claim.

Returning to the proof of the theorem, note that the variance of the random variable

X satisfies

V ar(X) ≤ E(X) +
∑
K,K′

Cov(XK , XK′)

where the summation is over all ordered pairs K,K ′ where 2 ≤ |K ∩K ′| ≤ k − 1 (since

for all other pairs the covariance is zero). Since

Cov(XK , XK′) = E(XKXK′)− E(XK)E(XK′) ≤ E(XKXK′)

it follows from the claim above that

V ar(X) ≤ µ+ ∆ ≤ (1 + o(1))µ.

Therefore, by Chebyshev’s Inequality, the probability that X ≥ 3µ/4 is (much) bigger

than 3/4. By Markov’s inequality, the probability that ∆ ≤ µ/4 is also (much) bigger

than 3/4 and hence with probability larger than 1/2, both events happen simultaneously,

that is, the number of copies of F in G is at least 3µ/4 and the number of pairs of copies of

F with nontrivial intersection is smaller than µ/4. By removing one copy of F from each

pair with a nontrivial intersection we conclude that if this is the case, then G contains a

family of at least µ/2 copies of F with no two having a nontrivial intersection.

Let h(G) be the maximum cardinality of a family of copies of F in G in which no two

members have a nontrivial intersection, and let Y be the random variable Y = h(G). We

next apply Talagrand’s Inequality (Theorem 2.2) to deduce that the probability that Y is

zero is tiny.

By the above discussion, the probability that Y is at least µ/2 exceeds 1/2. It is also

clear that the value of Y = h(G) can change by at most 1 if we add or delete one edge to

G, and that h is f -certifiable where f(s) = s
(k

2

)
. Therefore, by Theorem 2.2 with b = µ/2

and t =
√
µ/k we conclude that the probability that Y = 0 is smaller than

e−µ/4k
2

which is much smaller than 2−k
2
. As Y = 0 if and only if there is no (monotone) copy of

F in G, and as the total number of labelled graphs F in F(k) is 2(k2) we conclude that G

is induced universal for F(k) with high probability. This completes the proof of Theorem

3.1. 2
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Remark: The quantity
(n
k

)
2−(k2) is exactly the expected number of cliques of size k in

G = G(n, 0.5). Therefore, if this number is o(1) then the probability that G contains such

a clique is o(1), by Markov’s Inequality. It follows that the smallest n such that G(n, 0.5) is

induced universal for F(k) with high probability is at least (1+o(1))ke2(k−1)/2. By Theorem

3.1 this is tight up to the o(1)-term and the smallest n is in fact (1 + o(1))ke2(k−1)/2. Note

that the above estimate suffices to show that given n, the largest k so that the random

graph G = G(n, 0.5) is induced universal for F(k) with high probability is always one of

two consecutive numbers and for “most” values of n it is a single number. It is well known

that this is the case for the clique number of G, as proved in [25], [10]. The result here

shows that for most values of n, with high probability, the value k which is the size of the

largest clique in G is equal to the largest k so that G is induced universal for F(k) (and for

every n these two numbers differ by at most 1 with high probability). The reason is that

since the clique of size k and its complement have the largest number of automorphisms

among all graphs of size k, once the random graph contains them, it typically contains

also all the graphs on k vertices with a smaller number of automorphisms. A more precise

version of this statement appears in the next subsection. Here “most” means that for any

large N , if n is chosen randomly and uniformly among the numbers between N and 2N ,

then with probability that tends to 1 as N tends to infinity there is a unique k so that the

largest clique of G = G(n, 0.5) is k with high probability and G is induced universal for

F(k) (with the same k) with high probability. Indeed, this is the case whenever n satisfies

the following: if k0 is the largest k for which
(n
k

)
2−(k2) ≥ 1 then in fact

( n
k0

)
2−(k02 ) ≥ 4k4

0.

It is worth noting that there are values of n for which the probability that the size of

the largest clique of G = G(n, 0.5) is one more than the largest k for which G is induced

universal for F(k), is bounded away from zero and one. Indeed, if λ > 0 is bounded away

from 0 and 1 and
(n
k

)
2−(k2) = λ, then one can use the Stein-Chen method to conclude that

the probability that the size of the maximum clique in G is k, is (1 + o(1))(1− e−λ). This

is also the probability that the size of the maximum independent set in G is k, and these

two events are nearly independent. In this case with probability (1 + o(1))e−λ(1 − e−λ)

the size of the maximum independent set is smaller by 1 than that of the maximum clique,

and the largest k for which G is induced universal for F(k) is, with high probability, the

smaller of these two numbers. We omit the detailed argument, but mention that it is very

similar to the one appearing in [2], Section 2.
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3.2 A hitting time result

Erdős and Rényi [19] introduced the study of the evolution of the random graph, in which

one considers a graph process starting with the empty graph on n labelled vertices and

continuing by adding all
(n

2

)
edges of the complete graph on these vertices one by one,

according to a uniformly chosen random permutation. For any monotone graph property

one can then study the hitting time of the property, that is, the smallest i so that after

adding i edges the resulting graph satisfies the property. There are several known results

showing that the hitting times of two monotone properties are, with high probability,

identical. The best known result of this type, proved independently by Bollobás [9] and

by Ajtai, Komlós and Szemerédi [1] (see also [23] for a statement of the result), is that the

hitting times for having minimum degree 2 and being Hamiltonian are identical, with high

probability. Another early result appears in [12], where it is shown that the hitting times

for having minimum degree k and being k-connected are identical, with high probability.

Here we suggest a variant of the random graph process initiated by Erdős and Rényi,

which we call the vertex random graph process (with parameter p). For a probability

p ∈ [0, 1] let G1, G2, G3 . . . be the infinite sequence of random graphs defined as follows.

G1 is the graph with 1 vertex v1, and for each i ≥ 1, Gi+1 is obtained from Gi by adding

to Gi a new vertex vi+1, where for each j ≤ i randomly and independently, vjvi+1 forms

an edge with probability p. Therefore, Gn is distributed like the usual binomial random

graph G(n, p). When p = 0.5 we do not mention the parameter p and refer to this process

as the vertex random graph process. For a hereditary property P , the hitting time for not

having P is the smallest i so that Gi does not satisfy P . In this terminology, we prove the

following strengthening of Theorem 3.1.

Theorem 3.2 Let G1, G2, . . . be the vertex random graph process defined above and let

k > 2 be an integer. Then, with high probability (that is, with probability that tends to 1 as

k tends to infinity) the hitting time for containing Kk and its complement Kk as induced

subgraphs is the same as that of the property of being induced universal for F(k). That is,

with high probability as soon as Gi contains a clique and an independent set of size k, it

already contains all graphs on k vertices as induced subgraphs.

The proof combines a modification of the argument in the proof of Theorem 3.1 with some

group theoretic tools that supply an upper bound for the number of k-vertex graphs with

very large automorphism groups, as stated in the following lemma. As before we assume

here, whenever this is needed, that k is sufficiently large.
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Lemma 3.3 (i) A k-vertex graph H has k! automorphisms if and only if H = Kk or

H = Kk. In any other case the number of automorphisms is at most (k − 1)!

(ii) For any constant b ≥ 1 there is a constant B = B(b) so that the number of k-vertex

graphs with at least k!/kb automorphsims is at most B.

Proof: Let H be a k-vertex graph, let A denote its group of automorphisms and put

s = |A|. Thus A is a group of permutations acting on the set of k vertices of H, which

we denote by [k] = {1, 2, . . . , k}. Clearly if A is doubly transitive then H is either the

complete graph Kk or the empty graph Kk. If A is primitive but not doubly transitive

then, as proved by Babai in [6], |A| ≤ e4
√
k ln2 k which is much smaller than k!/kb for any

fixed b provided k is sufficiently large. (Note that we do not need the nearly tight result

of Babai here, the estimates in [8] (see also [31], [17]) or in [28] suffice).

If A is not primitive, but is transitive, then there is partition of the set [k] into blocks

of equal size exceeding 1, call it t, so that each permutation in A preserves the block

structure. Therefore, in this case, |A| = s ≤ (k/t)!(t!)k/t. Without trying to optimize the

estimate we show that in this case

s ≤ k!

2k/2−1
. (5)

Indeed, since both t and k/t are between 2 and k/2 we have

s

k!
≤ (k/t)!(t!)k/t

k!
=

[t(t− 1) · · · 2]k/t

k(k − 1) · · · (k/t+ 1)

≤ [t(t− 1) · · · 2]k/t−1

k(k − 1) · · · (k/t+ t)
≤ [(t+ 2)/2](t−1)(k/t−1)

(t+ 2)k−k/t−t+1
≤ (1/2)k−k/t−t+1 ≤ (1/2)k/2−1,

as claimed.

Finally, if A is not transitive, and its largest orbit is of size m < k then s ≤ (k−m)!m!

Part (i) follows, since by the above arguments if A is not doubly transitive then if it is

primitive then s is far smaller than (k − 1)!, this is the case also if it is transitive but not

primitive, and finally if it is not transitive then s is at most (k − 1)!

To prove part (ii) note that if s is at least k!/kb and A is not doubly transitive then it

cannot be primitive and cannot be transitive but not primitive, as in both cases s is much

smaller. Thus A is not transitive. If its largest orbit is of size smaller than k − b, then

s ≤ (b + 1)!(k − b − 1)! < k!/kb hence the largest orbit must be of size m ≥ k − b. The

group A must act primitively and hence doubly transitively on this orbit, since otherwise,

again, s is far too small. Thus H contains a clique or an independent set of size m ≥ k− b
on the set W of the vertices in this orbit. Let the other vertices of H be u1, u2, . . . , ug,
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where g ≤ b. Split the vertices of W into at most 2g disjoint subsets according to their

neighbors in U = {u1, u2, . . . , ug}. If the largest subset is of size smaller than k − b − 1

then, again, s can be at most some C(b)(k − b − 1)! < k!/kb, contradiction. Thus the

largest subset is of size at least k − b. There are at most

2(g2) < 2b
2/2

possibilities for the induced subgraph of H on U = {u1, u2, . . . , ug}, and less than(
2g + b

b

)
< 2b

2

possibilities to choose the numbers of vertices of W in each of the above subsets. The

product of these two bounds is an upper bound for the number B = B(b) of k-vertex

graphs with at least k!/kb automorphisms, completing the proof of the lemma. 2

Lemma 3.4 Let H be a k-vertex graph, suppose it is neither complete nor empty, and let

s denote the number of its automorphisms. Assume s ≥ k!
k5

and let n be an integer so that(
n

k

)
2−(k2) =

1 + o(1)√
k

.

Then the probability that the random graph G = G(n, 0.5) contains no induced copy of H

is at most 1+o(1)√
k
.

Proof: By Lemma 3.3, part (i), s ≤ (k−1)! Thus, the expected number of induced copies

of H in G, which we denote by µ, satisfies

µ =

(
n

k

)
k!

s
2−(k2), (1 + o(1))

√
k ≤ µ ≤ (1 + o(1))k4.5.

As in the proof of Theorm 3.1, the expected number of pairs of induced copies of H with

a nontrivial intersection is at most ∆ =
∑k−1
j=2 ∆j , where

∆j ≤
(
n

k

)
k!

s
2−(k2)

(
k

j

)(
n− k
k − j

)
k!

s
2−(k2)+(j2).

Considering separately the cases j ≤ 3k/4 and j = k − i, i ≤ k/4 it is easy to check,

following the computation in the proof of Theorem 3.1 with the obvious modifications,

that ∆ < µ
n0.4 (with room to spare). Therefore, if X is the random variable counting the

number of induced copies of H in G then the expectation of X is µ ≥ (1 + o(1))
√
k and

its variance is at most µ+ ∆ = (1 + o(1))µ. The desired result follows from Chebyshev’s

Inequality. 2
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Lemma 3.5 Let H be a k-vertex graph with s ≤ k!
k5

automorphisms. Let n be, as before,

an integer so that (
n

k

)
2−(k2) =

1 + o(1)√
k

.

Then the probability that the random graph G = G(n, 0.5) contains no induced copy of H

is at most e−k
2

Proof: Here too the proof is similar to that of Theorem 3.1, with one extra twist, as

follows. Define a real p ∈ (0, 1) so that(
n

k

)
k!

s
2−(k2)p = 4k4.

Note that by the assumptions on n and s, p is at most 4+o(1)√
k

and k!
s p = (4 + o(1))k4.5.

Let H be a random collection of induced copies of H in the random graph G = G(n, 0.5)

obtained by picking, randomly and independently, each induced copy of H to be a member

ofH with probability p. The expected number of copies of H inH, denoted by µ, is exactly

µ =

(
n

k

)
k!

s
2−(k2)p = 4k4.

Let Z be the random variable counting the number of ordered pairs of members of H with

a nontrivial intersection. Then the expectation of Z is ∆ =
∑k−1
j=2 ∆j where

∆j ≤
(
n

k

)
k!

s
2−(k2)p

(
k

j

)(
n− k
k − j

)
k!

s
2−(k2)+(j2)p

As before, it is not difficult to check that each ∆j is smaller than µ 1
n0.41 and thus ∆ ≤

µ
n0.4 = o(µ) = o(µ2).

Therefore, by Chebyshev’s Inequality, the probability that the size of H is at least

3µ/4 = 3k4 is (much) bigger than 3/4. By Markov’s inequality, the probability that

∆ ≤ µ/4 is also (much) bigger than 3/4 and hence with probability larger than 1/2, both

events happen simultaneously, that is, the size of H is at least 3µ/4 and the number of

pairs of members of H with nontrivial intersection is smaller than µ/4. By removing one

copy of H from each pair with a nontrivial intersection we conclude that if this is the case,

then G contains a family of at least µ/2 = 2k4 copies of H with no two having a nontrivial

intersection.

Let h(G) be the maximum cardinality of a family of copies of H in G in which no two

members have a nontrivial intersection, and let Y be the random variable Y = h(G).
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By the above discussion, the probability that Y is at least µ/2 = 2k4 exceeds 1/2. It is

also clear that the value of Y = h(G) can change by at most 1 if we add or delete one edge

to G, and that h is f -certifiable where f(s) = s
(k

2

)
. Therefore, by Talagrand’s Inequality

(Theorem 2.2) with b = µ/2 and t =
√
µ/k we conclude that the probability that Y = 0

is smaller than

e−µ/4k
2

= e−k
2
.

Since if Y > 0 then G contains an induced copy of H this completes the proof of the

lemma. 2

Proof of Theorem 3.2: For a given (large) k let n be the smallest integer so that(
n

k

)
2−(k2) ≥ 1√

k
.

It is easy to see that in fact the left hand side is 1+o(1)√
k

. By Markov’s Inequality, the

probability that in the vertex random graph process the graph number n, Gn, contains

a clique of size k is at most 1+o(1)√
k

= o(1). On the other hand we claim that with high

probability Gn contains an induced copy of every k-vertex graph H besides Kk,Kk. For

the graphs H with at least k!
k5

automorphsims this follows from Lemma 3.4 and Lemma

3.3, part (ii), as there are only O(1) such graphs and the probability of not containing each

given one is at most 1+o(1)√
k

. For the graphs H with a smaller number of automorphisms

this follows from Lemma 3.5, as there are less than 2k
2/2 such graphs and the probability

of not containing a given one is at most e−k
2
. This completes the proof. 2

Theorem 3.2 and its proof together with the Stein-Chen method provide a sharp es-

timate for the probability that the random graph G = G(n, 0.5) is induced universal for

F(k). This is stated in Theorem 1.2 in Section 1. The proof, which is a short consequence

of the proof of Theorem 3.2 follows.

Proof of Theorem 1.2: Fix a small ε > 0. By Markov’s Inequality the probability

that G contains a copy of Kk is at most λ, hence if λ < ε then (1− e−λ)2 (which is close

to 0) is indeed a good approximation of the desired probability. Similarly, if λ > 1/ε is

large, then by the known results of [10], [25] (proved by the second moment method) the

probability that G contains a copy of Kk and of Kk is very close to 1 and the quantity

(1− e−λ)2 is a good approximation of that. By Theorem 3.2 and its proof the probability

that G is induced universal for F(k) is very close to the probability it contains the two

graphs above. If λ is neither tiny nor huge the desired result follows from this fact and

the Stein-Chen method which gives that the probability that G contains a copy of Kk is
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(1 + o(1))(1 − e−λ), that this is also the probability that it contains an induced copy of

Kk, and that these two events are nearly independent. The detailed computation required

for applying the Stein-Chen method is omitted. As mentioned in the remark following the

proof of Theorem 3.1 this computation is very similar to the one in [2], Section 2. 2

4 Extensions

The proof of Theorem 1.1 can be extended to supply similar tight estimates for several

related questions. In this section we describe some examples. In most of them the adap-

tation of the proof is simple, the only case that requires several additional ideas is that of

bipartite graphs, described in Subsection 4.5.

4.1 Tournaments

A tournament on k vertices is an orientation of a complete graph on k vertices, that is,

a directed graph on k vertices so that for every pair u, v of distinct vertices there is either

a directed edge from u to v or a directed edge from v to u (but not both). It is clear

that the number of tournaments on k labelled vertices is 2(k2), and therefore the number

of pairwise non-isomorphic tournaments on k vertices is at least

2(k2)

k!
.

Let Tk denote the set of all tournaments on k vertices. Call a tournament G induced

universal for Tk if it contains every member of Tk as an induced sub-tournament, and

let t(k) denote the minimum possible number of vertices of such a universal tournament.

The obvious counting argument shows that t(k) ≥ 2(k−1)/2 and Moon [27] showed that

t(k) ≤ O(k2k/2). This has been improved in [4], where it is proved that t(k) ≤ 16 · 2dk/2e.
Our method here suffices to determine t(k) up to a lower order additive term.

Theorem 4.1 The minimum possible number of vertices t(k) of a tournament that con-

tains a copy of every k-vertex tournament satisfies

2(k−1)/2 ≤ t(k) ≤ 2(k−1)/2(1 +O(
log3/2 k√

k
)).

Therefore t(k) = (1 + o(1))2(k−1)/2.

The proof is similar to that of Theorem 1.1. We first show, using Talagrand’s Inequal-

ity, that a random tournament on n vertices, where n is as in (1), contains, with high
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probability, a copy of every tournament on k vertices in which any induced subgraph has

less than k8
√
k log k automorphisms. Next we prove that there is a much smaller tourna-

ment that contains a copy of all the k-vertex tournaments containing a subgraph with

that many automorphisms. This is done by proceeding as in Section 2, using the large

automorphism group to describe an appropriate labeling scheme for these tournaments.

The desired universal tournament is the vertex disjoint union of the random tournament

with the smaller one above. We omit the details.

4.2 Directed graphs

Let D(k) denote the set of all directed graphs on k vertices. Any two vertices u, v in a

member D ∈ D(k) can be either nonadjacent, or connected by a directed edge from u to

v, or by one from v to u, or by both. Therefore the cardinality of D(k) is at least

4(k2)

k!
.

A directed graph G is induced universal for D(k) if every member of D(k) is an induced

subgraph of G. Let d(k) denote the minimum possible number of vertices of such a graph.

Simple counting shows that d(k) ≥ 2k−1. In [4] the authors prove that this is tight up to

a constant factor, proving that d(k) ≤ 16 · 2k−1 and mention the open problem of closing

the gap between the upper and lower bound. Our method here gives the following tight

estimate.

Theorem 4.2 The minimum possible number of vertices d(k) of a directed graph that

contains a copy of every k-vertex directed graph satisfies

2k−1 ≤ d(k) ≤ 2k−1(1 +O(
log3/2 k√

k
)).

Therefore d(k) = (1 + o(1))2k−1.

The proof is a straightforward modification of the ones of Theorem 1.1 and Theorem 4.1.

4.3 Oriented graphs

Let O(k) denote the set of all oriented graphs on k vertices. Any two vertices u, v in a

member O ∈ O(k) can be either nonadjacent, or connected by a directed edge from u to

v, or by one from v to u, but not by both. Therefore the cardinality of O(k) is at least

3(k2)

k!
.

23



An oriented graph G is induced universal for O(k) if every member of O(k) is an induced

subgraph of G. Let r(k) denote the minimum possible number of vertices of such a graph.

Simple counting shows that r(k) ≥ 3(k−1)/2. Our technique shows that this is tight up to a

small additive error. The proof, which is a simple variant of the previous ones, is omitted.

Theorem 4.3 The minimum possible number of vertices r(k) of an oriented graph that

contains an induced copy of every k-vertex oriented graph satisfies

3(k−1)/2 ≤ r(k) ≤ 3(k−1)/2(1 +O(
log3/2 k√

k
)).

Therefore r(k) = (1 + o(1))3(k−1)/2.

4.4 Edge colored complete graphs

For a fixed positive integer r, let K(k, r) denote the set of all complete graphs on k vertices

whose edges are colored by the r colors {1, 2, . . . , r}. The number of members of K(r) is

thus at least
r(

k
2)

k!
.

Note that the case r = 2 is equivalent to that of all undirected graphs on k vertices. Let

kr(k) denote the minimum possible number of vertices of an induced universal graph G

for K(r, k), that is, the minimum number of vertices of a complete r-edge colored graph

that contains every member of K(r, k) as an induced subgraph. Counting shows that

kr(k) ≥ r(k−1)/2. Our method here gives

Theorem 4.4 For every fixed r and large k, the function kr(k) satisfies

r(k−1)/2 ≤ kr(k) ≤ r(k−1)/2(1 +O(
log3/2 k√

k
)).

Therefore kr(k) = (1 + o(1))r(k−1)/2.

4.5 Bipartite graphs

Let B(k) denote the set of all bipartite graphs B = (U1, U2, E) on k vertices. Here the

vertex classes of B are U1, U2. Call B a (k1, k2)-bipartite graph if |B1| = k1 and |B2| = k2

(where k1 + k2 = k). A bipartite graph G with vertex classes V1, V2, each of size n, is an

induced universal graph for B(k) if for any member B = (U1, U2, E) of B(k) there are sets

U ′1 ⊂ V1 and U ′2 ⊂ V2 and bijections from U1 to U ′1 and from U2 to U ′2 which map B to
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an isomorphic induced subgraph of G. Note that we insist here that the vertices of U1

are mapped to vertices in V1, and the same holds for U2, V2. Allowing arbitrary mappings

from the vertices of B to those of G is also possible, and does not cause any significant

changes, hence we prefer to consider the definition given above. Let b(k) denote the

smallest possible n so that an induced universal bipartite graph as above for B(k) exists.

Since this graph has to contain all (bk/2c, dk/2e)-bipartite graphs as induced subgraphs,

a simple counting argument shows that for even k, b(k) ≥ 2k/4 whereas for odd k,

b(k) ≥ 2(k2−1)/4k = 2k/4(1−O(1/k)).

In [24] it is shown that b(k) ≤ O(k22k/4) and in [4] it is proved that b(k) ≤ c2k/4 for some

absolute constant c (which is not specified in the paper, but is certainly less than 100.)

Here we show that the lower bound is tight, up to a lower order additive term.

Theorem 4.5 The function b(k) satisfies

2k/4(1−O(1/k)) ≤ b(k) ≤ 2k/4(1 +O(
log3/2 k√

k
))

Therefore b(k) = (1 + o(1))2k/4.

The proof is similar to the previous ones, but requires a few additional arguments. We

first note that as shown in [4], it is easy to deal with all unbalanced bipartite graphs. This

is stated in the following lemma.

Lemma 4.6 ([4], Theorem 8.1) For every r there is a bipartite graph Gr with classes of

vertices V1, V2, each of size at most n = 2k ·2k/4−r2/k, that contains every (k/2−r, k/2+r)-

bipartite graph (U1, U2, E) as an induced subgraph (with U1 embedded in V1 and U2 in V2.)

The proof is by orienting the edges of the complete bipartite graph with classes of vertices

of sizes k/2 − r and k/2 + r so that every outdegree is at most k/4 − r2/k + 1. Such an

orientation exists by Fact 2 in Subsection 2.2. We can then label each vertex by its number

(which is a number not exceeding k) and by the bits describing its adjacency relations to

its outneighbors in the above orientation, in order. This assigns to each vertex a label with

at most log2 k+k/4− r2/k+ 1 bits, and the labels of any two vertices suffice to determine

whether or not they are adjacent. The existence of the desired graph Gr now follows from

the standard simple connection between adjacency labeling schemes and induced universal

graphs.

Note that by taking the vertex disjoint union of the graphs Gr for all r (positive or

negative) satisfying, say, 2
√
k log k ≤ |r| ( < k/2) the total number of vertices in each side
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is less than 2k/4/k2 which is smaller than (1 + o(1))b(k)/k2. It thus remains to deal with

the (k1, k2)-bipartite graphs in which k1 and k2 are close to each other, hence we assume

from now on that each of them is at least, say, 0.45k.

As in the proof of Theorem 1.1, we deal separately with bipartite graphs in which

every large induced subgraph has a relatively small number of automorphisms, which

we call asymmetric, and with the others, called symmetric. The asymmetric graphs will

be contained in a random bipartite graph, and the symmetric ones in a smaller graph,

constructed using an appropriate adjacency labelling scheme. We proceed with the details.

In the rest of this section an automorphism of a bipartite graph B = (U1, U2, E) with

vertex classes U1, U2 means an automorphism that maps each Ui to itself. Recall that in

all (k2, k2) bipartite graphs considered from now on k1 + k2 = k and each ki is between

0.45k and 0.55k.

Call a (k1, k2)-bipartite graph on k1 + k2 = k vertices asymmetric if any induced

subgraph of it on at least 0.9k vertices has at most k8m automorphisms, where m =

2
√
k log k. Note that, in particular, the number of automorphisms of any such graph is at

most k8m. Let B′(k) denote the family of all asymmetric bipartite graphs on k vertices.

Let n be the smallest integer that satisfies the following inequality(
n

bk/2c

)(
n

dk/2e

)
bk/2c!dk/2e!

k16m
2−bk/2c·dk/2e ≥ 1. (6)

When increasing n to n+1, the left-hand-side of the last inequality increases by a factor of

1 + o(1) for the relevant parameters, and thus it follows that the above smallest n satisfies

n = 2k/4(1 +O(1/k)).

In particular, n = (1 + o(1))2k/4.

Theorem 4.7 Let n be as above and let G = (V1, V2, E) = G(n, n, 0.5) be the random

bipartite graph with vertex classes V1, V2, each of size n, where each pair of vertices v1 ∈ V1

and v2 ∈ V2 forms an edge randomly and independently with probability 1/2. Then, with

high probability G is an induced universal bipartite graph for B′(k).

As in the proof of Theorem 2.1, the proof here is based on Talagrand’s Inequality (Theorem

2.2).

We need the following lemma.

Lemma 4.8 Let B ∈ B′(k) have s automorphisms. Let the sizes of the vertex classes of

B be k1, k2 (and recall that each ki is at least 0.45k.) Suppose j1, j2 are integers satisfying
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1 ≤ j1 = k1− i1 ≤ k1, 1 ≤ j2 = k2− i2 ≤ k2, j1 + j2 = j = k− i and assume 1 ≤ i ≤ 0.1k.

Let K1,K
′
1 be two sets of vertices, each of size k1, and let K2,K

′
2 be two sets of vertices,

each of size k2, where |K1 ∩K2| = j1, |K ′2 ∩K ′2| = j2 and K1,K
′
1 do not intersect K2,K

′
2.

Then the number of ways to choose the edges and nonedges among all 2k1k2 − j1j2 pairs

consisting of a vertex of K1 and a vertex of K2 or a vertex of K ′1 and a vertex of K ′2 so

that the induced subgraph on K1 ∪ K2 is isomorphic to B and the induced subgraph on

K ′1 ∪K ′2 is also isomorphic to B (and both isomorphisms map the first vertex class of B

to K1 and to K ′1) is at most
k1!k2!

s
ki1+i2k8m.

Proof: There are exactly k1!k2!
s ways to place a copy of B on K1 ∪ K2. For each such

fixed copy, we bound the number of embeddings of B in K ′1 ∪K ′2. There are at most

k1(k1 − 1) · · · (k1 − i1 + 1)k2(k2 − 1) . . . (k2 − i2 + 1) < ki1+i2

ways to choose the vertices of B mapped to the vertices of K ′1−K1 and to the vertices of

K2 −K ′2. Fix a set T of these i vertices and their embedding. In order to complete the

embedding, the induced subgraph of the copy of B placed in K1∪K2 on the set of vertices

(K1∩K ′1)∪ (K2∩K ′2) has to be isomorphic to the induced subgraph of B on V (B)−T . If

so, then the number of ways to embed these k− i vertices is the number of automorphisms

of this induced subgraph of B, which is, by the definition of B′(k), at most k8m. 2

Proof of Theorem 4.7: Let B be a fixed member of B′(k), let k1, k2 denote the number

of vertices in its vertex classes, and let s be the size of its automorphism group. Then

s ≤ k8m = k16
√
k log k.

Let G = (V1, V2, E) be the random bipartite graph G(n, n, 0.5), where n is as chosen in

(6). For every pair of subsets K1 ⊂ V1, K2 ⊂ V2 of sizes |K1| = k1, |K2| = k2, let XK1,K2

denote the indicator random variable whose value is 1 if the induced subgraph of G on

K1 ∪K2 is isomorphic to B and let X =
∑
K1,K2

XK1,K2 , where the summation is over all

pairs of subsets K1 ⊂ V1 of cardinality k1 and K2 ⊂ V2 of cardinality k2. Thus X is the

number of copies of B in G. The expectation of each XK1,K2 is clearly

E(XK1,K2) =
k1!k2!

s
2−k1k2 .

Thus, by linearity of expectation,

E(X) =

(
n

k1

)(
n

k2

)
k1!k2!

s
2−k1k2 ≥ k8m
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where in the last inequality we used (6) and the fact that s ≤ k8m. Note also that since

k1k2 ≥
k2

4
− k2

400

it follows that the expectation of X is at most (1+o(1))k16m2k
2/400 < n0.02 (even if s = 1).

We say that two copies of B in G have a nontrivial intersection if they share at least

one vertex in each vertex class. Put µ = E(X). Let Z denote the random variable

Z =
∑
K,K′ XK1,K2XK′1,K

′
2

where the summation is over all (ordered) pairs K = (K1,K2)

and K ′ = (K ′1,K
′
2) that satisfy K1 ∩K ′1 6= ∅ and K2 ∩K ′2 6= ∅. Thus, Z is the number

of pairs of copies of B in G that have a nontrivial intersection. We next compute the

expectation of Z and show that it is much smaller than µ (and hence also much smaller

than µ2). Put ∆ = E(Z). Then ∆ =
∑
j1,j2 ∆j1,j2 , where the summation is over all

(j1, j2) satisfying 1 ≤ j1 ≤ k1, 1 ≤ j2 ≤ k2 and j1 + j2 < k1 + k2 = k. Here ∆j1,j2 is the

expected number of pairs K = (K1,K2),K ′ = (K ′1,K
′
2) with XK1,K2 = XK′1,K

′
2

= 1 and

|K1 ∩K ′1| = j1, |K2 ∩K ′2| = j2.

Claim: For all admissible j1, j2

∆j1,j2 ≤ µ
1

n0.1
(7)

Proof of Claim: Consider two possible cases, as follows.

Case 1: j1 + j2 ≤ 0.9k.

In this case

∆j1,j2 ≤
(
n

k1

)(
n

k2

)(
k1

j1

)(
k2

j2

)(
n− k1

k1 − j1

)(
n− k2

j2 − k2

)
k1!k2!

s

k1!k2!

s
2−2k1k2+j1j2 .

Indeed, there are
( n
k1

)( n
k2

)
ways to choose the sets K1,K2. For each such choice there are(

k1

j1

)(
k2

j2

)(
n− k1

k1 − j1

)(
n− k2

j2 − k2

)

ways to choose K ′1,K
′
2 with |K1∩K ′1| = j1, |K2∩K ′2| = j2. There are k1!k2!

s ways to place a

copy of B in K1∪K2 and k1!k2!
s ways to place a copy of B in K ′1∪K ′2 (this is an overcount,

as these two copies have to agree on the edges in their common part). This determines

all the edges and nonedges in the induced subgraph on K1 ∪ K2 and on K ′1 ∪ K ′2. The

probability that the bipartite graph G indeed has exactly these edges is

2−2k1k2+j1j2 .
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Therefore,

∆j1,j2

µ2
≤ kj11 k

j2
2 (
k1

n
)j1(

k2

n
)j22j1j2 < (

k2

n
)j1+j22(j1+j2)/2)2 = [

k22(j1+j2)/4

n
]j1+j2

< (
1

n0.1−o(1)
)2 <

1

n0.15
.

Here we used the fact that k = (4 + o(1)) log2 n and that 2(j1+j2)/4 ≤ 20.9k/4. Recall that

µ ≤ n0.02 and thus
∆j1,j2

µ
≤ µ∆j1,j2

µ2
<

1

n0.1

as claimed.

Case 2: j1 = k1 − i1, j2 = k2 − i2 1 ≤ i = i1 + i2 ≤ 0.1k.

In this case we have, by Lemma 4.8

∆j1,j2 ≤
(
n

k1

)(
n

k2

)(
k1

j1

)(
n− k1

k1 − j1

)(
k2

j2

)(
n− k2

k2 − j2

)
k1!k2!

s
ki1+i2k8m2−2k1k2+j1j2 .

Indeed, there are (
n

k1

)(
n

k2

)(
k1

j1

)(
n− k1

k1 − j1

)(
k2

j2

)(
n− k2

k2 − j2

)
ways to choose the sets K1,K2,K

′
1,K

′
2 with the required intersections, and by Lemma 4.8

for each such choice there are at most k1!k2
s ki1+i2k8m ways to place copies of B in each

of them. The probability that this coincides with all edges and nonedges of the induced

subgraph of G on K1 ∪K2 and on K ′1 ∪K ′2 is 2−2k1k2+j1j2 .

Since µ ≥ k8m > 1 this implies that

∆j1,j2

µ2
<

∆j1,j2

µ
≤
(
k1

i1

)(
n− k1

i1

)(
k2

i2

)(
n− k2

i2

)
ki1+i2k8m2−k1k2+j1j2

< (k2n)i1+i2no(1)2−i2(k1−0.5i1)−i1(k2−0.5i2)

< (k2n)i1+i22−0.4k(i1+i2)no(1) < (n−0.6+o(1))i < n−0.1.

This completes the proof of the claim.

Returning to the proof of the theorem, note that the variance of the random variable

X satisfies

V ar(X) ≤ E(X) +
∑
K,K′

Cov(XK1,K2 , XK′1,K
′
2
)
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where the summation is over all ordered pairsK = (K1,K2),K ′ = (K ′1,K
′
2) with nontrivial

intersections (since for all other pairs the covariance is zero). Since

Cov(XK1,K2 , XK′1,K
′
2
) ≤ E(XK1,K2XK′2,K

′
2
)

it follows from the claim that

V ar(X) ≤ µ+ ∆ ≤ (1 + o(1))µ.

Therefore, by Chebyshev’s Inequality, the probability that X ≥ 3µ/4 is (much) bigger

than 3/4. By Markov’s inequality, the probability that ∆ ≤ µ/4 is also (much) bigger

than 3/4 and hence with probability larger than 1/2, both events happen simultaneously,

that is, the number of copies of B in G is at least 3µ/4 and the number of pairs of copies of

B with nontrivial intersection is smaller than µ/4. By removing one copy of B from each

pair with a nontrivial intersection we conclude that if this is the case, then G contains a

family of at least µ/2 copies of B with no two having a nontrivial intersection.

Let h(G) be the maximum cardinality of a family of copies of B in G in which no two

members have a nontrivial intersection, and let Y be the random variable Y = h(G). We

next apply Talagrand’s Inequality (Theorem 2.2) to deduce that the probability that Y is

zero is tiny.

By the above discussion, the probability that Y is at least µ/2 exceeds 1/2. It is also

clear that the value of Y = h(G) can change by at most 1 if we add or delete one edge to

G, and that h is f -certifiable where f(s) = s · k1k2 ≤ sk2/4. Therefore, by Theorem 2.2

with b = µ/2 and t =
√

2µ/k we conclude that the probability that Y = 0 is smaller than

e−µ/2k
2
.

This is much much smaller than one over the cardinality of B′(k), which is less than k2k
2/4.

As Y = 0 if and only if there is no copy of B in G, we conclude that G is induced universal

for B′(k) with high probability. This completes the proof of Theorem 4.7. 2

In order to complete the proof of Theorem 4.5 it suffices to show that there is bipartite

graph with at most, say, 2k/4/k vertices which is induced universal for the symmetric

bipartite graphs, that is, for all (k1, k2)-bipartite graphs with each ki being at least 0.45k

that have induced subgraphs on at least 0.9k vertices with at least k8m automorphisms,

where m = 2
√
k log k. This is similar to the proof of Theorem 2.7. Here is a sketch of

the argument. By Lemma 2.4 it follows that any such symmetric (k1, k2)-bipartite graph

F = (U1, U2, E) has an automorphism with at least 2m fixed points and at least 6m non-

fixed points. Such an automorphism must contain at least m fixed points in one vertex
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class and at least 3m non-fixed points in the other. (Indeed, it has at least m fixed points

in some vertex class and at least 3m non-fixed points in some class. If these happen to be

the same class, then the other class contains either many fixed points or many non-fixed

points, implying what’s needed.) Without loss of generality assume there are m fixed

points in U1 and 3m non-fixed points in U2. As in Corollary 2.5 this implies that there is

a set A = {a1, a2, . . . , am} of m vertices in U1 and two disjoint sets B = {b1, b2, . . . , bm}
and C = {c1, c2, . . . , cm} in U2 such that for any 1 ≤ i, j ≤ m, aibj is an edge of F if and

only if aicj is an edge of F .

The next ingredient needed is an appropriate bipartite analogue of Lemma 2.6, which

follows.

Lemma 4.9 Let H be the bipartite (k1, k2)-graph obtained from the complete bipartite

graph with vertex classes U1, U2, (|Ui| = ki), by omitting all edges connecting A and C,

where A is a subset of cardinality m of U1, and B,C are disjoint subsets of cardinality

m of U2, and m = 2
√
k log k. Then there is an orientation H ′ of H in which all edges

between A and B are oriented from A to B and the maximum outdegree of a vertex in H ′

is at most
k1k2

k
− m2

k
+O(1) ( <

k

4
− 3 log k).

The proof is by applying Fact 2 used in the proof of Lemma 2.6. Let D1 = U1 − A and

D2 = U2− (B∪C). By Fact 2 for any real x ∈ (0, 1) there is an orientation of the edges of

the complete bipartite graph with vertex classes A and D2 so that the outdegree of each

vertex of A is at most x|D2|+ 1 = x(k2 − 2m) + 1 and the outdegree of each vertex of D2

is at most (1− x)m+O(1). Similarly, for any real y ∈ (0, 1) there is an orientation of the

edges of the complete bipartite graph between B∪C and D1 so that the outdegree of every

vertex of B∪C is at most y|D1|+1 = y(k1−m)+1 and the outdegree of each vertex of D1

is at most (1− y)2m+O(1). Finally, for any z ∈ (0, 1) there is an orientation of all edges

connecting D1 and D2 so that each vertex of D1 has outdegree at most z(k2 − 2m) + 1

and each vertex of D2 has outdegree at most (1− z)(k1 −m) +O(1).

Recalling that each ki is between 0.45k and 0.55k, and that m = o(k), it follows that

there are x, y, z ∈ (0, 1), all rather close to 1/2, so that all 4 quantities

m+ x(k2 − 2m), y(k1 −m), (1− y)2m+ z(k2 − 2m), and (1− x)m+ (1− z)(k1 −m)

which represent (up to an O(1) additive error) the outdegrees of the vertices in A, B ∪C,

D1 and D2 respectively, are equal. This means that in our orientation, in which all edges

between A and B are oriented from A to B, the outdegrees of all vertices are essentially
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the same, and hence each of them is the average outdegree, which is

k1k2

k
− m2

k
,

up to an additive constant error. This establishes the lemma. 2

The last lemma can be used, as in the proof of theorem 2.7, to show that for any fixed

k1, k2 there is an adjacency labelling scheme for the above symmetric bipartite graphs in

which each label has at most k
4 − 2 log k bits. This supplies an induced universal bipartite

graph for the required symmetric bipartite graphs, whose total number of vertices is at

most 2k/4/k. Together with Theorem 4.7, this completes the proof of Theorem 4.5.

5 Concluding remarks

• Our upper and lower bounds for the various induced-universal graphs considered

here differ by lower order additive terms. It may be interesting to try and get even

tighter estimates. How close are the counting lower bounds to the correct values ?

To be specific, consider the function f(k) discussed in Theorem 1.1, namely, the

minimum possible number of vertices in an induced-universal graph for the set F(k)

of all k-vertex undirected graphs. The trivial counting lower bound shows that

n = f(k) must satisfy (
n

k

)
≥ |F(k)|.

Equality would hold here if there would have been a graph G on n = (1+o(1))2(k−1)/2

vertices containing every graph F ∈ F(k) as an induced subgraph exactly once. It

is not difficult to show that this is impossible, and in fact any graph G of this size

must contain at least 2Ω(k) induced copies of some k-vertex graphs. This is proved

in the following proposition.

Proposition 5.1 For any positive constant c and all sufficiently large k the follow-

ing holds. For any graph G = (V,E) on at least 2ck vertices there is a graph H on

k vertices so that G contains at least 2(c/2+o(1))k induced copies of H.

Proof: By the standard proof of Ramsey’s Theorem there are vertices v1, v2, . . . , vm,

where m = (ck − log k)/2 and a set U of at least k vertices containing none of the

vertices vi, so that one of the following holds. Either
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(i) There are no edges among the vertices vi and no edges connecting any vi to any

vertex of U , or

(ii) The vertices vi form a clique and each vi is adjacent to all vertices of U .

Indeed, starting with U0 = V choose arbitrarily a vertex x1 ∈ U0 and let U1 be

either the set of all its neighbors in U0 or the set of all its non-neighbors, whichever

is bigger. Next choose x2 ∈ U1 and let U2 be the set of all its neighbors in U1 or

all its non-neighbors, whichever is bigger. Proceeding in the same way, after 2m− 1

steps we get a set {x1, x2, . . . , x2m−1} of vertices and a set U = U2m−1 of more than

k vertices of G. If in at least m of the steps we have chosen non-neighbors, we get

(i), else we get (ii).

To complete the proof fix a set U ′ of k − m/2 vertices of U and observe that the

induced graphs on the union of U ′ with any set of m/2 of the vertices vi are all

isomorphic. 2

In particular, if G is an induced universal graph for F(k) with (1 + o(1))2(k−1)/2

vertices, whose existence is proved in Theorem 1.1, then by the above proposition G

contains at least 2(1+o(1))k/4 induced copies of some k-vertex graph. (The proof in

fact shows that this is the case for any subgraph consisting of m/2 vertices vi and

any k − m/2 vertices of U .) Note that counting shows that most k-vertex graphs

appear much less, that is, only 2o(k) times, as induced subgraphs of G.

• It is not difficult to show that the maximum number of automorphisms of a tourna-

ment on k vertices is only exponential in k, much smaller than the maximum number

of automorphisms of a k-vertex undirected graph (which is k!) It is more difficult to

determine this maximum precisely. This was done by Dixon in [16], where he proves

that the order of any solvable permutation group of degree k is at most 3(k−1)/2, and

concludes, using the Feit-Thompson theorem, that the maximum above is at most

3(k−1)/2 (with equality for any k which is a power of 3). Combining this with the

ideas in the proof of Theorem 2.1 (and an additional argument) we can show that

a random tournament with (1 + o(1))
√

3 · 2(k−1)/2 vertices is induced universal for

the set Tk of all tournaments on k vertices with high probability. This is tight up to

the o(1)-term. Although this does not imply the sharp statement of Theorem 4.1, it

shows that for tournaments, unlike for undirected graphs, the random construction

is larger than the best one only by a (small) constant factor.

• The discussion in Subsection 3.2 suggests that it may be interesting to study the
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vertex random graph process introduced there and in particular to investigate hitting

time results for this process. Similar processes exist for random directed graphs,

oriented graphs, tournaments, and even permutations, and appear to be interesting

as well.

• All the induced universal graphs appearing in the theorems in the paper contain a

large random part, namely, the constructions here are not explicit, unlike the ones

in [26], [27], [4]. It would be interesting to find an explicit construction with the

same number of vertices.
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