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Abstract

Let G be the Cayley graph of the elementary abelian 2-group Zn
2 with respect to

a set S of size d. We prove that for any such G,S and d, the maximum degree of
any induced subgraph of G on any set of more than half the vertices is at least

√
d.

This is deduced from the recent breakthrough result of Huang who proved the above
for the n-hypercube Qn, in which the set of generators S is the set of all vectors of
Hamming weight 1. Motivated by his method we define and study unitary signings of
adjacency matrices of graphs, and compare them to the orthogonal signings of Huang.
As a byproduct, we answer a recent question of Belardo, Cioabă, Koolen, and Wang
about the spectrum of signed 5-regular graphs.

1 Introduction

For a group B and a set S ⊆ B satisfying S = S−1, the Cayley graph of B with a
generating set S, denoted Γ(B,S), is the graph whose set of vertices is the set of elements
of B, in which the set of edges is the set of all (unordered) pairs {g, gs} where g ∈ B and
s ∈ S. Any Cayley graph is regular and vertex transitive. In this note we consider Cayley
graphs of the elementary abelian 2-group B = Zn2 . Here we use additive notation and
note that S = −S for every subset of the group. A particular example that has been the
subject of recent attention is the n-dimensional hypercube, Qn. This is the Cayley graph
of B = Zn2 whose generating set S consists of all length n boolean vectors with Hamming
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weight 1. A recent breakthrough result of Huang [9] asserts that any induced subgraph H
of Qn on a set of 2n−1 + 1 vertices has maximum degree ∆(H) at least

√
n. This, together

with a result of Gotsman and Linial [7], confirmed the Sensitivity Conjecture of Nisan and
Szegedy [14].

Huang’s result also improves a previous lower bound of (12 − o(1)) log2 n of Chung,
Füredi, Graham, and Seymour [6], while another result of [6] shows that his

√
n bound is

tight.
Our first result extends the lower bound to any Cayley graph of Zn2 . These graphs are

sometimes called cubelike graphs, see, for example, [13].

Theorem 1.1. For any Cayley graph G = Γ(Zn2 , S) of Zn2 with respect to any generating
set S, and for any subset U ⊆ Zn2 of cardinality |U | > 2n−1, the maximum degree of the
induced subgraph H of G on U satisfies ∆(H) ≥

√
|S|.

The proof, presented in the next section, is a simple application of Huang’s result.
To prove his result Huang shows that Qn admits an orthogonal signing. This is a matrix

obtained from the adjacency matrix of Qn by replacing every nonzero entry by 1 or −1 so
that the resulting matrix, call it A, is symmetric and has orthogonal rows. Therefore, each
eigenvalue of this matrix is either +

√
n or −

√
n, and as the trace is zero, exactly half the

eigenvalues are +
√
n and half are −

√
n. By Cauchy’s Interlace Theorem (see, e.g., [10] for

a short proof) this implies that the largest eigenvalue of any principal minor of size at least
2n−1 +1 of A is

√
n. The result about the maximum degree of any induced subgraph of Qn

on a set U of more than half the vertices follows from the simple fact that any eigenvalue
of a matrix in which all nonzero entries have absolute value 1 is at most the size of the
largest support of a row of the matrix.

Motivated by this proof we define a unitary signing 1 of a graph. This is a Hermitian
matrix obtained from the adjacency matrix of the graph by replacing each nonzero entry
by a complex number of norm 1, so that the (complex) inner product of any two distinct
rows is 0. Huang’s argument works in the complex case as well, implying that if a d-regular
graph admits a unitary signing, then the maximum degree of any induced subgraph of it
on a set of more than half the vertices is at least

√
d. Unitary signings of graphs appear

to be interesting in their own right.
In Section 3 we prove the following result, providing additional examples of Cayley

graphs of Zn2 with orthogonal and unitary signings.
1While similar terminology is used, orthogonal and unitary signings are not in general orthogonal or

unitary matrices, which are matrices M such that MM t or MM∗ is the identity.
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Theorem 1.2. Let T = {e1, . . . , en} and let U = {E2, . . . , En} where ei is the length n
boolean vector of Hamming weight 1 with 1 in its ith coordinate and Ei =

∑k=i
k=1 ek. Let

G be a Cayley graph of Zn2 with a generating set S ⊆ T ∪ U so that |S ∩ U | ≤ 1. Then G
admits a unitary signing.

Regarding the necessity of using complex numbers in unitary signings, we show in
Section 4 that some graphs have unitary signings but do not have orthogonal signings. Let
Q+(n) denote the Cayley graph of Zn2 with the generating set S = {e1, . . . , en, En}.

Proposition 1.3. For n ≥ 2, Qn+ has an orthogonal signing if and only if n ≡ 0, 3

(mod 4). In particular for n ≡ 1, 2 (mod 4), Qn+ has a unitary signing but no orthogonal
signing.

Finally, as a byproduct we answer a question of Belardo, Cioabă, Koolen, and Wang
[4] about the spectrum of signed 5-regular graphs.

2 The proof of Theorem 1.1

Proof of Theorem 1.1: Let G be a Cayley graph of Zn2 with generating set S =

{s1, s2, . . . , sd}. We may and will assume without loss of generality that G is connected,
that is, the vectors of S span the vector space Zn2 . Indeed, otherwise the graph G consists
of isomorphic connected components on the cosets of Span(S). Any set of more than half
the vertices of G contains more than half the vertices of at least one of these components,
and we can thus deduce the result from the one for the connected case.

Let Qd be the d-dimensional hypercube. This is the Cayley graph of Zd2 with respect
to the set of generators {e1, e2, . . . , ed} consisting of all the vectors of Hamming weight
1 in Zd2. Let T be the linear transformation from Zd2 to Zn2 defined by T (ei) = si for all
1 ≤ i ≤ d. Since S spans Zn2 , T is onto, and the inverse image of any element of Zn2 contains
exactly 2d−n elements. Let U ⊆ Zn2 be a set of more than half the vertices of G. Then the
inverse image W = T−1(U) of U contains more than half the elements of Zd2. By Huang’s
result there are distinct w,w1, w2, . . . , wt ∈ W , with t ≥

√
d, such that w is adjacent in

Qd to each wi, 1 ≤ i ≤ t. Therefore, the vertex T (w) ∈ U is adjacent in G to each of the
t ≥
√
d distinct vertices T (w1), T (w2), . . . , T (wt), which all lie in U . This completes the

proof. �.
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3 Unitary signings of graphs

As mentioned in the introduction, we consider here unitary and orthogonal signings of
graphs, defined as follows.

Definition 3.1. A unitary signing of a graph is a Hermitian matrix obtained from the
adjacency matrix of the graph by replacing each nonzero entry by a complex number of
norm 1, so that the (complex) inner product of any two distinct rows is 0. If all nonzero
entries used are real, that is, all are +1 or −1, this is an orthogonal signing.

It is shown in [9] that the hypercube Qn admits an orthogonal signing. We extend this
result in Theorem 1.2 which is proved in this section. Note that any Cayley graph of Zn2
with a generating set consisting of n + 1 elements which span Zn2 is isomorphic to one of
the graphs described in this theorem.

A useful fact about unitary signings of Cayley graphs of Zn2 is that we can view them
as sums of what may be called edge signings, as stated in the next simple lemma.

Lemma 3.1. Let G = Γ(Zn2 , S), and suppose S = {a1, . . . , am} where each aj is distinct.
If Aj is a unitary signing of Γ(Zn2 , {aj}) and the matrices Aj anticommute, then A =∑j=m

j=1 Aj is a unitary signing of G.

Proof. Obvious from the definition.

We refer to a signing of a single element Cayley graph, Γ(Zn2 , {e}), as simply a signing
of the edge e or an edge signing of e. Such a Cayley graph is a perfect matching on Zn2 .

A convenient way of constructing edge signings when n ≥ 2 is to use Kronecker products
of the following 2×2 Hermitian matrices. The first one is the identity, and the other three
are known as Pauli matrices, and generate the Clifford Algebra of R3.

I2 =

[
1 0

0 1

]
,

R0 =

[
1 0

0 −1

]
,

R1 =

[
0 1

1 0

]
,

R2 =

[
0 i

−i 0

]
.
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With this notation, it is clear that An ⊗ · · · ⊗ A1 is a complex edge signing of e =

(an, . . . , a1) if Aj ∈ {I2, R0} whenever aj = 0, and Aj ∈ {R1, R2} whenever aj = 1. We
will sometimes refer to Ai as the matrix in the ith position of the Kronecker product.
Moreover, we will also make liberal use of the fact that {R0, R1, R2} is an anticommuting
family while all other pairs of the above four matrices commute. When combined with
the mixed product property, this fact provides an easy way to check if two signings of
the above form anticommute. Indeed, if A = An ⊗ · · · ⊗ A1 and B = Bn ⊗ · · · ⊗ B1,
with all Ai, Bi ∈ {I2, R0, R1, R2}, then A and B either anticommute or commute. They
anticommute if and only if an odd number of the pairs Ai, Bi for 1 ≤ i ≤ n anticommute.
In order to prove Theorem 1.2 we construct families of anticommuting edge signings using
this method.

Lemma 3.2. For any generating set S ⊆ Zn2 as described in Theorem 1.2, there exists an
anticommuting family of edge signings {Ae}e∈S.

Proof. Let Aei = Mn ⊗ · · · ⊗M1 where
Mj = R0, if j > i

Mj = R1, if j = i

Mj = I2, if j < i.

It is not difficult to check that {Aei}i∈[n] is an anticommuting family where [n] denotes the
integers from 1 to n. In fact,

∑i=n
i=1 Aei is the matrix that Huang constructs in Lemma 2.2

of [9]. To finish the proof, it remains to show that for any Ei ∈ U , there is a signing for the
edge Ei that anticommutes with each matrix in {Aei}i∈[n]. First define Bk = Mk⊗· · ·⊗M1

where Mj = R1, if k − j is odd

Mj = R2, if k − j is even.

The key property of the expansion of Bk is that each R1 has an odd number of matrices
to the left of it, while each R2 has an even number of matrices to the left of it. Ei’s edge
signing is as follows,

AEi = R0 ⊗ · · · ⊗R0︸ ︷︷ ︸
n−i times

⊗Bi.

To check that any {AEi} ∪ {Aei}i∈[n] is an anticommuting family of size n + 1 we show
that AEi and Aej anticommute for any i, j. We count the number of anticommuting pairs
of matrices in their Kronecker product expansions. If i ≤ j there is one anticommuting
pair: the R1 from Aej with either an R0 if i < j or an R2 if i = j.
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If i > j then Aej has R1 in the jth position, while AEj can have either R1 or R2. If
it has R1 as well, then the jth position is not an anticommuting pair, but we have an odd
number of R2 and R1’s to the left of the jth position as mentioned above. These R2 and
R1 matrices all anticommute with the corresponding R0’s in Aei ’s expansion. Likewise, if
we have R2 in the jth position, then all the R1’s and R2’s in Bi to the left of and including
the jth position form anticommuting pairs and again this is an odd number of pairs. In
each case every other pair commutes as it is either R0R0 or a pair with one of the matrices
being I2.

We can now prove Theorem 1.2. Let G be a Cayley graph of Zn2 with generating set S
as described in the theorem. By Lemma 3.2, there is a family of anticommuting matrices
consisting of unitary signings for the edges in S. The sum of these matrices is a unitary
signing of G by Lemma 3.1. �

It is worth noting that there are additional pairs of anticommuting matrices outside of
the family described in Lemma 3.2. This leads to unitary signings of certain Cayley graphs
of Zn2 with generating sets consisting of vectors from T ∪U and up to two vectors from U .

Corollary 3.3. Any Cayley graph of Zn2 with generating set consisting of a subset of
T = {e1, . . . , en} and exactly two vectors Ei, Ej ∈ U = {E2, . . . , En} such that i > j, i is
odd and j is even, admits a unitary signing.

Proof. Using the construction from Lemma 3.2, it is easy to check that if i > j, i is odd
and j is even then AEi and AEj anticommute. Thus, the edge signings constructed in
Lemma 3.2 provide the desired unitary signing.

4 Unitary versus orthogonal signings

One may wonder if the use of complex numbers is needed in the proof of Theorem
1.2. We show that complex signings are indeed necessary in some cases. Recall that
Qn+ = Γ(Zn2 , S) is the Cayley graph of Zn2 with S = {e1, . . . , en, En}. This graph is simply
the n-dimensional hypercube with one additional element being the all 1 vector added to
its generating set. In this section we start with the proof of Proposition 1.3 stated in
Section 1.

The reverse direction of this Proposition is immediate as for n ≡ 0, 3 (mod 4) and
n ≥ 2, the unitary signing of Qn+ constructed in Theorem 1.2 only uses real numbers and
is thus an orthogonal signing as well.
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To complete the proof of Proposition 1.3 we first discuss a simple way to determine
whether certain graphs have an orthogonal signing. The method works whenever the graph
in question has the property that any two vertices with a common neighbor have exactly
two common neighbors. In Cayley graphs of Zn2 this holds if and only if the generating set
of the graph is a Sidon Set. A Sidon Set is a set with the property that any distinct pair
of elements has a unique sum, that is s1 + s2 = s3 + s4 if and only if {s1, s2} = {s3, s4} for
all s1, s2, s3, s4 ∈ S satisfying s1 6= s2 and s3 6= s4. Note that the generating set of Qn is
a Sidon Set and the generating set of Qn+ is a Sidon Set when n 6= 3. Thus, the graph Qn+
with n ≥ 2 and n ≡ 1, 2 (mod 4) has the property that vertices with a common neighbor
have exactly two common neighbors. It is worth noting that there are other well known
strongly-regular or distance-regular graphs with this property, including the Shrikhande
graph, the 2-dimensional Hamming graph over Z4, the Gerwitz graph, and the Klein graph,
see [5].

Given an orthogonal signing of the adjacency matrix M of a graph, one can define a
labelling, f , of the edges of the graph using 1’s and 0’s as follows. Let e = ij be an edge,
then put

f(e) =

1, if Mij = −1

0, otherwise.

For Cayley graphs Γ(Zn2 , S) where S is a Sidon Set, we can then reformulate the problem
of finding orthogonal signings as follows.

Lemma 4.1. Let G = Γ(B,S) be a Cayley graph of B = Zn2 where S is a Sidon Set. Let
C be the set of all 4-cycles in G where the elements of C are sets of 4 edges that form a 4

cycle. An orthogonal signing of G exists if and only if there exists a labelling of the edges
of the graph f : E(G) −→ {0, 1}, such that

∑
e∈c f(e) = 1 for all cycles c ∈ C, where each

sum here is computed in the group Z2.

Proof. Since S is a Sidon Set, G has the property that any two vertices with a common
neighbor share exactly two common neighbors. Let Mij be the entry of the edge e = ij.
If an orthogonal signing exists, then for any 4-cycle, in order for the rows indexed by
opposite vertices of the 4-cycle to be orthogonal, the 4-cycle must have exactly 3 edges
whose entry is 1 or exactly 3 edges whose entry is −1. The desired labelling of f is thus
the one described above.

On the other hand, if such a labelling f exists, one can define the signed adjacency
matrix M by Mij = −1 if the edge ij is labelled 1 and Mij = 1 if the edge ij is labelled
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0. Then the inner products of rows i and j is the sum, over all length 2 walks between i
and j, of the product of the edge entries of each walk. There are either 2 or 0 length 2

walks between any two vertices. The result then follows from the assumption that in each
4-cycle there is an odd number of edges labelled 1.

We can now prove the remaining direction in Proposition 1.3.

Proof. To show that Qn+ has no orthogonal signing when n ≥ 2 and n ≡ 1, 2 (mod 4),
it suffices, by Lemma 4.1, to find an odd number of cycles such that each edge used in
a cycle is used in an even number of cycles. Indeed, let C1, . . . , C2k+1 be such a family
cycles. If an orthogonal signing exists, we have

∑
e∈Ci

f(e) = 1, for each Ci. Adding the
2k + 1 equations together yields

∑
e∈

⋃i=2k+1
i=1 Ci

f(e) = 1. However, since each edge is used
an even number of times, the left hand side is 0, yielding a contradiction.

Thus, it remains to show that an odd collection of cycles as above exists. We describe
such a collection arranged in a staircase shape. This collection in Q5

+ is depicted in Figure
1 and the general construction, described in what follows, is similar.

Consider the integer lattice with all coordinates (x, y) such that x + y ≤ n + 1 and
n ≥ x, y ≥ 0. Notice that connecting adjacent lattice points gives a staircase grid composed
of n(n+1)

2 unit squares. We can view this structure as a graph Ln whose set of vertices is
V (Ln) = {(x, y) : x+ y ≤ n+ 1, n ≥ x, y ≥ 0} where (x1, y1) is adjacent to (x2, y2) if and
only if the two lattice points are exactly one unit apart. It is easy to see that the 4-cycles
of Ln correspond exactly to the unit squares of the staircase shape and that as a result Ln
has n(n+1)

2 4-cycles. We identify each vertex (x, y) ∈ V (Ln) with a vertex in V (Qn+) such
that the edges of Ln are preserved. Define f : V (Ln) −→ {0, 1}n to be this mapping. Let
S = {e1, . . . , en, En} be the generating vectors of Qn+ as defined previously. Write f(x, y)

instead of f((x, y)), for simplicity and use (a, b) to denote the edge between a and b when
a and b are vertices (in Ln or in f(Ln)).

Define

f(0, 0) = (0, . . . , 0),

f(x, 0) = e1 + . . .+ ex, for x ≥ 1

f(0, y) = e1 + . . .+ en+1−y, for y ≥ 1

f(x, y) = f(x, 0) + f(0, y).

It is clear that f preserves the edges of Ln, as f(x+1, y)−f(x, y), f(x, y+1)−f(x, y) ∈
S. Moreover if the vertices {(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1)} form a 4-cycle in
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Ln, then x+ 1 + y + 1 ≤ n+ 1 and

f(x+ 1, y)− f(x, y) = ex+1 6= en+1−y = f(x, y + 1)− f(x, y).

Thus, no 4-cycle of Ln is mapped to a degenerate 4-cycle, so f(Ln) yields a collection
of n(n+1)

2 4-cycles in the graph Qn+. For n ≡ 1, 2 (mod 4) this is an odd number, so it
remains to show that this collection of cycles uses each edge an even number of times. We
can pair the edges of the 4-cycles of Ln so that in each pair, the two edges have the same
image under f . This implies that the images of the n(n+1)

2 4-cycles of Ln under f form an
odd collection of 4-cycles with each edge used an even number of times in Qn+. Note, first,
that any edge in the interior can be paired with itself since it is used in two cycles. Next,
for the boundary edges note that ((0, 0), (1, 0)) can be paired with ((0, n), (1, n)) as

f(1, n) = e1 + e1 = 0 = f(0, 0),

f(1, 0) = e1 = f(0, n).

Similarly, ((0, 0), (0, 1)) can be paired with ((n, 0), (n, 1)) as

f(n, 1) = En + En = 0 = f(0, 0),

f(n, 0) = En = f(0, 1).

We can also pair the edge ((x, 0), (x+1, 0)) with ((0, n+1−x), (0, n−x)) for 1 ≤ x ≤ n−1

as

f(x, 0) = e1 + · · ·+ ex = f(0, n+ 1− x),

f(x+ 1, 0) = e1 + · · ·+ ex+1 = f(0, n− x).

Lastly it remains to pair the edges of the form ((x, y), (x, y+ 1)) and ((x, y), (x+ 1, y)) for
1 ≤ x, y ≤ n−1 and x+y+1 = n+1. These are the edges on the boundary, but not on one
of the axes. Notice that ((x, y), (x+ 1, y)) and ((x, y), (x, y + 1)) are mapped to the same
edge if x+ y+ 1 = n+ 1. Indeed both are mapped to the edge (ex+1, 0). This exhausts all
edges on the boundary implying that under f(Ln), each edge appears in an even number
of cycles. Thus, for n ≡ 1, 2 (mod 4), we get a collection of n(n+1)

2 ≡ 1 (mod 2) cycles
where each edge is used an even number of times. By Lemma 4.1, this implies that there
is no real orthogonal signing of Qn+ when n ≡ 1, 2 (mod 4). However, by Theorem 1.2, a
complex unitary signing does exist.
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Figure 1: A depiction of f(L5), or 15 cycles in Q5
+ where each edge is used two times. The

vertex labels correspond to their binary representations as length 5 Boolean vectors, e.g.
15 is the vertex (0, 1, 1, 1, 1).

Notice that the construction above works whenever we have a cycle of length 2 or 3

modulo 4 with distinct generators for a Cayley graph of Zn2 . We simply repeat the above,
using such a cycle of generators in place of {e1, . . . , en, En}. Thus, we get the following
result on the existence of orthogonal signings for Cayley graphs of Zn2 .

Proposition 4.2. Let G be a Cayley graph of Zn2 with generating set S. If there exist
distinct e1, . . . , ek ∈ S such that e1+· · ·+ek = 0, and k ≡ 2, 3 (mod 4), then no orthogonal
signing of G exists.

Proof. Immediate from the construction in the previous proof using the edges e1, . . . , ek.

It is interesting to note that our signing of Q4
+, which, as can be easily checked, uses

only real numbers, answers an open question posed recently by Belardo, Cioabă, Koolen,
and Wang [4]. They studied real orthogonal signings of regular graphs and noted that any
4-regular graph with an orthogonal signing, As, can be used to produce a 5-regular graph
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with an orthogonal signing,

B =

[
AS I

I −AS

]
,

in a way similar to Huang’s matrix construction. Specifically, the new 5-regular graph is
formed by taking two copies of the 4-regular graph and adding a perfect matching between
them joining each vertex to its copy. By the work of McKee and Smyth [12] on 4-regular
graphs, this method yields many 5-regular graphs with such an orthogonal signed adjacency
matrix. Belardo, Cioabă, Koolen, and Wang ask if any other such examples exist, namely
if there are 5-regular graphs with orthogonal signings that are not constructed by the
above method. Our graph Q4

+ is one such example. To show it is not one of the examples
described in [4] note that all the graphs there have a cut forming a perfect matching which
splits the vertex set into two equal parts. For Q4

+ to be such a graph it would have to
have a cut of size 8. However, this is not the case as can be seen from the eigenvalues of
its adjacency matrix. This follows from the following known fact, proved, for example, in
the remark following Lemma 2.1 in [2]. For completeness we include the simple proof.

Proposition 4.3. If G = (V,E) is a regular graph with |V | = n even, U ⊆ V , |U | = n
2 ,

and G has eigenvalues λ1 ≥ · · · ≥ λn, then e(U, V − U) ≥ d−λ2
4 n, where e(U, V − U)

denotes the number of edges with endpoints in U and V − U .

Proof. Let A be the adjacency matrix of G and let f be the column vector indexed by V
defined by:

f(u) =

1, if u ∈ U

−1, if u /∈ U ,

where f(u) is the coordinate of f indexed by u ∈ V . We have,

f tAf = 2
∑
uv∈E

f(u)f(v) = 2[−e(U, V − U) +
nd

2
− e(U, V − U)] = nd− 4e(U, V − U)

and hence

e(U, V − U) =
nd

4
− f tAf

4
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One can bound f tAf using the second largest eigenvalue of A since it is orthogonal to
the all 1 vector which is the eigenvector of the largest eigenvalue. Thus, f tAf ≤ λ2||f ||22 =

λ2n, and

e(U, V − U) ≥ nd

4
− λ2n

4
=
d− λ2

4
n.

It is well known (c.f., for example, [11], Problem 11.8) that the eigenvalues of Cayley
graphs of Abelian groups can be expressed as character sums. This easily implies that
the second eigenvalue of Q4

+ is 1. Thus, by the previous proposition, any cut of Q4
+ that

splits the vertex set into two equal vertex classes has at least 16 edges. However, a perfect
matching of Q4

+ has exactly 8 edges, so Q4
+ cannot have the form described in [4] in which

there is such a cut.

5 Concluding remarks

By Theorem 1.1 the induced subgraph of any d-regular Cayley graph of Zn2 on more
than half the vertices has maximum degree at least

√
d. It is easy to see that this is not the

case for Cayley graphs of other (abelian) groups. For example, if a group has an element
of order 6 then the Cayley graph in which the only generators are such an element and its
inverse is a vertex disjoint union of 6-cycles. This has a set of two thirds of the vertices so
that the induced subgraph on them is a matching, having maximum degree 1 <

√
2.

The lower bound provided by Theorem 1.1 is tight for the n-cube, as shown by the
example described in [6]. It is therefore also tight for any Cayley graph obtained from
the n cube by adding one additional generator, when n is a perfect square, and is off by
at most one for other n. For many Cayley graphs of Zn2 , however, the bound is far from
being tight. In particular for most Cayley graphs with at least Cn generators, for some
absolute constant C, the lower bound can be improved to linear in d. This follows from
known results about expanders and random Cayley graphs, as explained in what follows.
An (n, d, λ)-graph is a d-regular graph on n vertices in which the absolute value of every
eigenvalue besides the top one is at most λ. The following result is proved in [1].

Lemma 5.1. ([1]) Let G = (V,E) be an (n, d, λ) graph and let S be an arbitrary set of αn
vertices of G. Then the average degree d of the induced subgraph of G on S satisfies

|d− αd| ≤ λ(1− α).
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The proof in [1] in fact shows that it suffices to assume that the smallest (most negative)
eigenvalue of G is at least −λ to conclude that the average degree is at least αd−λ(1−α).
(The assumption that the second largest eigenvalue is at most λ provides an upper bound
of αd+ λ(1− α) for this average degree).

For random Cayley graphs of Zn2 with at least some Cn generators, λ is smaller than,
say, d/2 with high probability, as proved in [3].

Proposition 5.2. ([3]) For every 1 > δ > 0 there exists a C(δ) > 0 such that the following
holds. Let B be a group of order n, let S be a set of C(δ) log2(n) random elements of B,
where S = S−1 and let G be the Cayley graph of B with respect to S. Then, with high
probability (that is, with probability that tends to 1 as n tends to infinity) the absolute value
of every eigenvalue of G but the top one is at most (1− δ)|S|.

Taking δ = 1/2 this shows that the lower bound in Theorem 1.1 can be improved to
|S|/4 for most Cayley graphs of Zn2 with at least C(1/4)n generators.

Theorem 1.2 shows that any connected Cayley graph of Zn2 with at most n+1 generators
admits a unitary signing. It is not difficult to give additional examples of Cayley graphs
of this group with such a signing. In particular the tensor product of any two graphs
with a unitary signing admits a unitary signing, as follows by the mixed product property.
Any m by m Hadamard matrix provides an orthogonal (and hence unitary) signing of the
complete graph with loops on m vertices in each vertex class. Tensor products of such a
graph and graphs covered by Theorem 1.2 are graphs admitting unitary signings. On the
other hand, there are lots of Cayley graphs of Zn2 that do not admit such a signing. A large
family of examples are ones in which the generating set S is a Sidon set with more than
2n+ 1 elements. To prove this note that if S is a Sidon Set, a unitary signing (squaring to
|S|I) must be the sum of |S| anticommuting edge signings. This is because if the unitary
signing is decomposed into edge signings, e1 + · · · + e|S|, in the square of this sum the
nonzero entries of any product of two matrices ei, ej can intersect those of ep, eq only if
{i, j} = {p, q}. Thus the only way for the sum to square to |S|I is for all of the edge
signings to anticommute with each other.

It is known (c.f. [8]) that the maximum possible number of complex invertible anti-
commuting N by N matrices is 2 log2N + 1. In our case N = 2n and thus we cannot have
more than 2n + 1 anticommuting matrices corresponding to edge signing (note that each
such matrix is invertible, as its square is the identity). There are, however, much larger
Sidon sets in Zn2 , of size 2n/2 (given by the columns of the parity check matrix of a BCH
code with designed distance 5). Any Cayley graph of Zn2 with a generating set which is
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a subset of more than 2n + 1 elements of such a large Sidon set cannot have a unitary
signing.

It will be interesting to understand better which (Cayley or non-Cayley) graphs admit
unitary signings. It also seems interesting to investigate the possible analogs of Theorem
1.1 for Cayley graphs of other groups.
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