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Abstract

Let G = (V,E) be a graph on n vertices with average degree t ≥ 1 in which for every vertex
v ∈ V the induced subgraph on the set of all neighbors of v is r-colorable. We show that the
independence number of G is at least c

log (r+1)
n
t log t, for some absolute positive constant c. This

strengthens a well known result of Ajtai, Komlós and Szemerédi. Combining their result with
some probabilistic arguments, we prove the following Ramsey type theorem, conjectured by Erdös
in 1979. There exists an absolute constant c′ > 0 so that in every graph on n vertices in which any
set of b

√
nc vertices contains at least one edge, there is some set of b

√
nc vertices that contains

at least c′
√
n log n edges.

1 Introduction

All graphs considered here are finite and undirected, and contain no loops and no parallel edges. An
easy, well known consequence of Turán’s theorem asserts that any graph on n vertices with average
degree t contains an independent set of size at least n/(t + 1). Ajtai, Komlós and Szemerédi [1]
proved that this can be improved for triangle-free graphs; if G is triangle-free and has n vertices and
average degree t ( > 1) then its independence number is at least cnt log t for some absolute positive
constant c. Shearer [7] gave a simpler proof (and also improved the constant c). (All logarithms
here and in the rest of the paper are in base 2, unless otherwise specified.) Ajtai, Erdös, Komlós
and Szemerédi [2] showed that for any r > 2, the independence number of any Kr+1-free graph on n
vertices and average degree t is at least c(r)nt log log(t+ 1) and conjectured that in fact it is at least

c(r)
n

t
log t. (1)

This conjecture is still open, despite some recent progress by Shearer [8], who improved the estimate
in [2] to c′(r)nt

log t
log log(t+1) . Note that a Kr+1-free graph is a graph in which the neighborhood of any
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vertex is Kr-free. A stronger assumption is that each such neighborhood is r-colorable. Our first
result here is that under this stronger requirement, the independence number is indeed as large as
in (1).

Theorem 1.1 Let G = (V,E) be a graph on n vertices with average degree t ≥ 1 in which for
every vertex v ∈ V the induced subgraph on the set of all neighbors of v is r-colorable. Then, the
independence number of G is at least c

log (r+1)
n
t log t, for some absolute positive constant c.

Although this is weaker than the conjecture of [2] mentioned above, it is clearly stronger than the
main result of [1] and may indicate that this conjecture is likely to be true.

In the second part of the paper we combine the main result of [1] with some additional arguments
and prove the following Ramsey type result.

Theorem 1.2 Let G be a graph on n vertices whose independence number is smaller than b
√
nc,

that is, any set of b
√
nc vertices of G contains at least one edge. Then there is some subset of b

√
nc

vertices of G that contains at least Ω(
√
n log n) edges.

This is tight and settles a problem of Erdös [4].
The proofs rely heavily on probabilistic arguments. In Section 2 we prove Theorem 1.1 by

combining the technique of [8] with an argument in [6]. In Section 3 we prove Theorem 1.2 and
discuss the analogous question when we replace the parameter b

√
nc by a general integer m.

2 Locally sparse graphs

Let α(G) denote the independence number of G, that is, the maximum number of vertices in an
independent set in G. The main step in the proof of Theorem 1.1 is given below. We make no
attempt to optimize the multiplicative constant here and in the rest of the paper.

Proposition 2.1 Let G = (V,E) be a graph on n vertices with maximum degree d ≥ 1, in which the
neighborhood of any vertex is r-colorable. Then

α(G) ≥ n log d
160d log(r + 1)

.

In order to prove the above proposition we need the following simple but somewhat technical fact.
A similar estimate is used for a related purpose in [6].

Lemma 2.2 Let F be a family of 2εx distinct subsets of an x-element set X. Then the average size
of a member of F is at least

εx

10 log(1/ε+ 1)
.

2



Proof. Clearly we may assume that F consists of the 2εx subsets of smallest cardinality of X. Since
6
7 ·

1
8 >

1
10 it suffices to show that at least 6/7 of the members of F are of size at least

εx

8 log(1/ε+ 1)
. (2)

Since the last quantity is at most x/8 (as log(1/ε+ 1) ≥ 1), and since for any r ≤ x/8,
(x
r

)
is at least

7
( x
r−1

)
, and hence at least 6

7

∑r
i=0

(x
i

)
, it suffices to show that

εx
8 log(1/ε+1)∑

i=0

(
x

i

)
≤ 2εx,

since this would imply that at least 6/7 of the sets in F must be of size at least (2). As
∑r
i=0

(x
r

)
≤

2H(r/x)x, where H(y) = −y log y− (1− y) log(1− y) is the binary entropy function, it follows that it
suffices to check that

H(
ε

8 log(1/ε+ 1)
) ≤ ε.

As for y < 1/2, H(y) < 2y log(1/y) it suffices to check that

2ε
8 log(1/ε+ 1)

log(
8 log(1/ε+ 1)

ε
) ≤ ε,

or, equivalently, that
log(1/ε) + 3 + log(log(1/ε+ 1)) ≤ 4 log(1/ε+ 1).

This, however, is certainly true, since log(1/ε) < log(1/ε + 1) and since s = log(1/ε + 1) ≥ 1 and
3 + log s ≤ 3s for all real s ≥ 1. 2

Proof of Proposition 2.1. If, say, d < 16 the result follows easily from the general bound
α(G) ≥ n/(d + 1) (with room to spare) and hence we may and will assume that d ≥ 16. Let W be
a random independent set of vertices in G, chosen uniformly among all (not necessarily maximal)
independent sets in G. For each vertex v ∈ V define a random variable Xv = d|{v}∩W |+|N(v)∩W |,
where N(v) denotes the set of all neighbors of v. Note that Xv = d if v ∈ W and Xv = |N(v) ∩W |
otherwise. We claim that the expectation of Xv satisfies

E(Xv) ≥
log d

80 log(r + 1)
.

To prove this claim, let H denote the induced subgraph of G on V − (N(v) ∪ {v}), and fix an
independent set S in H. It suffices to show that the conditional expectation

E(Xv| W ∩ V (H) = S) ≥ log d
80 log(r + 1)

(3)

for each possible S. Let X denote the set of all non-neighbors of S in the set N(v), |X| = x. Let
2εx denote the precise number of independent subsets in the induced subgraph G|X of G on X. Note
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that since this induced subgraph is r-colorable, it contains an independent set of size at least x/r
and hence ε ≥ 1/r. Conditioning on the intersection W ∩ V (H) = S there are precisely 2εx + 1
possibilities for W : one in which W = S ∪{v} and 2εx in which v 6∈W and W is the union of S with
an independent set in G|X . It follows that the conditional expectation considered in (3) is precisely
d

2εx+1 plus the sum of the sizes of all independent sets in G|X divided by 2εx + 1. This last sum is,
crucially, at least

εx2εx

10 log(1/ε+ 1)
,

by Lemma 2.2. It follows that the conditional expectation (3) is at least

d

2εx + 1
+

εx2εx

10 log(1/ε+ 1)(2εx + 1)
≥ d

2εx+1
+

εx

20 log(r + 1)
.

If 2εx+1 ≤
√
d then the first term in the right hand side of the last inequality is at least

√
d > log d/2

where here we used the fact that d ≥ 16. Otherwise, εx ≥ 1
2 log d − 1 ≥ 1

4 log d. Therefore, in any
case the sum of the two terms is at least as large as their maximum and hence

E(Xv| W ∩ V (H) = S) ≥ log d
80 log(r + 1)

,

establishing the claim.
By linearity of expectation we conclude that the expected value of the sum

∑
v∈V Xv is at least

n log d
80 log(r+1) . On the other hand, this sum is clearly at most 2d|W |, since each vertex u ∈W contributes
d to the term Xu in this sum, and degG(u) ≤ d to the sum of all other terms Xv. It follows that the
expected size of W is at least n log d

160d log(r+1) , and hence there is an independent set of size at least this
expectation, completing the proof. 2

Proof of Theorem 1.1. Any graph on n vertices with average degree t has at least n/2 vertices
of degree at most 2t. Hence it contains an induced subgraph on n/2 vertices with maximum degree
at most 2t, and the result follows by applying the last proposition to this induced subgraph. 2

Remark. A close look at the proof of Theorem 1.1 shows that its assertion is valid even if we
replace the assumption that every neighborhood is r-colorable by the weaker assumption that for
any x, any set of x vertices with a common neighbor contains an independent set of size at least
x/r. In particular it suffices to assume that the chromatic number (or even the fractional chromatic
number) of the induced subgraph of G on the neighborhood of any vertex is at most r. Moreover, it
suffices, in fact, to assume that any set of x ≤ r log2 t vertices with a common neighbor contains an
independent subset of size at least x/r. This is because in the proof of Proposition 2.1, if x ≥ r log2 d,
then there is an independent set of size at least log2 d in X, and the number of independent subsets
in G|X is at least dlog d. The average size of a set in a collection of at least dlog d subsets of a set of
size at most d is at least Ω(log d) and hence in this case the contribution of the term |N(v) ∩W | in
the definition of Xv to the conditional expectation is at least Ω(log d), as needed. If, on the other
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hand, x ≤ r log2 d, then the assumption, for this case, is identical to the one in the proposition and
the proof can proceed as in its proof.
Remark. It is worth noting that unlike the proofs in [1] or [7] the above proof is non-constructive
in the sense that it supplies no efficient algorithm that finds in any graph satisfying the assumptions
of Theorem 1.1 an independent set of the size mentioned in the conclusion of the theorem.

3 A Ramsey type problem

Proof of Theorem 1.2. Let G be a graph on n vertices with independence number α(G) < b
√
nc.

We must show that there is a set of m = b
√
nc vertices of G containing Ω(m log n) edges. Throughout

the proof here and in the rest of the section we assume, whenever this is needed, that n is sufficiently
large. We also omit all floor and ceiling signs whenever these are not crucial.
If the average degree in G is at least

√
n log n, then G has at least 1

2n
3/2 log n edges, and the expected

number of edges in a random subset of m vertices of G is at least(m
2

)(n
2

) n3/2 log n
2

>
m log n

4
,

where in the last inequality we used the fact that n is large. Thus, in this case, there is an m-set
containing sufficiently many edges, as needed. Hence we may and will assume that the average
degree in G is at most

√
n log n. Therefore, at least n/2 vertices have degrees that do not exceed

2
√
n log n. Let G′ be the induced subgraph of G on some n/2 vertices whose degrees (in G) do not

exceed 2
√
n log n.

If in G′ there is a vertex v with at least
√
n log3 n edges in its neighborhood N(v), we argue as

follows. If |N(v)| ≤ m then any set of m vertices containing N(v) has sufficiently many edges, as
needed. Otherwise, take a random subset of m members of N(v). Since |N(v)| ≤ 2

√
n log n the

expected number of edges in such a random subset exceeds 1
8m log n, implying the desired result in

this case too. Thus we may assume there is no vertex v as above, and hence the total number of
triangles in G′ is at most

1
3

(n/2)
√
n log3 n < n3/2 log3 n.

Let U be a random subset of vertices of G′ obtained by picking each vertex of G′ to be a member of
U , randomly and independently, with probability p = n−0.4. Let X = X(U) be the random variable
whose value is the cardinality of U minus the number of triangles contained in the induced subgraph
of G′ on U . The expected value of X is at least

n

2
p− (n3/2 log3 n)p3 ≥ n0.6

2
− n3/2 log3 n

n1.2
≥ n0.6

4
.

In particular, there is a choice of U for which the value of X(U) is at least this quantity, and by
throwing a vertex from each triangle in the induced subgraph G′|U , (and by omitting some additional
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vertices, if needed) we obtain a triangle-free induced subgraph G2 of G′ (and hence of G) on a set
U ′ of n0.6

4 vertices. Let t denote the average degree in G2. By the main result of [1] mentioned in the
introduction and extended in Theorem 1.1 above, G2 (and hence G) contains an independent set of
size at least

c
n0.6

4t
log t,

where c > 0 is an absolute constant. This independent set must be of size smaller than m ≤
√
n,

implying that t ≥ c′n0.1 log n for some absolute positive c′. It follows that the induced subgraph
of G on U ′ has Ω(n0.7 log n) edges, and hence the expected number of edges in a random subset of
m = b

√
nc vertices in it is Ω(m log n), completing the proof. 2

Next, we prove the following simple result, which shows that the assertion of Theorem 1.2 is tight
(in a more general setting).

Proposition 3.1 There exists an absolute constant c so that for any 1 < m ≤ n there exists a
graph on n vertices whose independence number is smaller than m, in which every set of m vertices
contains at most cm ln(en/m) edges.

Proof. Without trying to optimize our estimates we prove the proposition with c = 6, say. If
m < 12 ln(en/m), even a complete graph on m vertices contains less than 6m ln(en/m) edges, and
hence we can simply define G to be a complete graph. Otherwise, let G = (V,E) be the standard
random graph on n labeled vertices obtained by picking each pair of vertices as an edge, randomly
and independently, with probability p = 4

m−1 ln(en/m) ( < 1). The expected number of independent
sets of size m in G is(

n

m

)
(1− p)(

m
2 ) < (en/m)me−pm(m−1)/2 = (

en

m
e−2ln(en/m))m = (en/m)−m < 1/2.

Let M be a fixed set of m vertices of G. By the standard estimates for Binomial distributions (see,
e.g., Theorem A.12 in Appendix A of [3]), the probability that the value of a Binomial random
variable with parameters N and p exceeds βpN for β > 1 is at most (eβ−1β−β)pN . Substituting
N =

(m
2

)
, p = 4

m−1 ln(en/m), and β = 3 we conclude that the probability that the induced subgraph
of G on M has more than 6m ln(en/m) edges is at most

(
e2

33
)2m ln(en/m) < (

en

m
)−2m.

Therefore, the expected number of sets M on which G has more than 6m ln(en/m) edges is at most(
n

m

)
(
en

m
)−2m < (en/m)−m < 1/2.

It follows that the expected number of independent sets of size m plus the expected number of sets of
size m containing more than 6m ln(en/m) edges is smaller than 1. Thus, there is a graph containing
no sets of these two types, completing the proof. 2

6



By the known bounds for the usual Ramsey numbers (see., e.g., [5]), if a graph on n vertices
contains no independent set of size log n then it contains a complete graph on Ω(log n) vertices. This
implies the following simple statement.

Proposition 3.2 For m ≤ log n, in any graph on n vertices in which every set of m vertices contains
an edge there is some set of m vertices that contains Ω(m2) edges.

For each 1 < m ≤ n, let f(m,n) denote the largest integer f so that in any graph G on n

vertices satisfying α(G) < m there is some set of m vertices containing at least f(m,n) edges. By
the above proposition f(m,n) = Θ(m2) for 1 < m ≤ log n, and by Theorem 1.2 and Proposition
3.1, f(m,n) = Θ(n log(en/m)) ( = Θ(m log n) ) for m = b

√
nc. It is easy to see that f(m,n) =

Θ(n − m) for m ≥ n/2, and it is not too difficult to extend the proof of Theorem 1.2 and show
that f(m,n) = Θ(m log(em/n)) for all nε ≤ m ≤ n/2. P. Valtr [9] proved the following result that
generalizes Theorem 1.2 and determines, together with Proposition 3.1, the asymptotic behaviour of
f(m,n) in all other cases.

Theorem 3.3 (Valtr) For every m and n satisfying log n ≤ m ≤ n/2,

f(m,n) = Ω(m log(n/m)) ( = Ω(m log(en/m)) ).

Therefore, f(m,n) = Θ(n −m) for n/2 ≤ m ≤ n, f(m,n) = Θ(m log(en/m)) for log n ≤ m ≤ n/2
and f(m,n) = Θ(m2) for 1 ≤ m ≤ log n. The precise determination of f(m,n) for every m and n

seems extremely difficult, as it requires, in particular, to determine precisely the diagonal Ramsey
numbers R(m,m), since, clearly, f(m,n) =

(m
2

)
iff R(m,m) ≤ n.
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