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Abstract

We describe an approximation algorithm for the independence number of a graph. If a
graph on n vertices has an independence number n/k + m for some fixed integer k ≥ 3 and
some m > 0, the algorithm finds, in random polynomial time, an independent set of size
Ω̃(m3/(k+1)), improving the best known previous algorithm of Boppana and Halldorsson that
finds an independent set of size Ω(m1/(k−1)) in such a graph. The algorithm is based on semi-
definite programming, some properties of the Lovász ϑ-function of a graph and the recent
algorithm of Karger, Motwani and Sudan for approximating the chromatic number of a graph.
If the ϑ-function of an n vertex graph is at least Mn1−2/k for some absolute constant M , we
describe another, related, efficient algorithm that finds an independent set of size k. Several
examples show the limitations of the approach and the analysis together with some related
arguments supply new results on the problem of estimating the largest possible ratio between
the ϑ-function and the independence number of a graph on n vertices.
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1 Introduction

An independent set of a graph is a subset of vertices that contains no pair of neighbors. The
independence number α(G) of a graph G is the size of a largest independent set in G. Determining
or estimating α(G) is a fundamental problem in Theoretical Computer Science. The problem of
computing α(G) is known to be NP-hard [19]. The best known approximation algorithm for the
independence number, designed by Boppana and Halldorsson [7], has a performance guarantee of
O(n/(log n)2), where n is the number of vertices in the graph. Boppana and Halldorsson’s algorithm
performs better when the graph contains a large independent set. Indeed, they showed that if the
independence number exceeds n/k+m, where k is a fixed integer and m > 0, then an independent
set of size Ω(m1/(k−1)) can be found in polynomial time. On the negative side, it has recently
been shown in [3], improving previous results in [11], [4], that for some ε > 0 it is impossible
to approximate in polynomial time the independence number of a graph within a factor of nε,
assuming P 6= NP. The exponent ε has since been improved under similar hardness assumptions,
and very recently it has been shown by H̊astad [16] that it is in fact larger than (1 − δ) for every
positive δ, assuming NP does not have polynomial time randomized algorithms.

Another fundamental quantity associated with a graph G is its chromatic number χ(G). A
proper coloring of a graph is an assignment of colors to each vertex of the graph so that adjacent
vertices have different colors. The chromatic number is the minimum number of colors used in
a proper coloring. The best known approximation algorithm [15] for the chromatic number of a
graph on n vertices has a performance guarantee of O(n(log log n)2/(log n)3).

In this paper we obtain an improved approximation algorithm for the independence number by
considering the ϑ-function of the graph. This function, introduced by Lovász [23], can be defined
as follows. Given a graph G = (V,E), an orthonormal labeling (or orthonormal representation)
of G is an assignment of a unit vector av in an Euclidean space to each vertex v of G, such that
au · av = 0 if u 6= v and (u, v) 6∈ E. The ϑ-function ϑ(G) is equal to the minimum over all unit
vectors d and all orthonormal labelings (av) of G of

max
v∈V

1
(d · av)2 .

The ϑ-function satisfies the inequality

α(G) ≤ ϑ(G) ≤ χ(G),

where G is the complement of G. Moreover, the ϑ-function can be computed in polynomial time
at an arbitrary precision [17]. The number χ(G) is also refered to as the clique cover number of the
graph.

Here we study the gap between the ϑ-function and the independence number. We show in
Section 3 that for any fixed integer k ≥ 3, if ϑ(G) ≥ n/k+m then α(G) ≥ Ω̃(m3/(k+1)). Here, and
in what follows, the notation g(n) = Ω̃(f(n)) means, as usual, that g(n) ≥ Ω(f(n)/(log n)c) for
some constant c independent of n. The notation g(n) = Õ(f(n)) is defined similarly. Our proof is
algorithmic, that is, if ϑ(G) ≥ n/k +m then an independent set of size Ω̃(m3/(k+1)) can be found
in randomized polynomial time, thus improving Boppana and Halldorsson’s result. Our proof and
algorithm uses semi-definite programming, along the ideas in [17, 13], together with the recent
work by Karger, Motwani and Sudan [18]. It is worth noting that the authors of [7] showed that no
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approximation algorithm (with an arbitrary running time) which is based on a subgraph exclusion
procedure like most of the previous algorithms for the independent set problem (including the one
in [7]), can approximate the maximum independent set as well as our algorithm here, showing that
the application of some other tools is indeed crucial.

In Section 4 we show that if g(n) is a function of n such that, for any graph G on n vertices,
χ(G) ≤ g(n)ϑ(G), then for any graph G on n vertices, ϑ(G) ≤ Hng(n)α(G), where Hn = 1 + 1/2 +
. . .+ 1/n ( = O(log n)). This improves a recent result of Szegedy [24] by a log n factor.

In Section 5 we bound the ϑ-function of graphs with small independence number. We show that
if α(G) < k, then ϑ(G) ≤ Mn1−2/k, where M is an absolute constant. This generalizes a result
in [20] where the case k = 3 was treated (in a disguised form.) For k = 3 the above estimate is shown
to be tight in [1]. We also show that if ϑ(G) > Mn1−2/k, then an independent set of size k can be
found in polynomial time in n (independent of k). By a very recent result of Feige [10] that applies
the randomized graph products technique of Berman and Schnitger [6], there are graphs G on n
vertices with an independence number α(G) < k whose ϑ-function satisfies ϑ(G) ≥ Ω(n1−O(1/ log k)),
showing that our O(n1−2/k) upper bound is not very far from being best possible. We also generalize
Kashin and Konyagin’s result in a different direction by showing that if the complement of a graph
G has no odd cycle of length at most 2s+ 1, then ϑ(G) ≤ 1 + (n− 1)1/(2s+1). This bound can be
shown to be nearly tight by modifying the construction in [1].

In Section 6 we show that the result in Section 3 cannot be significantly improved by giving,
for every ε > 0, an explicit family of graphs on n vertices whose ϑ-function is at least (1

2 − ε)n and
whose independence number is O(nδ), where δ = δ(ε) < 1. We note that this construction is tight
in the sense that if the ϑ-function exceeds (1

2 + ε)n, then the independence number is Ω(n). Our
construction is based on a combinatorial result of Frankl and Rödl [12] and extends a construction
in [2]. The final Section 7 contains some concluding remarks and open problems.

2 The ϑ-function and Ramsey theory

For integers k, s, n ≥ 2, let r(k, s) =
(k+s−2
k−1

)
, and tk(n) = max{s|r(k, s) ≤ n}. It is well known in

Ramsey theory [9] that any graph G with at least r(k, s) vertices contains either a clique of size k or
an independent set of size s. Moreover, a clique of size k or an independent set of size s can be found
in G in polynomial time (as a function of the input size.) Boppana and Halldorsson [7] show that
if a graph G on n vertices contains an independent set of size n/k+m, then an independent set of
size tk(m) can be found in polynomial time. Their strategy is to repeatedly delete from G a clique
of size k until the remaining graph contains no such clique. Since the number of cliques removed
is obviously at most n/k and since each clique contains at most one vertex from an independent
set, the remaining graph has at least m vertices. Moreover, it contains no clique of size k. Thus an
independent set of size tk(m) can be found in polynomial time in the remaining graph. Note that,
for fixed k, tk(m) = Ω(m1/(k−1)).

A careful look at Boppana and Halldorsson’s algorithm yields the following.

Proposition 2.1 If χ(G) ≥ n/k + m, then an independent set of size tk(m) can be found in G
polynomial time.

Proof Each time a clique is removed from the graph, the clique cover number diminishes by at
most 1. Since at most n/k cliques have been removed, the clique cover number of the remaining
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graph is at least m. Thus the remaining graph has at least m vertices. We conclude as before that
an independent set of size tk(m) can be found in polynomial time in the remaining graph. 2

Corollary 2.2 If ϑ(G) ≥ n/k + m, then an independent set of size tk(m) can be found in G in
polynomial time.

3 Improved approximation for the independence number

When k is a fixed integer, we have the following.

Theorem 3.1 For any fixed integer k ≥ 3, if ϑ(G) ≥ n/k + m, then an independent set of size
Ω̃(m3/(k+1)) can be found in randomized polynomial time.

Note that as shown in [7] such an approximation algorithm cannot be based on a subgraph exclusion
procedure as in [7]. A similar result can be proved for non integer values of k, but since its precise
statement is somewhat cumbersome we omit it here. The need for the integrality of k is in the
proof of the main result of [18], which can be modified to yield certain estimates for non-integral k
as well.

The proof of Theorem 3.1 uses a recent result by Karger, Motwani and Sudan [18]. As defined
in [18], the vector chromatic number of a graph is the minimum real number h such that there exists
an assignment of a unit vector av to each vertex v satisfying the inequality av · aw ≤ −1/(h − 1)
whenever (v, w) is an edge. It is shown in [18] that if the vector chromatic number of a graph G
on n vertices is at most h for some fixed integer h ≥ 3, then G can be properly colored with at
most Õ(n1−3/(h+1)) colors in randomized polynomial time. Karger, Motwani and Sudan [18] also
define the strict vector chromatic number as the minimum real number h such that there exists an
assignment of unit vectors av to each vertex v satisfying the equality av ·aw = −1/(h−1) whenever
(v, w) is an edge. They show that the strict vector chromatic number of a graph G is equal to ϑ(G).
By definition, the vector chromatic number is always upper bounded by the strict vector chromatic
number.

We now turn to the proof of Theorem 3.1. We first show that if ϑ(G) ≥ n/k + m, then G
contains an independent set of size Ω̃(m3/(k+1)). It is known [23] that ϑ(G) is the maximum over
all unit vectors d and all orthonormal labelings (bv) of the complement G of G of

∑
v∈V (d · bv)2,

and that the maximum is attained. This characterization of the ϑ-function will be called the dual
characterization. It implies immediately that α(G) ≤ ϑ(G). Indeed, if I is an independent set,
then by setting bv = e for v ∈ I, where e is any unit vector, and by assigning an orthonormal
family orthogonal to e to the remaining vertices, we get an orthonormal representation of G. For
this representation, it is clear that

∑
v∈V (bv · e)2 = |I|.

Let d be a unit vector and (bv) an orthonormal labeling of G such that ϑ(G) =
∑
v∈V (d · bv)2.

We will use the family (bv) to find a large independent set in G. Without loss of generality, label
the vertices from 1 to n and assume that (d · b1)2 ≥ (d · b2)2 ≥ · · · ≥ (d · bn)2. The inequalities
(d · b1)2 + (d · b2)2 + · · · + (d · bn)2 ≥ n/k + m and (d · bi)2 ≤ 1 for 1 ≤ i ≤ m imply that
(d · bm)2 ≥ 1/k. Let K be the subgraph of G induced on {1, 2, . . . ,m}. The family (b1, b2, . . . , bm)
is clearly an orthonormal labeling of K. It follows from the definition of the ϑ-function in Section 1
that ϑ(K) ≤ k. From the discussion in the beginning of this section, we conclude that the vector
chromatic number of K is at most k, and thus K can be properly colored with Õ(m1−3/(k+1)) colors
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in randomized polynomial time. The largest color class forms an independent set of K (and thus
an independent set of G) of size Ω̃(m3/(k+1)).

To conclude the proof of the theorem, we show how to find in polynomial time a unit vector d
and an orthonormal labeling (bv), v ∈ V of G such that

∑
v∈V (d · bv)2 ≥ ϑ(G)− 1. (The preceding

argument shows that this inequality suffices for our needs, since the same argument would still be
valid by replacing m with m− 1.) One way to achieve this goal is to use another characterization
of the ϑ-function. Let B range over all positive semi-definite symmetric matrices indexed by V
such that tr(B) = 1 and buv = 0 whenever (u, v) ∈ E, u 6= v. Then ϑ(G) is the maximum over
all such matrices [23] of

∑
u,v∈V buv. A matrix B satisfying the above conditions and such that∑

u,v∈V buv ≥ ϑ(G)− 1 can be found in polynomial time in n using the ellipsoid method [17]. Since
B is positive semi-definite, there exist vectors cu such that cu · cv = buv, for all u, v ∈ V . Let
bv = cv/||cv||, and

d =
∑
v∈V cv

||
∑
v∈V cv||

.

Clearly, the family (bv) is an orthonormal representation of G. Moreover, it is shown implicitly
in [23, Th. 5] that

∑
v∈V (d · bv)2 ≥

∑
u,v∈V buv. Thus

∑
v∈V (d · bv)2 ≥ ϑ(G)− 1. Note that, given

B, the vectors cv can be computed at an arbitrary precision in polynomial time using a Cholesky
factorization [14, Sec. 4.2] of B. 2

4 Comparing the worst-case ratios

It is shown in [24] that if f(n) is a monotone increasing function such that, for every n and every
graph G on n vertices ϑ(G) ≤ α(G)f(n) holds, then for every n and for every graph G on n vertices
ϑ(G) ≥ χ(G)/(f(n) logn) holds. It is also shown that if g(n) is a monotone increasing function
such that, for every n and every graph G on n vertices ϑ(G) ≥ χ(G)/g(n) holds, then for every n
and for every graph G on n vertices ϑ(G) ≤ 8 log2 ng(n)α(G) holds. We improve the latter result
by a logarithmic factor and observe that it is not needed to require that g be monotone.

Theorem 4.1 Let g(n) be a function of n such that, for any graph G on n vertices, χ(G) ≤
g(n)ϑ(G). Then for any graph G on n vertices, ϑ(G) ≤ Hng(n)α(G).

Proof Without loss of generality, assume that g(n) is the maximum over all graphs G on n
vertices of the ratio χ(G)/ϑ(G). Consider the operation of adjoining an extra vertex to a graph
by connecting it to every vertex. It is known (see e.g. [21, p. 20]) that the ϑ-function remains the
same under this operation. It is also easy to see that the clique cover number remains the same.
It follows that g(n) is an increasing function of n.

Let G be a graph on n vertices. Following the notation of Section 3, let d be a unit vector, let
(bv) be an orthonormal labeling of G such that ϑ(G) =

∑
v∈V (d · bv)2, and assume that (d · b1)2 ≥

(d · b2)2 ≥ · · · ≥ (d · bn)2. Note that (d · bi)2 ≥ ϑ(G)/(Hni), for some i ∈ [1, n]. This is because
otherwise (d · bi)2 < ϑ(G)/(Hni) for all i, and by summing these inequalities for 1 ≤ i ≤ n we
get a contradiction. Let K be the subgraph of G induced on {1, 2, . . . , i}. The definition of the
ϑ-function in Section 1 shows that ϑ(K) ≤ 1/(d · bi)2 ≤ Hni/ϑ(G). Since χ(K) ≤ g(i)ϑ(K) ≤
g(n)ϑ(K), we conclude that χ(K) ≤ g(n)Hni/ϑ(G). Thus K contains an independent set of size
i/χ(K) ≥ ϑ(G)/(Hng(n)). Hence α(G) ≥ ϑ(G)/(Hng(n)), as desired. 2
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5 Graphs with a small independence number

Kashin and Konyagin [20] show (in a disguised form) that for any graph G on n vertices, if α(G) < 3
then ϑ(G) ≤ 22/3n1/3. We generalize their result for larger bounds on α(G), and also for graphs
whose complement contains no short odd cycles.

Theorem 5.1 There exists an absolute constant M such that for any graph G = (V,E) on n
vertices and any integer k ≥ 2, if α(G) < k then ϑ(G) ≤Mn1−2/k.

The proof of Theorem 5.1 is based on the following lemma.

Lemma 5.2 Let fk(n) = maxϑ(H), where H ranges over all graphs on n vertices satisfying the
condition α(H) < k. If G = (V,E) is a graph such that α(G) < k and ∆ is the maximum degree of
G, then ϑ(G) ≤ 1 +

√
∆fk−1(∆).

Proof The ϑ-function can be shown (see e.g. [21]) to be equal to the maximum over all orthonormal
labelings (bv) of G of the largest eigenvalue of the matrix (bu · bv) indexed by the vertices of G.

For u ∈ V , let Hu be the subgraph of G induced on the set of neighbors of u in G. Since Hu

contains no neighbor of u (in G), α(Hu) < k − 1. Moreover, Hu has at most ∆ vertices. The
argument in Section 4 shows that fk(n) is an increasing function of n. Thus ϑ(Hu) ≤ fk−1(∆).

Since (bv), v ∈ Hu is an orthonormal labeling of Hu, it follows from the dual characterization
of the ϑ-function (taking d = bu) that

∑
v∈Hu(bu · bv)2 ≤ ϑ(Hu) ≤ fk−1(∆). By the Cauchy-

Schwartz inequality, it follows that
∑
v∈Hu |bu · bv| ≤

√
∆fk−1(∆). On the other hand, since (bv)

is an orthonormal labeling of G, bu · bv = 0 if v 6= u and v is not in Hu. We conclude that∑
v∈V |bu · bv| ≤ 1 +

√
∆fk−1(∆), for any u ∈ V . Consequently, the largest eigenvalue of the matrix

(bu · bv) is at most 1 +
√

∆fk−1(∆). Since this inequality holds for all orthonormal labelings of G,
we conclude that ϑ(G) ≤ 1 +

√
∆fk−1(∆). 2

Fact 5.3 If the vertex set V of a graph G is split into l pairwise disjoint subsets V1, V2, . . . , Vl,
for an integer l ≥ 1, the ϑ-function of G is upper bounded by the sum of the ϑ-functions of the
subgraphs induced on the Vi, 1 ≤ i ≤ l.

Proof This follows immediately from the dual characterization of the ϑ-function. 2

We are now ready to prove Theorem 5.1. The proof is by induction on k. The base case k = 2
is easy since the ϑ-function of the complete graph is 1. Assume now that the induction hypothesis
holds for k− 1, that is fk−1(n) ≤Mn1−2/(k−1), where M is a constant to be determined later. We
prove by induction on n that fk(n) ≤ Mn1−2/k. Since ϑ(G) ≤ n, the inequality fk(n) ≤ Mn1−2/k

is trivial when n ≤Mk/2. Assume now that fk(m) ≤Mm1−2/k for m < n. Let G be a graph on n
vertices such that α(G) < k, and define ∆ = 9n1−1/k. Assume for simplicity that ∆ is an integer.
We distinguish two possible cases:

1. The maximum degree of G is at most ∆. By Lemma 5.2 and the induction hypothesis,

ϑ(G) ≤ 1 +
√

∆fk−1(∆)

≤ 1 +
√

∆M∆1−2/(k−1)

≤ 1 + 9
√
Mn1−2/k

≤ Mn1−2/k,
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where the last inequality holds if M is a sufficiently large constant.

2. There exists a vertex u of G that has more than ∆ neighbors in G. Let U ⊂ V be a subset of
∆ neighbors of u in G, H the subgraph of G induced on U , and K the subgraph of G induced
on V −{u}−U . It follows from Fact 5.3 that ϑ(G) ≤ 1 +ϑ(H) +ϑ(K). But ϑ(H) ≤ fk−1(∆)
since α(H) < k − 1, and ϑ(K) ≤ fk(n−∆− 1). Thus

ϑ(G) ≤ 1 +M∆1−2/(k−1) + fk(n−∆)

≤ M
k

k − 2
∆1−2/(k−1) +M(n−∆)1−2/k.

(The second inequality holds since we are assuming n ≥ Mk/2, and thus ∆1−2/(k−1) ≥
M (k−3)/2. So it suffices that 2M (k−1)/2 ≥ k − 2, for all k ≥ 3.) Since n1−2/k is a concave
function of n, (n−∆)1−2/k ≤ n1−2/k −∆(1− 2/k)n−2/k. Hence

ϑ(G) ≤Mn1−2/k −M∆(1− 2/k)n−2/k +M
k

k − 2
∆1−2/(k−1).

But ∆−2/(k−1) = 9−2/(k−1)n−2/k ≤ (1− 2/k)2n−2/k. This is because
(

k
k−2

)k−1
≤ 9, for k ≥ 3.

We conclude that ϑ(G) ≤Mn1−2/k, and thus fk(n) ≤Mn1−2/k, as desired. 2

Theorem 5.4 If G is a graph on n vertices such that ϑ(G) > M ′n1−2/k for an appropriate absolute
constant M ′, an independent set in G of size k can be found in polynomial time.

Proof This follows from the proof of Theorem 5.1. 2

Corollary 5.5 If u1, u2, . . . , un are n unit vectors, and among any k of them some 2 are orthogonal,
then ||

∑n
i=1 ui|| ≤

√
Mn1−1/k.

Proof Consider the graph G on {1, 2, . . . , n}, where (i, j) is an edge if and only if ui · uj = 0.
It is clear that (ui) is an orthonormal representation of G. Thus the largest eigenvalue of the
matrix P = (ui · uj) is at most ϑ(G). In particular,

∑
ij ui · uj = 1 · P1 ≤ nϑ(G). Equivalently,

||
∑
ui||2 ≤ nϑ(G). But α(G) < k by hypothesis, and so ϑ(G) ≤ Mn1−2/k. Combining this with

the preceding inequality we get the desired result. 2

Corollary 5.5 has already been established [22, 20] for the special case k = 3. For this case it is
tight up to a constant factor, as shown in [1].

It follows from Theorem 5.4 that if the independence number exceeds M ′n1−2/k, an independent
set in G of size k (≤ log n) can be found in polynomial time. A simpler algorithm can be used
to achieve a slightly stronger result, however, following the ideas in [5]. Partition the vertices of
the graph into M ′n1−2/k/Ck subsets, each of size Ckn2/k/M ′, where C > 0 is any constant. The
hypothesis implies that at least one of these subsets contains an independent set of size Ck. We
can search for such an independent set in each of these subsets by brute-force search. The running
time of the algorithm is polynomial since(

Ckn2/k

M ′

Ck

)
≤ nO(C).
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5.1 Graphs with no short odd cycles

We give in this subsection another generalization of Kashin and Konyagin’s aforementioned result.

Proposition 5.6 Let G be a graph on a set of n vertices. If the complement of G has no odd cycle
of length at most 2s+ 1, the ϑ-function of G does not exceed 1 + (n− 1)1/(2s+1).

Proof Again, we use the fact that the ϑ-function is equal to the maximum over all orthonormal
labelings (bv) of G of the largest eigenvalue of the matrix B = (bu · bv) indexed by the vertices of G.
Let (bv) be an orthonormal labeling of G that achieves this maximum. Since buv, u 6= v, is non-zero
only if (u, v) ∈ G, the absence of odd cycles of length at most 2s+1 in G implies that every diagonal
entry of the matrix (B − I)2s+1 is zero. In particular, tr((B − I)2s+1) = 0. Let λ1 ≥ λ2 ≥ · · · ≥ λn
be the eigenvalues of B. It follows that

∑n
i=1(λi− 1)2s+1 = 0. Since B is positive semi-definite, the

λi’s are non-negative. Thus (λ1 − 1)2s+1 ≤ n− 1, and so λ1 ≤ 1 + (n− 1)1/(2s+1), as desired. 2

Remark. Up to a multiplicative constant factor cs depending on s, the bound in Proposition 5.6
can be shown to be tight by modifying the construction in [1].

6 Linear ϑ-function and sublinear independence number

By Corollary 2.2, if the ϑ-function of a graph on n vertices is at least (1
2 +ε)n, then the independence

number is Ω(n). In this section we show that if ϑ is slightly smaller, then the independence number
may be nδ for some δ < 1.

Theorem 6.1 For every ε > 0 there is an explicit family of graphs on n vertices whose ϑ-function
is at least (1

2 − ε)n and whose independence number is O(nδ), where δ = δ(ε) < 1.

The construction is based on a combinatorial result of Frankl and Rödl [12] and extends a construc-
tion in [2]. In fact, by interpreting the result in [2] appropriately one may note that it supplies (in
a disguised form) graphs with n vertices, ϑ ≥ n/16 and independence number at most O(n0.85002)).

Proof of Theorem 6.1 For a pair of integers q > s > 0 let G(q, s) denote the graph on n =
(2q
q

)
vertices corresponding to all q-subsets of the 2q-element set Q = {1, 2, . . . , 2q}, where two vertices
are adjacent iff the intersection of their corresponding subsets is of cardinality precisely s. By
the main result of Frankl and Rödl in [12], for every γ > 0 there is a µ = µ(γ) > 0 so that if
(1 − γ)q > s > γq then every family of more than 22q(1−µ) subsets of cardinality q of Q contains
some pair of subsets whose intersection is of cardinality s. This means that the independence
number of the graph G(q, s) for q and s that satisfy (1− γ)q > s > γq satisfies

α(G(q, s)) ≤ nδ (1)

for some δ = δ(γ) < 1.
We next estimate the ϑ-function of G(q, s). Let

x =
(q − s) +

√
(q − s)2 − s2

s

be the bigger root of the quadratic polynomial sx2−2(q−s)x+s. Associate with every vertex u of
G(q, s) that corresponds to a subset U of cardinality q of Q the vector du = (x+ 1) ·1U −1Q, where
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1U is the characteristic vector of U and 1Q is the all 1 vector of length 2q. Define bu = du/||du||.
A simple calculation shows that if u corresponds to subset U and v corresponds to subset V then
du · dv = |U ∩ V |(x+ 1)2 − 2qx. In particular, ||du||2 = qx2 + q. It also follows that the vectors bu
form an orthonormal labeling of G(q, s). Therefore, by the dual characterization of the ϑ-function
and by letting d be the unit vector 1√

2q
(1, 1, . . . , 1) we conclude that

ϑ(G(q, s)) ≥
∑
u

(d · bu)2 = n
(qx− q)2

2q(qx2 + q)
= n

q − 2s
2(q − s)

,

since

(d · bu)2 =
(qx− q)2

2q(qx2 + q)

for every vertex u of G(q, s).
Given ε > 0 we can now choose s to be the largest integer smaller than q/2 for which

q − 2s
2(q − s)

> (
1
2
− ε).

Is is easy to check that for this s, s/q > γ for an appropriate positive γ = γ(ε) and the desired
result now follows from (1). 2

7 Concluding Remarks

1. Any polynomial approximation algorithm that finds, in any n-vertex graph with independence
number at least n/k, an independent set of size at least Ω̃(nαk) easily supplies a polynomial
algorithm for coloring any k-colorable graph on n vertices by Õ(n1−αk) colors. Indeed, this
is done by simply applying the independence algorithm repeatedly. It follows that any im-
provement in the exponent of m in Theorem 3.1 will improve the exponent in the coloring
algorithm of [18] (and vice versa, of course, as follows from the proof of Theorem 3.1). Note
that the algorithm in Theorem 3.1 works for any graph with a large ϑ-function and, similarly,
the algorithm of [18] works for any graph with a sufficiently small value of the ϑ-function of its
complement. Therefore, the performance of both algorithms may be improved with a better
understanding of the largest possible value of the ϑ-function of a graph on n vertices with a
given independence number. It would be interesting to decide if this largest possible value is
closer to the upper bounds provided for it by our results in Sections 3 and 5, or is closer to
the lower bound given for it in [10]. A proof that the latter possibility holds would supply
improved approximation algorithms for the independence number and chromatic number of
a graph.

2. Estimating the largest possible ratio between the ϑ-function and the independence number
of graphs on n vertices remains open, despite some recent progress. It is known [8] that
χ(G) ≤ α(G)n/ log2 n for any graph on n vertices. As a consequence, ϑ(G) ≤ α(G)n/ log2 n.
While the first inequality is tight up to a constant (e.g. for random graphs), it is an open
question whether the same holds for the second inequality. The result of Feige [10] shows that
there are graphs on n vertices for which this ratio is at least Ω(n/2O(

√
logn)), and it would

be interesting to decide how tight this estimate is.

9



3. Improving a result in [20], it is shown in [1] that the bound in Corollary 5.5 is tight (up to a
constant factor) when k = 3. Whether this is the case for higher values of k is another open
question.

Acknowledgement We would like to thank Mario Szegedy for helpful discussions, suggestions
and comments.
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