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Abstract

Let q be a prime power. It is shown that for any hypergraph
F = {F1, . . . , Fd(q−1)+1} whose maximal degree is d, there exists ∅ 6=
F0 ⊂ F , such that |

⋃
F∈F0

F | ≡ 0 (mod q).

For integers d,m ≥ 1 let fd(m) denote the minimal t such that for
any hypergraph F = {F1, . . . , Ft} whose maximal degree is d, there
exists ∅ 6= F0 ⊂ F , such that |

⋃
F∈F0

F | ≡ 0 (mod m).
Here we determine fd(m) when m is a prime power, and remark on
the general case.

Example: Let Aij 1 ≤ i ≤ m − 1, 1 ≤ j ≤ d , be pairwise disjoint
sets, each of cardinality m, and let {v1, . . . , vm−1} be disjoint from all
the Aij ’s. Now F = {Aij ∪ {vi} : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ d} satisfies
|F| = d(m − 1) but |

⋃
F∈F0

| 6≡ 0 (mod m) for any ∅ 6= F0 ⊂ F .
Hence fd(m) ≥ d(m− 1) + 1.

Theorem 1: If q is a prime power then fd(q) = d(q − 1) + 1.

Proof: Let F = {F1, . . . , Ft}, t = d(q − 1) + 1, be a hypergraph
of degree ≤ d, and consider the polynomial:

p(x1, . . . , xt) =
∑
∅6=I⊂[t]

(−1)|I|+1 · |
⋂
i∈I

Fi| ·
∏
i∈I

xi .
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We shall need the following result of Baker and Schmidt [2]. We sketch
a short proof based on a method of Alon, Friedland and Kalai [1]:

Theorem 2 (Baker-Schmidt [2]): Let q = pr , p prime. If t ≥
d(q − 1) + 1 and h(x1, . . . , xt) ∈ Z[x1, . . . , xt] satisfies h(0) = 0, and
deg h ≤ d, then there exists an 0 6= ε ∈ {0, 1}t such that h(ε) ≡ 0
(mod q).

Proof: Suppose h(ε) 6≡ 0 (mod q) for all 0 6= ε ∈ {0, 1}t, and let
u(x) =

∏q−1
i=1 (h(x)− i). Denote by s the smallest power of p that does

not divide (q − 1)!, i.e., s = p ·max{pr : pr | (q − 1)!}.
The proof of the following simple fact is omitted:

Lemma 1: For every integer a,
∏q−1
i=1 (a − i) ≡ 0 (mod s) iff a 6≡ 0

(mod q).
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By Lemma 1 u(ε) ≡ 0 (mod s) for all 0 6= ε ∈ {0, 1}t , and u(0) 6≡ 0
(mod s). Let u(x) denote the multilinear polynomial obtained from
u(x) by replacing each monomial xi1

α1 · · ·xijαj , α1, . . . , αj ≥ 1, by
xi1 · · ·xij .
The following Lemma can be easily proved by induction on t:

Lemma 2 [1]: If g(x1, . . . , xt) is a multilinear polynomial in Z[x1, . . . , xt]
and g(ε) ≡ 0 (mod s) for all ε ∈ {0, 1}t, then g(x1, . . . , xt) ≡ 0
(mod s)
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Now g(x) = u(x) − u(0) ·
∏t
i=1(1 − xi) satisfies the assumptions of

Lemma 2, hence u(x) ≡ u(0)·
∏t
i=1(1−xi) (mod s), and so deg u ≥ t.

But deg u ≤ deg u = (deg h)q−1 ≤ d(q − 1) < t , a contradiction.
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Returning to the proof of Theorem 1, we note that deg p ≤ d and
p(0) = 0. Hence by Theorem 2 p(ε) ≡ 0 (mod q) for some 0 6= ε ∈
{0, 1}t. Now by Inclusion - Exclusion p(ε) = |

⋃
{i:εi=1} Fi|, and so

|
⋃
{i:εi=1} Fi| ≡ 0 (mod q).

2
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Following [2] let gd(m) denote the minimal t such that for any h ∈
Z[x1, . . . , xt] which satisfies h(0) = 0, and deg h ≤ d, there exists an
0 6= ε ∈ {0, 1}t such that h(ε) ≡ 0 (mod m). The proof of Theorem 1
shows that fd(m) ≤ gd(m) . Hence Theorem 6 in [2], implies that for
any m, fd(m) ≤ C(d) ·m2dd!.

We next prove the following proposition that shows that the number
theoretic problem of determining gd(m) is equivalent to the combina-
torial problem of determining fd(m).

Proposition: fd(m) = gd(m) .

Proof: It suffices to show that for any multilinear polynomial h ∈
Zm[x1, . . . , xt] of degree ≤ d which satisfies h(0) = 0 , there exists a
hypergraph F = {F1, . . . , Ft} of degree ≤ d such that h is realized by
F , i.e.,

h(x1, . . . , xt) =
∑
∅6=I⊂[t]

(−1)|I|+1 · |
⋂
i∈I

Fi| ·
∏
i∈I

xi (mod m) .

For any ∅ 6= J ⊂ [t], the polynomial

uJ(x) = 1−
∏
j∈J

(1− xj) =
∑
∅6=I⊂J

(−1)|I|+1 ·
∏
i∈I

xi

can clearly be realized by a hypergraph with maximal degree |J |. (Sim-
ply take |J | pairwise disjoint sets of size m each and add a common
point to all of them). To complete the proof it suffices to show that if
h and g are realized by hypergraphs of degree ≤ d, then so is h + g,
and that any multilinear polynomial of degree ≤ d in Zm[x1, . . . , xt]
that vanishes at 0 can be written as a linear combination (with Zm
coefficients) of uJ ’s with J ⊂ [t] and 0 < |J | ≤ d

If h is realized by the hypergraph H = {H1, . . . ,Ht1} and g is
realized by G = {G1, . . . , Gt2} and the degrees of both hypergraphs
are at most d we first observe that we may assume that t1 = t2 since
otherwise we can add sufficiently many empty edges to one of the
hypergraphs. Put t = t1 = t2, assume the hypergraphs are realized
on pairwise disjoint sets of vertices, and consider the hypergraph F =
{H1∪G1, . . . ,Ht∪Gt}. It is easy to check that this hypergraph realizes
the polynomial h+ g.

It remains to show that any multilinear polynomial of degree ≤ d in
Zm[x1, . . . , xt] that vanishes at 0 can be written as a linear combination
(with Zm coefficients) of uJ ’s with J ⊂ [t] and 0 < |J | ≤ d. Each such
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polynomial can obviously be written as a linear combination of the
above polynomials uJ and 1. However, the coefficient of 1 must be 0
since our polynomial, as well as all the polynomials uJ vanish when all
the variables are 0.
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It is worth mentioning that some (very weak) upper bounds for fd(m)
can be obtained by applying Ramsey Theory. By the last proposi-
tion the same bounds follow for gd(m). Although these estimates are
(much) weaker than the best known bounds for gd(m) this shows that it
is conceivable that the number theoretic function gd(m) can be studied
by purely combinatorial methods.

We conclude the note mentioning that by considering the dual of
our Theorem 1 (or by applying a similar proof) we can prove the foll-
wing result, whose detailed proof is left to the reader.

Theorem 3: If q is a prime power then any hypergraph with n >
(q − 1)d vertices and with e edges, each of size at most d, contains an
induced sub-hypergraph on less than n vertices whose number of edges
is congruent to e modulo q.
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