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Abstract

Let G be a graph consisting of a complete binary tree of depth h together with one back edge

leading from each leaf to one of its ancestors, and suppose that the girth ofG exceeds g. Let h = h(g)

be the minimum possible depth of such a graph. The existence of such graphs, for arbitrarily large

g, is proved in [2], where it is shown that h(g) is at most some version of the Ackermann function.

Here we show that this is tight and the growth of h(g) is indeed Ackermannian.

1 Introduction

An r-augmented tree is a graph consisting of a rooted tree (called the underlying tree) plus edges

from each leaf to r of its ancestors (called here back edges). A complete d-ary tree of height m is a

rooted tree whose internal vertices have d children and whose leaves have distance m from the root. For

positive integers d, r, g let a (d, r, g)-graph be an r-augmented complete d-ary tree with girth exceeding

g.

These graphs were introduced in [2], where it is proved that they exist for all integers d, r and

g. As shown in [2] these graphs provide simple explicit constructions of graphs and hypergraphs of

high girth and high chromatic number, and are also useful in the investigation of several natural list

coloring problems. In particular they provide sparse non-k-choosable bipartite graphs, showing that

maximum average degree at most 2(k−1) is a sharp sufficient condition for k-choosability in bipartite

graphs, even when requiring large girth. See [2] for more details. The graphs constructed in that

paper are huge, their number of vertices grow like some version of the Ackermann function. It is also

proved in [2] that the number of vertices must be large, specifically, the number of vertices of any

(2, 1, g)-graph is at least a tower of height 2Ω(g). Although that’s a fast growing function of g, the

upper bound is far, far larger. Here we show that the upper bound is closer to the correct behavior,

and the size of any (2, 1, g) graph must indeed be Ackermannian.

For a function f , define its iterates fi by putting f0(x) = x, f1(x) = f(x) and more generally

fi(x) = f(fi−1(x)) for all i ≥ 1. Thus, for example, if f(x) = 2x then fi(1) is the tower of exponentials

Tower(i) and Toweri(1) is the iterated Tower, usually denoted by WOW (i).
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For positive integers x, r, g, a TB(x, r, g)-graph (where TB stands for Tree-Based) is a graph G

whose vertices are all vertices of a complete binary tree T of some depth, called the underlying tree of

G. Note that the graph G does not contain any of the tree edges, it is simply convenient to represent

its vertices by the vertices of the underlying tree. The vertices are partitioned into levels, according to

their distance from the leaves in the tree T . The leaves are at level 0, their neighbors (in T ) at level

1, and so on. The edges of G must satisfy the following property. There is some integer x′ ≥ x and

a set L of leaves of the underlying tree, consisting of at least a fraction of 2−x
′/4 of all leaves, so that

each leaf in L has at least r back edges, all leading to levels higher than x′. Finally, the girth of G

is bigger than g. Note that G is bipartite, all its edges are incident with the leaves of its underlying

tree, and thus for r = 1 such a graph is simply a union of vertex disjoint stars.

For, say, x ≥ 100 and integers r ≥ 2, g ≥ 4, let m(x, r, g) denote the largest integer m such that

any TB(x, r, g)-graph contains a set of at least a fraction of 2−m/8 of the leaves, so that each member

of this set has a back edge leading to a level higher than m.

Note that by definition, the function m(x, r, g) is monotone increasing in all its 3 variables.

It is not difficult to prove that for any g > 101 the minimum possible height of a (2, 1, g)-graph

is at least m(100, 2, g/2) (see Subsection 3.1 for the argument). Therefore, in order to establish the

Ackermannian behviour of the size of any (2, 1, g)-graph it suffices to prove such a lower bound for

m(100, 2, g). This is done in the next sections.

In Section 2 we show that m(100, r, 4) grows at least like a tower function of r and that m(100, r, 8)

grows at least like a WOW function of r. In Section 3 we note that a similar reasoning implies that

whenever g is increased by a factor of 2, the lower bound for the growth of m(100, r, g) as a function

of r shifts to the next level in the Ackermann hierarchy. In Section 4 we establish an upper bound for

m(x, r, g) (and in fact for a larger function), showing that indeed for any fixed s ≥ 1, m(100, r, 2s) as

a function of r belongs to level number s of the Ackermann hierarchy. The final Section 5 contains

some concluding remarks.

2 Tower and WOW

Lemma 2.1 Let f be the function defined by f(y) = y + 2y/4. Then for all r ≥ 2 and every integer

x ≥ 100,

m(x, r, 4) ≥ fr−1(x).

Thus the function m(100, r, 4) grows at least as Tower(r + Θ(1)).

Proof. Let G be a TB(x, r, g)-graph. By definition, there is an integer x′ ≥ x such that there is a

set L of leaves of the underlying tree, consisting of at least a fraction of 2−x
′/4 of all leaves, so that

each leaf in L has at least r back edges, all leading to levels higher than x′.

Split the levels above x′ into groups, where each group consists of an interval of consecutive levels,

as follows. Group number 1 consists of all levels in the interval [x′ + 1, f(x′)]. Group 2 consists of all
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levels in [f(x′) + 1, f(f(x′))] = [f(x′) + 1, f2(x)] and so on. Thus group number i consists of all levels

in [fi−1(x′) + 1, fi(x
′)].

If there is some i so that for z = fi−1(x′) more than a fraction of 2−z/2 of all leaves have two back

edges leading to levels in group number i, then by averaging there is a subtree rooted at level z+ 1 so

that more than 2z/2 of its leaves have two back edges leading to levels in [z+1, f(z)] = [z+1, z+2z/4].

These back edges thus all lead to the unique path of 2z/4 vertices in the underlying tree leading from

the root of the subtree up. Hence, by the pigeonhole principle, two distinct leaves must have their

two back-edges leading to the same pair of vertices in the path, providing a cycle of length 4. This is

impossible, as the girth of G is larger, hence we conclude that there are less than a fraction of 2−z/2

of all leaves with two back edges leading to group number i. Since the sum∑
i≥0

1

2fi(x′)/2

is much smaller than 2−x
′/4, we conclude that (much) more than half the leaves in L have their r back

edges leading to distinct groups, and hence the top one is in group r in which all levels are higher than

fr−1(x′) = t. The fraction of the leaves with this property is close to 2−x
′/4, which is much larger than

2−t/8, completing the proof of the lemma. 2

The following lemma establishes the key ingredient needed for showing that when g is doubled,

the lower bound for m shifts to the next level in the Ackermann hierarchy.

Lemma 2.2 Let x ≥ 100 be an integer. For every TB(x, 2, 8)-graph G there is an x′′ ≥ x and a

z′ ≥ m(2x
′′/4, 2x

′′/2, 4) such that at least a fraction of 2−z
′/8 (> 2−z

′/4) of the leaves have back edges

to levels higher than z′. In particular, m(x, 2, 8) ≥ m(2x/4, 2x/2, 4).

Proof. Let G be a TB(x, 2, 8)-graph. Thus there is an x′ ≥ x and a fraction of at least 2−x
′/4 of the

leaves with 2 back edges to levels higher than x′. Since∑
x′′>x′

1

10 · 2x′′/4
<

1

2x′/4

there is a level x′′ ≥ x′ so that a fraction of at least 0.1 · 2−x′′/4 of the leaves have their lower back

edge (among the two) leading to level x′′ (precisely). As the girth exceeds 8 (and hence exceeds 4),

a fraction of at most 2−3x′′/4 of the leaves among those have their higher back edge lead to level in

[x′′ + 1, x′′ + 2x
′′/4], since otherwise, by applying the pigeonhole principle to an appropriate subtree

with a root at level x′′, we’ll get a cycle of length 4, which is impossible. Therefore there is a set L

consisting of more than, say, a fraction of

p =
1

11 · 2x′′/4

of all leaves so that each vertex in L has its lower back edge leading to level x′′ and its higher leading

to level above x′′ + 2x
′′/4.
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Consider the following auxiliary bipartite graph H (which is simply a union of stars). Its classes

of vertices are the set, call it X ′′, of all vertices at level x′′ in the underlying tree of G, and the set of

all leaves, where a leaf v is adjacent to a vertex w ∈ X ′′ iff v lies in L and its lower back edge is the

edge vw. This graph is a union of stars, and the number of its edges is exactly |L|, which exceeds a

fraction of p of all leaves. Therefore the average degree of a vertex in X ′′ is at least d = p · 2x′′ , and

no degree can exceed 2x
′′
. It follows that there is a subset S ⊂ X ′′, with |S| ≥ 0.5p|X ′′|, so that the

degree (in H) of each vertex of S is at least d/2.

Define now a new graph F as follows. Its vertices are all vertices of the underlying tree of G in

levels x′′ and above. Its edges are back edges from the vertices in S (which are leaves of the underlying

tree of this new graph), and are defined as follows. From each w ∈ S and each leaf v ∈ L connected

to w in H, take a back edge from w to w′, where vw′ is the higher back-edge of v in G. Note that w′

is in level higher than x′′ + 2x
′′/4. In this new graph F , the number of back edges from each leaf that

lies in S is at least

d/2 ≥ 23x′′/4

22
> 2x

′′/2 + 3

and all of them lead to levels higher than y = 2x
′′/4. Moreover, the fraction of the members of S in

X ′′ is at least

0.5p ≥ 1

22 · 2x′′/4

which is far larger than 2−y/4. Crucially, the graph F contains no cycle of length at most 4. Indeed,

each edge of F corresponds to a path of length 2 in G (consisting of the two back edges from a leaf in

L), hence a cycle of length at most 4 in F would provide a cycle of length at most 8 in G, contradicting

the fact there are no such cycles. Therefore, even if we ignore the top 3 back edges from each leaf of

F , for z = m(2x
′′/4, 2x

′′/2, 4) there is a fraction of at least 2−z/8 of the leaves in X ′′ (all being members

of S) with back edges leading to levels higher than z. Most of these cannot have two edges leading to

the same group, where groups of levels are defined as before, starting with level z, and since we have

3 extra back edges from each such member of S, for most of them the top back edge leads to a much

higher level z′, and the fraction of leaves we get with such a top back edge is much bigger than, say,

2−z
′/16. This gives us a fraction of more than 2−z

′/162−x
′′
> 2z

′/8 leaves of the original graph G with

a back edge to a level higher than z′, completing the proof of the lemma. 2

Lemma 2.3 For any r ≥ 3 and x ≥ 100,

m(x, r, 8) ≥ m(m(2x/4, 2x/2, 4), r − 1, 8).

Note that by iterating the above lemma, recalling that by Lemma 2.1 m(2x/4, 2x/2, 4) is (much)

larger than Tower(x), it follows that in each iteration the second variable r decreases by 1 and the

first, x, is replaced by something exceeding Tower(x). Thus m(100, r, 8) is at least a WOW function

obtained by iterating the tower function r − 2 times.

Proof. Let G be a TB(x, r, 8)-graph. Then it contains a set of at least a fraction 2−x
′/4 of the leaves

with r back edges to levels higher than x′ for some x′ ≥ x. Order the back edges from each such leaf
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from low to high and consider the 2 lowest back edges from each of these leaves. By Lemma 2.2 there

is a z ≥ m(2x/4, 2x/2, 4) with a fraction of more than 2−z/4 of the leaves having their second lowest

back edge reaching level higher than z (where we have used the monotonicity of m to replace x′′ by

x). Now omit the lowest back edge from each of these leaves, they still have r− 1 back edges reaching

higher than z, and this implies the assertion of the lemma. 2

3 Higher girth

The reasoning in the previous section applies to higher values of g as well. The following lemma can

be proved by repeating the arguments of the proof of Lemma 2.2.

Lemma 3.1 Let s ≥ 2 be an integer. Then for any x ≥ 100 and for any TB(x, 2, 2s+1)-graph G there

is an x′′ ≥ x and a z′ ≥ m(2x
′′/4, 2x

′′/2, 2s) such that at least a fraction of 2−z
′/8 (> 2−z

′/4) of the

leaves have back edges to levels higher than z′. In particular, m(x, 2, 2s+1) ≥ m(2x/4, 2x/2, 2s).

Using this lemma, we get the following extension of Lemma 2.3.

Lemma 3.2 For any s ≥ 2, r ≥ 3 and x ≥ 100,

m(x, r, 2s+1) ≥ m(m(2x/4, 2x/2, 2s), r − 1, 2s).

Therefore, for any fixed s ≥ 2, m(100, r, 2s) grows, as a function of r, at least as the function

in level number s of the Ackermann hierarchy, where level number 2 is the Tower function and level

number 3 the WOW function.

3.1 1-augmented 2 trees

Recall that a (2, 1, g)-graph G, is a 1-augmented 2-tree of girth exceeding g, that is a graph consisting

of a complete binary tree, with one back edge from each leaf, whose girth exceeds g. Let h(g) denote

the minimum possible height of the underlying tree of such a graph. In [2] it is proved that h(g) is

at least Tower(2(1+o(1))g/4). Our results here supply a far higher lower bound, showing that h(g) is

Ackermannian and hence not primitive recursive. To see that this follows from the bounds above we

prove the following simple result.

Proposition 3.3 For any even g > 102, h(g) ≥ 1 +m(100, 2, g/2).

Proof. Let G be a (2, 1, g)-graph of height h = h(g), and let T be its underlying tree. Using G, we

construct a TB(100, 2, g/2) graph H as follows. The underlying tree of H is the underlying tree T ′

of G without its leaves. Thus, the depth of T ′ is h − 1, and its leaves are the vertices at level 1 of

T . For each such vertex w whose two children in T are v, v′ with their back edges in G being vu and

vu′ let the two back edges of w in H be wu and wu′. Clearly all back edges lead to vertices at level
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higher than 100, as G contains no cycle of length at most 102. In addition, any cycle C in H is of

even length, as all edges are connecting leaves and non-leaves. Let x1y1x2y2 . . . xryr be such a cycle,

where xi are leaves and yj non-leaves (which are all at levels higher than a 100.) Let zi0 and zi1 be

the two children of xi in T , where zi0yi−1 and zi1yi are their back edges (and y0 = yr). Then the cycle

z10x1z11y1z20x2z21y2 · · · yr−1zr0xrzr1yr

is a cycle of length 4r is G. Thus 4r > g and hence 2r > g/2, showing that the girth of H exceeds

g/2. Moreover, the back edges from all leaves in H, and hence certainly more than a fraction of 2−25

of them, lead to levels above 100. Therefore, H is a TB(100, 2, g/2)-graph, and its depth h− 1 is thus

at least m(100, 2, g/2), as needed. 2

4 Upper bounds

In this section we show that the lower bound proved in the previous sections for m(x, r, g) is not too

far from the correct behaviour of this function. This is done by a modification of the construction

given in [2]. It is convenient to prove the upper bound for a function that grows faster than m(x, r, g).

Call a graph G an FTB(x, d, r, g)-graph (where FTB stands for Full-Tree-Based), if its vertices

are all vertices of a complete d-ary tree, its edges are all edges of the tree incident with leaves as

well as r back edges from each leaf, all leading to vertices at levels higher than x, and the girth

exceeds g. Note that any FTB(x, 2, r, g)-graph is also a TB(x, r, g)-graph, where we only require a

fraction of the leaves to have those r back edges. In addition, an FTB(x, 2, r, g)-graph contains also

the edges of the underlying tree incident with its leaves, unlike a TB(x, r, g)-graph. Let M(x, d, r, g)

denote the minimum possible height of the underlying tree of an FTB(x, d, r, g)-graph. Obviously

M(x, 2, r, g) ≥ m(x, r, g).

To prove an upper bound for M(x, d, r, g) we describe a construction of FTB(x, d, r, g)-graphs, by

induction. This is done, following the method in [2], by proving the following three lemmas.

Lemma 4.1 For all positive integers x, d, r, M(x, d, r, 2) = x+ r.

Lemma 4.2 For all positive integers x, d and g, M(x, d, 1, 2g) ≤ 1 +M(x− 1, d, d, g).

Lemma 4.3 For all positive integers x, d, r, g,

M(x, d, r + 1, g) ≤M(x, d, 1, g) +M(1, dM(x,d,1,g), r, g)− 1.

Lemma 4.1 is trivial: the back edges from each leaf are connected to its ancestors at levels x +

1, x+ 2, . . . , x+ r.

Proof of Lemma 4.2.

Let G′ with underlying tree T ′ be an FTB(x−1, d, d, g)-graph with height M(x−1, d, d, g). Replace

each leaf v of T ′ with a star Sv of d leaves rooted at v. Replace the back edges from v to its ancestors
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by letting the d lower endpoints be the leaves of the star Sv instead of v. This produces one back

edge from each leaf, and all back edges go to levels higher than x. Let G be the graph consisting

of all these back edges together with the edges of the stars Sv. In order to show that this is an

FTB(x, d, 1, 2g)-graph we have to prove that it contains no cycle of length at most 2g.

Any cycle C in G must contain a back edge, and the two other edges of the cycle incident with this

back edge must be another back edge and a star edge. Similarly, the two edges incident with any star

edge along the cycle must be a star edge and a back edge. Thus any cycle is of length divisible by 4,

consisting of two back edges followed by two star edges, followed by two back edges, etc. Contracting

all the star edges of the cycle produces a cycle of length |C|/2 which is a cycle in G′ (consisting only

of back edges). Thus |C|/2 > g, showing that the girth of G exceeds 2g, as needed. 2

Proof of Lemma 4.3.

Fix r. Assuming that for all x,d and g, M(x, d, r, g) and M(x, d, 1, g) are finite, put M1 =

M(x, d, 1, g) and M2 = M(1, dM1 , r, g). We construct the desired graph G from two graphs G1 and

G2.

For G1 we use an FTB(x, d, 1, g)-graph having height M1. For G2, define d′ = dM1 , and consider

an FTB(1, d′, r, g)-graph H having height M2. Let G2 be an induced subgraph of H formed by starting

from the root of the underlying tree of H and keeping only d children of each included vertex, except

that all d′ children are kept at the last level. Thus G2 has an underlying tree T ′ of height M2, and

deleting the dM2−1d′ leaves of T ′ yields a complete d-ary tree of height M2 − 1. All ancestors in H of

a leaf of T ′ appear in T ′, so each leaf of T ′ has r ancestors as neighbors in G2.

Now we construct G from G1 and G2. In G2, let S(u) be the star consisting of a vertex u at level

1 and its d′ leaf children. (Recall that levels are counted from the leaves, hence level number 1 is the

one containing their neighbors in the underlying tree). Replace each S(u) with a copy G1(u) of the

graph G1, so that the d′ leaves in G1 each become one of the leaves in S(u), inheriting the r back

edges that were incident to that leaf in G2. We call the back edges obtained from G2 in this way long

edges; the back edges in G1(u) are short edges.

The underlying tree in our construction thus has two parts. The top part is the tree T ′ for G2

without its bottom level; it has height M2 − 1. The bottom part, with height M1, consists of copies

of G1. Each leaf has one incident short edge from G1 and r incident long edges inherited from G2.

Clearly all back edges lead to levels higher than x.

A cycle C in G that contains no long edges is a cycle in a copy of G1 and hence has length at least

g. When C contains at least one long edge, it is not difficult to see that the graph G2 contains a cycle

C ′ containing the same long edges, whose length is at most that of C. Indeed, C ′ can be obtained

from C by replacing each interval of consecutive edges of C that belong to some subtree G1(u) and

leads from vertex v to vertex v′ (which are necessarily both leaves) by the two edges vu and uv′ of G2.

Since any such interval must contain at least two edges, as no two leaves are connected, this produces

a cycle C ′ of G2 whose length is at most C. Thus |C| ≥ |C ′| ≥ g, completing the proof. 2

The above three lemmas imply that for any s ≥ 1, M(100, 2, r, 2s) is bounded by a function in level
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number s of the Ackermann hierarchy, where level number 2 is that of the Tower function and level

number 3 is that of the WOW function. We omit the simple though somewhat tedious computation.

Note that in view of the lower bound for the numbers m(100, r, 2s) this determines the correct location

of both functions in the hierarchy (although, of course, there is still a huge gap between the upper

and lower bounds).

5 Concluding remarks

We have shown that the function h(g) which is the minimum possible height of a binary tree with

one back edge from each leaf and girth exceeding g grows like a version of the Ackermann function.

Therefore, this is a natural combinatorially defined function which is not primitive recursive. There

are several known examples of functions corresponding to natural combinatorial problems or natural

questions in complexity theory which are closely related to the Ackermann or the inverse Ackermann

function. Some of these can be found in [9], [10], [6], [4], [3], [5], [7], [8]. The function h(g) is possibly

the one corresponding to the combinatorial problem with the simplest description among all of the

above.

In view of of its rapid growth, it may be interesting to try and compute or estimate h(g) more

accurately for small values of g. It is not difficult to check that h(1) = 1, h(2) = 2, h(3) = 3, h(4) =

5, h(5) = 7, h(6) = 10 and h(7) = 13. Without trying to optimize the computation very carefully,

we can show that h(8) > 270. Our proofs, and to some extent also the bounds above, suggest that

h(g)−h(g−1) is particularly large for values of g that are powers of 2. Indeed, following the reasoning

in our proofs here (again, without optimizing the estimates very carefully), we can show that

h(16) > Tower(222
18

).

We believe that the problem of determining the precise value of h(16), and certainly that of determining

precisely h(g) for higher values of g, is beyond reach.
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