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Abstract

The classical Stability Theorem of Erdős and Simonovits can be stated as follows. For a
monotone graph property P, let t ≥ 2 be such that t + 1 = min{χ(H) : H /∈ P}. Then any
graph G∗ ∈ P on n vertices, which was obtained by removing at most (1

t + o(1))
(
n
2

)
edges from

the complete graph G = Kn, has edit distance o(n2) to Tn(t), the Turán graph on n vertices
with t parts.

In this paper we extend the above notion of stability to hereditary graph properties. It turns
out that to do so the complete graph Kn has to be replaced by a random graph. For a hereditary
graph property P, consider modifying the edges of a random graph G = G(n, 1/2) to obtain a
graph G∗ that satisfies P in (essentially) the most economical way. We obtain necessary and
sufficient conditions on P which guarantee that G∗ has a unique structure. In such cases, for a
pair of integers (r, s) which depends on P, G∗ has distance o(n2) to a graph Tn(r, s, 1

2 ) almost
surely. Here Tn(r, s, 1

2 ) denotes a graph which consists of almost equal sized r + s parts, r of
them induce an independent set, s induce a clique and all the bipartite graphs between parts
are quasi-random (with edge density 1

2 ). In addition, several strengthened versions of this result
are shown.

1 Introduction

1.1 Definitions and background

Given two graphs on n vertices, G and G′, the edit distance between G and G′ is the minimum
number of edge additions and/or deletions that are needed in order to turn G into a graph isomor-
phic to G′. We denote this quantity by ∆(G,G′). A graph property is a set of graphs which
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is closed under isomorphism. For a given graph property P, the edit distance of a graph G from
P is defined by ∆(G,P) = min{∆(G,G′) | G′ ∈ P, |V (G′)| = |V (G)|}. In words, ∆(G,P) is the
minimum edit distance of G to a graph satisfying P.

A monotone graph property is closed under removal of edges and vertices. The classical
Stability Theorem of Erdős and Simonovits [14] asserts the following. For any monotone graph
property P and t ≥ 2 such that t + 1 = χ(P) = min{χ(H) : H /∈ P}, if a graph G ∈ P on n

vertices contains at least e(G) ≥ (1 − 1
t − o(1))

(
n
2

)
edges, then ∆(G,Tn(t)) = o(n2), where Tn(t)

denotes the Turán graph [20] on n vertices with t parts. For instance, if the property P consists
of the graphs excluding a copy of Kt+1, then any Kt+1-free graph G on n vertices that contains at
least e(G) ≥ (1− 1

t − o(1))
(
n
2

)
edges, has edit distance at most o(n2) from Tn(t).

Let us restate the above results as follows: whenever one removes roughly the minimal possible
number of edges, namely (1

t +o(1))
(
n
2

)
, from the complete graph Kn to obtain a graph that satisfies

a monotone property P with χ(P) = t+ 1 ≥ 3, then the resulting graph has (essentially) a unique
“structure” which is given by Tn(t).

In this paper we consider a broader family of graph properties, namely hereditary properties.
A graph property is hereditary if it is closed under removal of vertices (and not necessarily under
removal of edges). Equivalently, hereditary properties are closed under taking induced subgraphs.
For instance, for any graph H, the set of graphs excluding an induced copy of H, denoted P∗H , is
a hereditary property.

Several Turán type questions were studied with respect to hereditary graph properties (see e.g.
[4], [5], [9], [13], [18], [19]). It was shown that various classical extremal results for monotone graph
properties have a natural analogue for some hereditary properties. Hereditary graph properties
however force some symmetry between deletion and addition of edges, and in these analogous
results the role of the complete graph is taken by some random graph G(n, p). In particular, some
special features of G(n, 1

2) were shown.

In this paper we study an analogous stability-type phenomenon for random graphs and heredi-
tary properties. The basic question we address is the following: given a hereditary graph property
P, is there a unique structure for all the graphs in P that have (essentially) the minimum distance
to G(n, 1/2)?

However, before we can formulate the meaning of a “unique structure” and the results, the
presence of random graphs forces us to introduce yet another metric on graphs, namely the cut
norm (defined by Frieze and Kannan [15]). For a set of vertices A ⊆ V , we denote by E(A) the set
of edges of the graph which is induced by A in G. We also denote by e(A) the size of E(A). For
every two nonempty vertex sets A and B of a graph G, E(A,B) stands for the set of edges of G
between A and B, namely

E(A,B) = {(x, y) ∈ E(G)|x ∈ A, y ∈ B},

and e(A,B) is the cardinality of this set e(A,B) = |E(A,B)|. Note that the edges in A ∩ B are
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counted twice. When several graphs on the same set of vertices are involved, we write eG(A,B)
to specify the graph G to which we refer. The following notations will be useful later: the edge
density of the pair (A,B) is defined as d(A,B) = e(A,B)/|A||B|. The degree of a vertex v, i.e.
the number of vertices adjacent to v, is denoted by deg(v). We use the notation x = y ± ε to
denote the fact that y − ε ≤ x ≤ y + ε.

For a pair of labelled graphs G,G′ sharing the same vertex set {1, . . . , n}, define

d2(G,G′) =
1
n2

max
S,T⊆{1,...,n}

|eG(S, T )− eG′(S, T )|

For a pair of unlabelled graphs, let the cut distance between G and G′, denoted ∆2(G,G′),
be the minimum of d2(G,G′) over all possible overlays. For example, note that for two random
graphs G = G(n, 1

2) and G′ = G(n, 1
2), with high probability, ∆(G,G′) = (1

2 − o(1))
(
n
2

)
while

∆2(G,G′) = o(1). Therefore, intuitively, the cut norm enables one to estimate the distance between
the structures of the graphs, making random-like portions of the graph (with a common edge
density) somewhat indistinguishable.

Denote by Tn(r, s, 1
2) the graphs on n vertices which consist of almost equal sized r + s parts,

where r of them induce an independent set, s induce a clique and all the bipartite graphs between
parts are quasi-random1 with edge density 1

2 . It is important to note that for our purpose here we
will only be interested in the asymptotic cut distance between Tn(r, s, 1

2) and other graphs. To this
end, it is straightforward to see that specifying one of the graphs in Tn(r, s, 1

2) is insignificant, since
all such graphs differ, in the cut norm, by o(1).

1.2 The new results

In [5], it is proved that for any hereditary property P, there exists a pair (r, s) such that by turning
G = G(n, 1

2) into a graph Tn(r, s, 1
2) ∈ P the minimum possible number of modifications needed to

attain P is applied (up to o(n2)). That is, almost surely,

∆
(
G,Tn(r, s,

1
2

)
)
≤ ∆(G,P) + o(n2) .

In this paper we precisely characterize the properties for which this is essentially the only econom-
ical way to turn G(n, 1

2) into a graph that satisfies P. In Section 2 we define, for any pair (r, s)
of integers, the subfamily of hereditary properties that are (r, s)-critical. The main result of this
paper is stated in the following theorem.

Theorem 1.1. Let P be a hereditary graph property and let G = G(n, 1
2). Then the following holds

with high probability:

(i) If P is an (r, s)-critical property and Ĝ ∈ P satisfies ∆(G, Ĝ) = ∆(G,P) + o(n2) , then
∆2(Ĝ, Tn(r, s, 1

2)) = o(1).
1Without being too formal, we say that a bipartite graph (A, B) on n vertices is quasi-random with edge density

1
2

if any pair of subsets A′ ⊆ A and B′ ⊆ B satisfies |e(A′, B′)− 1
2
|A′||B′|| = o(n2).
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(ii) If P is not (r, s)-critical for any (r, s), then there exist two graphs G1, G2 ∈ P such that
∆(G,Gi) = ∆(G,P) + o(n2), i = 1, 2, and ∆2(G1, G2) = Ω(1).

In words, by the first part of the theorem, every graph in P, having the minimum possible edit
distance to G (up to o(n2)) has the same structure as Tn(r, s, 1

2). The second part shows that if P
is not critical, then there are two graphs which are far in the cut norm from each other and have
essentially the same (minimal) edit distance to G. Hence they do not exhibit a unique structure.

In fact stronger results are shown: the first part of Theorem 1.1 holds even for graphs G that
are slightly modified from the random ones. The details are given in the statement of Proposition
4.2 which also implies the first part of Theorem 1.1. In addition, in some cases it is possible to
obtain an even more restricted structure for the closest graph in P to G. We demonstrate this
phenomenon in the following theorem on the property P∗C4

, namely being induced C4-free. As we
shall see, this property is (1, 1)-critical. A similar result holds for any blow-up of a complete graph,
see Section 7 for further details.

Theorem 1.2. Let G∗ be the closest graph to G = G(n, 1
2) in P∗C4

. Then, with high probability, G∗

is a split graph (i.e. its vertices can be partitioned into a clique and an independent set).

1.3 Related work

• Prömel and Steger studied the class of induced H-free graphs. In [17] they showed that
almost all induced C5-free graphs are “generalized split graphs”: graphs whose vertex set can
be partitioned into two sets, one inducing a clique and the other inducing a disjoint union
of cliques, or the complement of these graphs. It implicitly follows from their results that
modifying G(n, 1

2) into any such graph is essentially the most economical way to obtain a
graph in P∗C5

. In [18] they estimate the number of induced H-free graphs for an arbitrary H
and define critical forbidden induced subgraphs which assure a stable structure of an extremal
graph for that problem. We note that our definition of graphs H for which the property P∗H is
a critical property is in fact more restrictive than their definition. In particular, our examples
for such H in Section 2 supply many natural critical forbidden induced subgraphs for the
results of [18].

• The following result was proved by Babai, Simonovits and Spencer [10]. Given a random
graph G = G(n, 1/2), suppose one removes edges from G in the most economical way to
obtain a graph G′ that does not contain a (not necessarily induced) copy of a graph H. If
χ(H) = 3 and H has a color critical edge, then, with high probability, by removing O(1) edges
from G′ it is possible to obtain a bipartite graph. Some of our results here for hereditary
properties are of a similar nature.
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1.4 Organization

In Section 2 we define and discuss critical hereditary properties, namely the ones for which the first
part of Theorem 1.1 holds. In Section 3 we introduce several definitions and results which form
the basic tools for the proofs. Then, Section 4 consists of the proof of the first part of Theorem
1.1. The proof of the second part appears in Section 5. Section 6 contains the proof of Theorem
1.2. In Section 7 we mention some additional results, concluding remarks and questions for further
research.

2 Critical hereditary properties

In this section we characterize the family of properties which satisfy the first part of Theorem 1.1.
First we extend the usual notion of graph coloring as follows.

Definition 2.1. For any pair of integers (r, s), such that r+s > 0, we say that a graph G = (V,E) is
(r,s)-colorable if there is a partition of V into r+ s (possibly empty) subsets I1, . . . , Ir, C1, . . . , Cs

such that each Ik induces an independent set in G, and each Ck induces a clique in G.

For example, (r, 0)-colorable graphs are r-colorable graphs. We denote by Pr,s the graph property
comprising all the (r, s)-colorable graphs. Clearly, for any pair (r, s), the property Pr,s is hereditary.
These properties, which were introduced in several contexts, capture important algorithmic and
extremal characteristics of hereditary properties. See e.g. Prömel and Steger ([18] and [19]) and
Bollobás and Thomason ([13] and [12]).

Definition 2.2. Let P be a hereditary property. Define the binary chromatic number of P as
the least integer k+ 1 such that for any (r, s) satisfying r+ s = k+ 1 there is a graph not in P that
is (r, s)-colorable, and denote it by χB(P). Equivalently,

χB(P) = 1 + max{r + s : Pr,s ⊆ P}

This definition extends the definition of the binary chromatic number for graphs from [9] and [18]
since χB(P∗H) = χB(H).

We are now ready to define critical hereditary properties. The formal definition is followed by
several natural examples of such properties.

Definition 2.3. We say that a hereditary graph property P is (r, s)-critical if

(i) Pr,s ⊆ P (i.e. every (r, s)-colorable graph satisfies P)

(ii) For any r′, s′ ≥ 0, (r′, s′) 6= (r, s), if r′ + s′ = r + s then Pr′,s′ * P (i.e. there exists an
(r′, s′)-colorable graph which does not satisfy P)
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(iii) There exist graphs H1, H2 /∈ P and partitions of their vertices into r+ s+ 1 pairwise disjoint
sets such that r of them induce independent sets, s induce complete graphs and

(a) In H1, the extra set induces an edgeless graph which is completely connected to one of
the other independent sets.

(b) In H2, the extra set induces a complete graph which is completely disconnected to one of
the other cliques.

Remark 2.4: Practicing the above definition, we note that if P is (r, s)-critical, then χB(P) =
r + s + 1 since for any r′, s′ such that r′ + s′ > r + s it follows from item (ii) that there is some
graph H ∈ Pr′,s′ \ P.

Example 2.5. It is easy to verify that for any (r, s) the property Pr,s is (r, s)-critical. Another easy
example is that for any monotone property P, if t + 1 = χ(P) = minH/∈P(χ(H)), then P is (t, 0)-
critical. To see this, assume H /∈ P is some graph such that χ(H) = t+ 1 and let V (H) = h. Then
Kt+1(h), a complete (t + 1)-partite graph with h vertices in each part, contains a (not necessarily
induced) copy of H and hence does not satisfy P. Therefore, it can play the role of H1 while Kh /∈ P
can play the role of H2, showing that indeed all the requirements are fulfilled.

The following theorem provides an infinite non-trivial family of natural critical hereditary prop-
erties.

Theorem 2.6. For any pair (r, s) of integers (r + s > 0), let H = Kr+1(s + 1) be the complete
(r + 1)-partite graph with (s+ 1) vertices in each part. Then P∗H is (r, s)-critical.

Proof. We first show that any (r, s)-colorable graph G does not contain an induced copy of H. We
use a pigeonhole argument: consider some (r, s)-coloring of G, and suppose it contains an induced
copy of H. Each of the r independent sets, consists of vertices from a single part of H. Therefore,
one of the r+1 parts of H has no vertices at all within any independent set. Yet each of that part’s
s+ 1 vertices has to be in a different clique, which is impossible since there are only s cliques.

This shows that item (i) in Definition 2.3 holds. It is easy to see that if s′ ≥ s+ 1 or r′ ≥ r+ 1
then there are (r′, s′)-colorable graphs which contain an induced copy of H, thus showing that item
(ii) also holds. As for item (iii), consider a partition of the vertices of Kr+1(s+1) into r independent
sets with s+ 1 vertices and s+ 1 sets of size 1. This partition witnesses that Kr+1(s+ 1) can play
the role of both H1 and H2, as every set of size 1 is completely connected to the independent sets,
and completely disconnected to each of the other sets of size 1 (which may be treated as cliques).

�

Example 2.7. For H = K2(2) = C4, by Theorem 2.6 the property P∗C4
is (1, 1)-critical. In

particular, if G = (V,E) is (1, 1)-colorable, then G is also induced C4-free. (1, 1)-colorable graphs
are sometimes referred to as split graphs.

6



In addition to the critical properties established in Example 2.5 and Theorem 2.6, for any pair
of integers such that p < q − 1, the property P∗Kp,q

is (0, q − 1)-critical. Note that if p = q then
Kp,q = K2(q), hence this falls into the cases of Theorem 2.6 and P∗Kq,q

is (1, q − 1)-critical. The
case p = q − 1 is discussed later, see Section 7.

3 Preliminaries

3.1 Partitions and colored regularity graphs

The following definitions suggest a modelling for partitions of graphs which appear to be a useful
tool for handling induced subgraphs. The usage of these definitions is to model regular partitions of
graphs. This is done via Lemma 3.4 which is proved in [4]. This powerful lemma allows us to omit
some of the tedious details that usually accompany the usage of the regularity lemma. However,
the following definitions are necessary before we can state this result.

Definition 3.1. A colored regularity graph K is a complete graph whose vertices are colored
black or white, and whose edges are colored black, white or grey.

Note that neither the vertex nor the edge colorings are assumed to be legal in the standard sense.
We denote the sets of black, white and grey edges of K by EB(K),EW (K) and EG(K) respectively.
Similarly, we write V B(K) and VW (K) for K’s black and white vertices. The definition of colored
regularity graphs should be considered with respect to (regular) vertex partitions.

Definition 3.2. For a graph G = (V,E), and a colored regularity graph K on k vertices v1, . . . , vk,
we say that G conforms to K if there exists a partition V = {V1, . . . , Vk} of V , such that

1. For any i = 1, . . . , k, if vi ∈ VW (K) is white then Vi is an independent set in G, and
otherwise vi ∈ V B(K) is black and Vi induces a complete graph in G.

2. For any 1 ≤ i < j ≤ k, if (vi, vj) ∈ EB(K) is a black edge then (Vi, Vj) induce a complete
bipartite graph in G. If (vi, vj) ∈ EW (K) is white then (Vi, Vj) induce an empty bipartite
graph. Otherwise, if (vi, vj) ∈ EG(K) is grey then there is no restriction on the edges of
(Vi, Vj).

In this case, V is said to witness that G conforms to K.

The connection between colored regularity graphs and induced subgraphs is established by the
following definition.

Definition 3.3. A colored-homomorphism from a (simple) graph H to a colored regularity graph
K is a mapping ϕ : V (H) 7→ V (K), which satisfies the following:
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1. If (u, v) ∈ E(H) then either ϕ(u) = ϕ(v) = t and t is colored black, or ϕ(u) 6= ϕ(v) and
(ϕ(u), ϕ(v)) is colored black or grey.

2. If (u, v) 6∈ E(H) then either ϕ(u) = ϕ(v) = t and t is colored white, or ϕ(u) 6= ϕ(v) and
(ϕ(u), ϕ(v)) is colored white or grey.

If such a homomorphism does not exist we say that K is H-homomorphism-free. If the latter
holds for each member of a set of graphs H, then we say that K is H-homomorphism-free.

One should observe at this point that for any set of graphsH and colored regularity graph K, if a
graph G conforms to K, and K is H-homomorphism-free, then G is induced H-free. That is, G does
not contain an induced copy of any member of H. The following lemma shows that every induced
H-free graph is close to conforming to some H-homomorphism-free colored regularity graph. This
lemma is implicitly proved in [4], following the method of [2].

Lemma 3.4. ([4]) For any hereditary property P, integer k0 and γ > 0 there exist T3.4(γ,P, k0) > 0
and n3.4(γ,P, k0) > 0 which satisfy the following property. Let G = (V,E) be a graph on n > n3.4

vertices which satisfies P, and let H denote the set of graphs that do not satisfy P (hence G does
not contain an induced copy of any member of H). Then there exists a colored regularity graph K
with k0 ≤ |V (K)| ≤ T3.4(γ,P, k0) such that

1. There exists a graph G′ such that ∆(G,G′) ≤ γn2 and G′ conforms to K

2. K is H-homomorphism free

The proof of Lemma 3.4 is attained by first applying the strengthened version of the Szemerédi
Regularity Lemma of [1] to G, then applying the regularity lemma to each of the clusters of the
first partition. An appropriate choice of the parameters, depending on P, together with Ramsey
Theorem, then determines the choice of colors for the vertices and edges of K for which the lemma
holds. The details of the proof appear as steps 1 to 3 in the proof of Theorem 1.1 in [4].

3.2 The distance of G(n, 1
2
) from hereditary properties

Generalizing a result of Axenovich, Kézdy and Martin [9], it is proved in [5] that the binary
chromatic number determines the asymptotic edit distance of G(n, 1

2) from any hereditary property.

Theorem 3.5. ([5]) Let P be an arbitrary hereditary property, then with high probability

∆
(
G(n,

1
2

),P
)

=
( 1

2(χB(P)− 1)
± o(1)

)(n
2

)
Let r, s be the pair achieving χB(P), namely r + s = χB(P) and Pr,s ⊆ P. Note that by

arbitrarily partitioning the vertices of G(n, 1
2) into r + s sets of nearly equal sizes, then modifying

its edges such that r of the sets induce independent sets and s induce complete subgraphs, one
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obtains a graph that satisfies P. By Theorem 3.5, with high probability, this way (essentially) the
minimum possible number of modifications is applied.

In addition, we shall need the following lemma, stating that in a random graph, with high
probability, the edge density between and within any two large enough sets of vertices is close to
the edge density of the whole graph. The proof (see e.g. [4]) is a standard application of Chernoff’s
inequality.

Lemma 3.6. Assume 0 ≤ p ≤ 1, and f : N → N satisfies f(n) = ω(n1.5). Then for a sufficiently
large n, with high probability, G = G(n, p) satisfies

1. For any set A ⊆ V (G): | e(A)− p
(|A|

2

)
| < f(n)

2. For any pair of disjoint sets A,B ⊆ V (G): | e(A,B)− p|A||B| | < f(n).

4 Stability for critical properties

In this section we prove the first part of Theorem 1.1. However, this will be an easy corollary of yet
a stronger result which holds: if P is critical, then even if one modifies arbitrarily a small number
of edges in the random graph G = G(n, 1

2), then the structure of any graph in P that is essentially
the closest to G is unique. The restriction on the type of modifications for which this result holds
is specified in the following definition.

Definition 4.1. Let G = (V,E) be a graph on n = |V | vertices, and λ > 0. We say that a graph
G′ = (V,E′) is a λ-modification of G if E′ was obtained by applying arbitrary modifications to
the edges of G such that for any vertex v ∈ V the number of modifications applied to edges incident
to v is at most λn. Equivalently, if D = (V,E4E′), then for any v ∈ V : dD(v) ≤ λn.

For instance, any graph with minimum degree (1 − λ)n is a λ-modification of the complete
graph Kn. We are now ready to state the main technical result of this section.

Proposition 4.2. Let δ > 0 and P be an (r, s)-critical hereditary property. Then there is λ =
λ4.2(P, δ) > 0 which satisfies the following. Let G = (V,E) be a λ-modification of Gr = G(n, 1

2).
Assume Ĝ = (V, Ê) is a graph in P such that ∆(G, Ĝ) ≤ ∆(G,P) + o(n2), and let D = (V,E4Ê)
denote the modifications graph. Then with high probability there is an equipartition V of V into
r + s sets {V1, . . . , Vr+s} such that

1. V witnesses that ∆(Ĝ,Pr,s) ≤ δn2, namely
∑r

i=1 eĜ(Vi) +
∑r+s

i=r+1(
(|Vi|

2

)
− eĜ(Vi)) ≤ δn2

2.
∑

i<j eD(Vi, Vj) ≤ δn2.

Before getting into details, let us briefly overview the proof of the proposition. The proof is
implicitly based on Szemerédi’s Regularity Lemma. We apply Lemma 3.4 to Ĝ, and obtain a
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colored regularity graph K. We then analyze K. First, the condition on the distance of Ĝ from
G (and hence also from Gr) guarantees that K contains sufficiently many grey edges. Moreover,
since K is H-homomorphism free for any graph H /∈ P, then by Definition 2.3 it does not contain
a complete subgraph on r + s + 1 vertices in which all the edges are grey. This then enables us
to apply the classical Stability Theorem of Erdős and Simonovits [14] to the (simple) graph of the
grey edges in K. We only need the simplest case in which the forbidden graph is a complete graph,
namely Theorem 4.3 below. Recall that we denote by Tn(t) the Turán graph on n vertices with t

parts.

Theorem 4.3. (The Stability Theorem, [14] see also [11], pp 340) For any δ > 0 and
t ≥ 2, there exist γ = γ4.3(t, δ) > 0 and n4.3(t, δ), such that any graph G on n > n4.3(t, δ) vertices
that contains at least e(G) ≥ (1 − 1

t − γ)
(
n
2

)
edges, and does not contain a copy of Kt+1, has edit

distance at most δn2 from Tn(t): ∆(G,Tn(t)) ≤ δn2.

To proceed with the proof of Proposition 4.2 we then further analyze the structure of K, using the
assertions of Definition 2.3. Going back to the original graph Ĝ, which is close to conforming to
K, completes the proof of the proposition. The detailed proof follows.

Proof of Proposition 4.2:
Let δ̂ = 1

5(r+s)δ and set γ = min{γ4.3(r+s, δ̂2), 1
2δ} and λ = γ/10. AssumeGr = G(n, 1

2) satisfies the
conditions of Lemma 3.6 and Theorem 3.5, and that G, Ĝ and D are as described in the statement
of the proposition. We apply Lemma 3.4 to Ĝ with P, n4.3(r+ s, δ̂2) and γ/20, and obtain a graph
Ĝc and a colored regularity graph K on k = |V (K)| vertices that satisfy the following:

1. K is H-homomorphism free.

2. ∆(Ĝ, Ĝc) < γ
20n

2

3. Ĝc conforms to K.

4. k ≥ n4.3(r + s, δ̂2)

We now analyze the colored regularity graph K. First, only consider the grey edges in K:
denote by Kgrey the (simple) graph on k vertices spanned by the grey edges in K.

Claim 4.4. The number of grey edges in K is at least e(Kgrey) ≥ (1− 1
r+s − γ)

(
k
2

)
.

Proof of Claim 4.4: By Theorem 3.5, for a large enough n, with high probability, ∆(G, Ĝ) ≤
∆(G,P) + o(n2) ≤ ( 1

2(r+s) + γ
100)

(
n
2

)
. Thus,

∆(Ĝc, G) ≤ ∆(G, Ĝ) + ∆(Ĝc, Ĝ) < (
1

2(r + s)
+

γ

20
)
(
n

2

)
+

γ

100
n2 (1)

On the other hand, for any mapping of the vertices of G to the vertices of Ĝc, we have the
following differences. By Lemma 3.6, for any 1 ≤ i < j ≤ k, dGr(Vi, Vj) = 1

2 ± γ/10, and hence
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dG(Vi, Vj) = 1
2 ± ( 1

10γ + λ) = 1
2 ± γ/5. If (vi, vj) is a black edge in K, then since dĜc

(Vi, Vj) = 1
there were at least (1

2 − γ/5)n
2

k2 edge modifications between G and Ĝc. The same holds in case
(vi, vj) is white. This implies a lower bound on the distance ∆(Ĝc, G), and by (1) we have((

k

2

)
− e(Kgrey)

)
(
1
2
− γ

5
)
n2

k2
≤ (

1
2(r + s)

+
γ

20
)
(
n

2

)
+

γ

100
n2

Multiplying by k2

n2 and reorganizing we get(
k

2

)
− e(Kgrey) ≤

(
1
2( 1
r+s + γ

5 )
1
2 − γ/5

)(
k

2

)
<

[
(1 +

3γ
5

)(
1

r + s
+
γ

5
)
](

k

2

)
<

(
1

r + s
+ γ

)(
k

2

)
thus proving the claim.

�

Note that in case there is a complete graph on r + s + 1 vertices in Kgrey, then regardless of
the colors of the vertices, by item (ii) in the definition of critical properties we get a contradicting
colored homomorphism to K. It therefore follows from Theorem 4.3 that

∆(Kgrey, Tk(r + s)) ≤ δ̂2k2 (2)

Consider a labelling of the vertex set of Tk(r + s) by V (K) which witnesses this proximity, and
let V1, . . . , Vr+s be the equipartition of the vertices of V (K) into r + s sets corresponding to the
r + s parts of Tk(r + s). With respect to this labelling, let D̂ = (V (K), E(Kgrey)4E(Tk(r + s))).
It follows from (2) that e(D̂) ≤ δ̂2k2, hence there are at most 2δ̂k vertices with degD̂(v) ≥ δ̂k.

We pick some complete graph K̂ on r + s vertices which is a subgraph of Kgrey consisting
of exactly one representative vertex from each part, and such that any vertex v in K̂ satisfies
degD̂(v) < δ̂k. It is not difficult to verify that choosing one vertex uniformly at random from each
set Vi will result in an appropriate graph with positive probability.

Let V (K̂) = {v1, . . . , vr+s} and consider K̂ as a subgraph of the colored regularity graph K.
By item (ii) in the definition of critical properties, exactly r of the vertices of K̂ are white and the
other s are black. Without loss of generality, assume that vi ∈ Vi (1 ≤ i ≤ r + s), and v1, . . . , vr

are white vertices in K while vr+1, . . . , vr+s are colored black.

Let L ⊆ V (K) denote the set of vertices v ∈ V (K) that satisfy the following condition: suppose
v ∈ Vi, then v ∈ L if the r+s−1 edges connecting v to V (K̂)\{vi} are grey. By the construction of
K̂, any vertex vi ∈ V (K̂) rules out at most degD̂(vi) ≤ δ̂k vertices in K, hence |L| ≥ (1−(r+s)δ̂)k.

Consider first i < r. If there is a black vertex in L∩Vi, then K contains a graph with s+1 black
and r − 1 white vertices, which spans only grey edges. Nevertheless, by item (ii) in the definition
of critical properties we obtain a contradiction (since there is a colored homomorphism from some
H /∈ P to K). Moreover, for a pair of white vertices in L ∩ Vi, if the edge between them is either
grey or black, then item (iii) in the definition implies a contradicting homomorphism. Hence L∩Vi

11



spans a graph which consists solely of white edges and vertices. Similarly, for r+ 1 ≤ i ≤ r+ s, all
the edges and vertices spanned by L ∩ Vi are black.

The above observations can be restated as follows. By modifying the colors of at most |V (K) \
L| ≤ (r+ s)δ̂k vertices and less than (r+ s)δ̂k2 edges in K it is possible to obtain a graph that has
an equipartition into r + s sets such that r of them are totally white, s are totally black, and all
the edges between sets are grey.

However, going back to the original graph Ĝc, this partition of K induces an equipartition V
of the vertices in Ĝc. Modifying the color of each edge or vertex in K is translated to at most n2

k2

edges modifications in Ĝc to obtain a graph Gr,s that conforms to the modified K. Altogether,
by applying at most 2(r + s)δ̂k2 n2

k2 = 2(r + s)δ̂n2 edge modifications in Ĝc, we obtain an (r, s)-
colorable graph Gr,s in which the color classes are given by V. Thus the distance ∆(Ĝ,Gr,s) is less
than γ

20n
2 + 2(r + s)δ̂n2 < 1

2δn
2 and the first condition of the proposition indeed holds.

Lemma 3.6, together with the conditions of the proposition, imply that for all 1 ≤ i ≤ k :
dG(Vi) = 1

2 ± (γ/10 + λ) = 1
2 ± γ/5. Therefore

∑
i eD(Vi) ≥ (1

2 − γ/5) 1
r+s

(
n
2

)
− 1

2δn
2. On the

other hand,
∑

i eD(Vi) +
∑

i<j eD(Vi, Vj) = ∆(G, Ĝ) ≤ ( 1
2(r+s) + γ

20)
(
n
2

)
. Altogether this yields that∑

i<j eD(Vi, Vj) ≤ γ
(
n
2

)
+ 1

2δn
2 < δn2 completing the proof of Proposition 4.2.

�

Proof of Theorem 1.1, Part I:

For any δ > 0 applying Proposition 4.2 to G and Ĝ we obtain the partition V which witnesses that
indeed with high probability ∆2(Ĝ, Tn(r, s, 1

2)) ≤ δ, thus completing the proof.

�

5 Necessary conditions for stability

The detailed definition of critical hereditary properties is somewhat unnatural. In this section we
prove the second part of Theorem 1.1, thus showing that indeed all the details are necessary. The
basic method is showing that for a specific pair (r, s), if any of the conditions for (r, s)-criticality is
not fulfilled, then it is possible to obtain two graphs in P which are: (i) far in the cut norm from
each other; and (ii) have essentially the same asymptotically optimal distance to G.

Proof of Theorem 1.1, Part II: Let P be an arbitrary hereditary property and G = G(n, 1
2).

Fix some pair (r, s) such that χB(P) = r + s + 1 and Pr,s ⊆ P. Since P is not (r, s)-critical then
either item (ii) or item (iii) in the definition of critical properties are not valid.

Assume first that item (ii) is not valid. Namely, there are (r′, s′) 6= (r, s) such that r′+s′ = r+s
and Pr′,s′ ⊆ P. In this case, by Theorem 3.5, with high probability ∆(G,P) =

(
1

2(r+s) ± o(1)
)(

n
2

)
.

Therefore, consider turning G into a graph G1 in P by arbitrarily partitioning the vertices into
r+s equal sized sets, then removing all the edges inside r of them and adding all the missing edges

12



inside the other s. We thus turned G into G1 ∈ P, since G1 ∈ Pr,s. Moreover, by Lemma 3.6,
with high probability, we modified ( 1

2(r+s) ± o(1))
(
n
2

)
edges. Yet, similarly, we could turn G into an

(r′, s′)-colorable graph G2 by applying essentially the same number of modifications. Hence indeed
∆(G,G1) ≤ ∆(G,P) + o(n2) and ∆(G,G2) ≤ ∆(G,P) + o(n2). We will now show that the cut
distance between these two graphs G1 and G2 is bounded from below by a constant independent
of n (we make no attempt to optimize the constants).

Indeed, assume w.l.o.g. that r′ > r and s > s′. Note that the number of edges in G1 is

eG1(V ) =
(

1
2

(1− 1
r + s

) +
s

r + s
· 1
r + s

± o(1)
)(

n

2

)
whereas, for G2, the number of edges is

eG2(V ) =
(

1
2

(1− 1
r + s

) +
s′

r + s
· 1
r + s

± o(1)
)(

n

2

)
.

Since we assumed that s > s′ we get that |eG1(V )− eG2(V )| ≥ ( s−s
′

r+s − o(1))
(
n
2

)
. Therefore, taking

S = T = V in the definition of the cut distance we get that

∆2(G1, G2) ≥ 1
n2

∣∣∣∣eG1(V, V )− eG2(V, V )
∣∣∣∣

≥ 2
n2

∣∣∣∣eG1(V )− eG2(V )
∣∣∣∣

≥ 2
n2

(
s− s′

r + s
− o(1)

)(
n

2

)
≥ s− s′

r + s
− o(1)

which concludes the proof of this case.

Suppose now that the first assertion of item (iii) fails. In this case, any graph that can be
r + s + 1 colored, with r + 1 independent sets and s cliques, such that some pair of independent
sets is completely connected, belongs to P. Hence, we can again construct an (r, s)-colorable graph
G1 as before, and a graph G2 as follows. We partition the vertices of G into r+ s equal sized sets,
and then modify its edges such that r− 1 of the sets induce independent sets and s induce cliques.
The remaining set is arbitrarily partitioned into two equal sized sets and its edges are modified
to span a complete bipartite graph. As before, it is not difficult to verify that G1 and G2 have
essentially the same asymptotically optimal edit distance from G. In addition, ∆2(G1, G2) can be
lower bounded by a constant which only depends on r and s, since again the edge density of G1

and G2 essentially different. The other option for the invalidity of item (iii) is treated similarly,
this time turning the (r + s)’th vertex set into a disjoint union of two equal sized cliques.

�
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6 Proof of Theorem 1.2

Let D denote the modifications graph D = (V (G), E(G)4E(G∗)). Recall that by Theorem 2.6,
P∗C4

is (1, 1)-critical. Hence, by Proposition 4.2, for an arbitrarily small 0 < δ < 1
106 with high

probability there is a partition V = (V1, V2) of V (G∗) such that

(i) |V1|, |V2| = n
2 ± 1

(ii) eG∗(V1) +
(|V2|

2

)
− eG∗(V2) ≤ 1

20δ
2n2

(iii) eD(V1, V2) ≤ 1
20δ

2n2.

With respect to some partition of V (G∗) into two sets U = (U1, U2), we say that a pair of
vertices in U1 is violating if they are connected, and a pair of vertices in U2 is violating if they
are not connected. In other words, the violating pairs correspond to the edge modifications that
are needed in order to turn G∗ into a split graph which is witnessed by the given partition U . We
denote by f(U) the number of violating vertex pairs for U : f(U) = eG∗(U1)+

(|U2|
2

)
−eG∗(U2). Note

that by item (ii) above f(V) ≤ 1
20δ

2n2.

We change the partition V as follows: as long as there is some vertex x such that shifting x to
the other set decreases the value of f on the current partition, shift it. Note that we only change
the partition, without modifying any of the edged of G∗. Since f is non-negative, this process
clearly ends. Denote the partition that is obtained at the end of this process, and hence (locally)
minimizes f , by V ′ = (V ′1 , V

′
2).

Claim 6.1. The partition V ′ satisfies that |V ′1 |, |V ′2 | = n
2 ± δn and eD(V ′1 , V

′
2) ≤ δn2.

Proof. Denote the vertices that were shifted from V1 to V ′2 by A = V ′2 ∩ V1 and assume towards
a contradiction that |A| ≥ δn. In this case, note that since A ⊆ V1 then e(A) ≤ f(V) ≤ 1

20δ
2n2,

and since A ⊆ V ′2 then
(|A|

2

)
− e(A) ≤ f(V ′) ≤ f(V) ≤ 1

20δ
2n2. Summing the two inequalities we

get
(|A|

2

)
≤ 1

10δ
2n2 , and hence |A| ≤ 1

2δn. The same holds for B = V ′1 ∩ V2, and altogether indeed
|V ′1 |, |V ′2 | = n

2 ±
1
2δn = n

2 ± δn. This also implies that

eD(V ′1 , V
′
2) ≤ eD(V1, V2) + eD(A, V1) + eD(B, V2) ≤ 1

20
δ2n2 + |A||V ′1 |+ |B||V ′2 | < δn2

proving the claim.

�

Fix ε = 1
100 (< 1

64). With respect to the partition V ′ = (V ′1 , V
′
2), call a vertex x ∈ V ′1 good if

there were less than εn modifications in edges connecting x to V ′2 : eD({x}, V ′2) < εn. Otherwise,
we say x is bad. We also define analogously good and bad vertices in V ′2 . By Claim 6.1, both in V ′1
and in V ′2 , there are at most δ

εn = 100δn bad vertices.

Claim 6.2. In G∗, the good vertices in V ′1 induce an independent set, and the good vertices in V ′2
induce a clique.
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Proof. Assume first that a1, a2 are good vertices in V ′1 . We randomly pick (independently, with
uniform distribution) two vertices b1, b2 in V ′2 . Note that with probability at least (1 − 200δ)
both b1 and b2 are good. In this case they are connected in G∗ and by our definition of good
vertices, the probability that any of the four edges connecting {a1, a2} and {b1, b2} was modified
is at most 4ε. Moreover, since G = G(n, 1

2), the probability that the bipartite graph induced by
{a1, a2} and {b1, b2} in G is a perfect matching is 1

8 . Therefore, in G∗, with probability at least
1
8 −

4
100 − 200δ > 0, the edge b1b2 exists, and the graph between {a1, a2} and {b1, b2} induce a

matching. In this case, if there was an edge a1a2 in G∗, an induced copy of C4 would exist in G∗

which leads to a contradiction. We conclude that there are no edges in G∗ between good vertices
in V ′1 .

Similarly, for a pair of good vertices b1, b2 ∈ V ′2 , if b1b2 is not an edge, then a random choice of
a pair a1, a2 ∈ V ′1 yields an induced copy of C4 in G∗ with positive probability. This time we need
4ε < 1

16 , since we want a complete bipartite graph on {a1, a2} and {b1, b2} in G. �

In words, Claim 6.2 implies that if some pair is violating V ′ then at least one of its endpoints
is bad.

Claim 6.3. Any bad vertex a ∈ V ′1 has at most 1
4εn good neighbors in V ′1 and any bad vertex b ∈ V ′2

has at most 1
4εn good non-neighbors in V ′2.

Proof. Let a be some bad vertex in V ′1 . Denote by N1 the set of good neighbors of a in V ′1 , and
assume towards a contradiction that |N1| ≥ 1

4εn. Let N2 denote the set of good vertices in V ′2
that are not connected to a. Since the partition V ′ minimizes f , it follows that |N1| ≤ |N2|, since
otherwise shifting a from V ′1 to V ′2 would decrease the value of f(V ′).

If a vertex b ∈ N2 is connected to some two vertices a1, a2 ∈ N1, then {a, a1, b, a2} induce a
C4 in G∗ (recall that a1 and a2 are good, and therefore are not connected in G∗). Hence, any
vertex in N2 is connected to at most one vertex in N1. Therefore, eG∗(N1, N2) ≤ |N2| < n.
On the other hand, since 1

4εn ≤ |N1| ≤ |N2|, Lemma 3.6 implies that with high probability
eG(N1, N2) = (1

2 ± o(1))|N1||N2| ≥ ( 1
32ε

2 − o(1))n2. Altogether

eD(V ′1 , V
′
2) ≥ eD(N1, N2) ≥ eG(N1, N2)− eG∗(N1, N2) ≥ (

1
32
ε2 − o(1))n2 > δn2

contradicting the corollary of Claim 6.1.

A similar argument shows that any bad vertex b ∈ V ′2 has at most εn good non-neighbors in
V ′2 . In this case we define N1 and N2 as before, yet now 1

4εn ≤ |N2| ≤ |N1|. The rest of the proof
repeats the above discussion. �

Claim 6.4. Each bad vertex is incident to less than 1
3εn violating edges with respect to V ′ in G∗.

Proof. By Claim 6.3 any bad vertex has at most 1
4εn violating edges to good vertices in its part.

Moreover, there are at most 100δn < 1
100εn bad vertices in each part. Hence, altogether, the

maximum possible number of violating edges is less than 1
3εn. �
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Claim 6.5. There are no bad vertices in V (G∗).

Proof. Suppose there are some bad vertices. In this case, we may obtain a split graph G1,1 from
G as follows: for any pair of good vertices, we modify it as for G∗. However, for any bad vertex
- we modify all its violating edges with respect to V ′ (to other vertices in its part of the partition
V ′), but we do not apply any modifications to edges between the two parts of the partition. This
construction, together with Claim 6.2, imply that G1,1 is a split graph, which in addition is induced
C4-free. Nevertheless, by Claim 6.4 and the definition of bad vertices, we reduce the number of
modifications: ∆(G,G1,1) < ∆(G,G∗) which contradicts the fact that G∗ is the closest graph in
P∗C4

to G.

�

Hence, all the vertices in G∗ are good and by Claim 6.2 the partition V ′ witnesses that indeed
G∗ is a split graph, completing the proof of Theorem 1.2.

�

7 Concluding remarks and future work

• Types of instability: It may be interesting to investigate what happens when the property
is not critical. As a toy example, consider the property containing all edgeless and complete
graphs. Clearly this property is hereditary, however it is neither (0, 1) nor (1, 0) critical since
the second item in the definition is not satisfied. Clearly, in this case, turning G = G(n, 1/2)
into a graph in P by either removing all edges or adding all missing edges requires essentially
the same number of modifications. In this case, Ĝ has one of two possible structures.

However, in some cases even more options exist. Consider the graph property consisting of
all disjoint unions of complete graphs. Equivalently, this is the class P∗K1,2

. In this case, for
any 1 ≤ k ≤ n, arbitrarily partitioning the vertices of the graph G = G(n, 1/2) into k sets,
and modifying its edges so that each vertex set induces a complete graph and is isolated from
the other sets results in a graph that satisfies the property. Moreover, with high probability,
for each of those partitions, roughly (1

2 ± o(1))
(
n
2

)
edge modifications are needed. Since this

is also the distance ∆(G,P∗K1,2
), here the number of possible structures grows together with

the size of the graph. A similar phenomena holds, e.g., for P∗C5
(see [17]) and for the property

P∗Ks,s+1
for any s ≥ 1.

• Generalizing Theorem 1.2: It is in fact possible to further generalize Theorem 1.2.
The next statement extends Theorem 1.2 by addressing a broad family of forbidden induced
subgraphs and, in addition, by allowing the starting point to be a λ-modification of the
random graph (for a sufficiently small λ).
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Theorem 7.1. For any pair of integers (r, s), there is a positive λ = λ7.1(r, s) which satisfies
the following. Let G∗ be the closest graph in P∗Kr(s) to G, where G is a λ-modification of
Gr = G(n, 1

2). Then, with high probability, G∗ is (r, s)-colorable.

Most of the details of the proof are a straightforward generalization of the proof of Theorem
1.2. However, for proving an analogue of Claim 6.3 some properties of induced subgraphs in
a random graph are needed. We omit the details.

• Quasi-random graphs: It can be shown that Theorems 1.1 and 1.2, which apply to the
random graph G(n, 1

2), in fact hold for any quasi-random graph with edge density 1
2 . Lemma

3.6 provides a sufficient condition for quasi-randomness (see e.g. the survey [16] for other
equivalent conditions). Note that for the proof of Theorem 1.2 some additional well known
facts on the density of subgraphs in quasi-random graphs are needed.

• Hardness of edge modification problems: Combining the previous items, Theorem 7.1
can be proved also for certain pseudo-random graphs. In a subsequent work [6] we describe
how this extremal result may be used to show that it is NP -hard to approximate the edit
distance ∆(G,P∗Kr(s)) of a graph G on n vertices within an additive error of n2−η for any
positive η and pair (r, s) (s.t. r + s > 2). The basic idea follows the method applied by
Alon, Shapira and Sudakov in [3] to prove a similar hardness result for (almost all) monotone
properties. They base the proof on another, somewhat similar, extremal result which holds
for monotone properties [7] and extends an earlier result of Andrásfai, Erdős and V. Sós [8].
Nevertheless, similar hardness results for various hereditary properties can be proved by some
alternative methods as well.

• Random graphs with different edge densities: It should be interesting to investigate
the structure of the closest graphs in a hereditary P to G(n, p) for p 6= 1

2 . One such result
implicitly follows, as a byproduct, from [5] where it is shown that ∆(G(n, 1

3),P∗K1,3
) = (1

3 −
o(1))

(
n
2

)
(in this case G(n, 1

3) is essentially the furthest graph from the property).
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