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Abstract

The Grothendieck constant of a graph G = (V,E) is the least constant K such that for every
matrix A : V × V → R:

max
f :V→S|V |−1

∑
{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ K max
ε:V→{−1,+1}

∑
{u,v}∈E

A(u, v) · ε(u)ε(v).

The investigation of this parameter, introduced in [2], is motivated by the algorithmic problem of
maximizing the quadratic form

∑
{u,v}∈E A(u, v)ε(u)ε(v) over all ε : V → {−1, 1}, which arises in

the study of correlation clustering and in the investigation of the spin glass model. In the present
note we show that for the random graph G(n, p) the value of this parameter is, almost surely,
Θ(log(np)). This settles a problem raised in [2]. We also obtain a similar estimate for regular
graphs in which the absolute value of each nontrivial eigenvalue is small.

1 Introduction

The Grothendieck constant of a graph G = (V,E), denoted by K(G), is the least constant K such
that for every matrix A : V × V → R:

max
f :V→S|V |−1

∑
{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ K max
ε:V→{−1,+1}

∑
{u,v}∈E

A(u, v) · ε(u)ε(v).

This notion was introduced and investigated in [2]. The motivation, besides an interesting connection
to a classical inequality of Grothendieck proved in [6], is mainly algorithmic. For various algorithmic
applications we are interested in solving an integer program of the form

max
ε:V→{−1,+1}

∑
{u,v}∈E

A(u, v) · ε(u)ε(v), (1)
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for a given input matrix A that assigns real values to each edge of G. See [2] and its references
for various specific applications, such as correlation clustering and the estimation of the energy of a
ground state in the spin glass model, in which the value of such a maximum arises.

One natural way to get an approximation of this maximum, is to consider the natural semidefinite
relaxation of the problem, which is:

max
f :V→S|V |−1

∑
{u,v}∈E

A(u, v) · 〈f(u)f(v)〉. (2)

This relaxation can be solved efficiently, using the methods of [7], up to any desired accuracy. It
is obvious that the value of (2) is larger or equal than that of (1). The Grothendieck constant of
the corresponding graph is thus the integrality gap of (1), measuring the maximum possible ratio
between the value of (1) and that of its semidefinite relaxation (2), where the maximum is taken
over all real matrices A.

It is proved in [2] that for every graph G, Ω(log w(G)) ≤ K(G) ≤ O(log θ(G)), where w(G) is the
clique number of G, and θ(G) is the Lovász θ-function of the complement of G.

One of the open problems mentioned in [2] is to decide whether for the random graph G(n, 1/2),
almost surely, K(G) = Θ(log n). Here we show that this is indeed the case by proving the following
more general result.

Proposition 1.1 There are two absolute positive constants c1, c2 such that almost surely, that is,
with probability that tends to 1 as n tends to infinity, the Grothendieck constant of the random graph
G = G(n, p), where p = p(n) ≤ 1 is such that np > 1, satisfies

c1 log(np) ≤ K(G) ≤ c2 log(np).

A similar argument applies to (n, d, λ)-graphs. An (n, d, λ)-graph is a d-regular graph on n

vertices, so that each eigenvalue of its adjacency matrix, besides the first one, is bounded, in absolute
value, by λ.

Proposition 1.2 There is an absolute positive constant c3 such that the Grothendieck constant of
any (n, d, λ)-graph G with d/λ > 1 satisfies

K(G) ≥ c3 log(d/λ).

As it is known (see [5]) that a random d-regular graph is, almost surely, an (n, d, λ)-graph for
λ = (2 + o(1))

√
d− 1 it follows that the Grothendieck constant of a random d-regular graph is,

almost surely, Θ(log d).
The above results will be deduced from the following general theorem. In its statement, we

assume that n is divisible by m, but this is not crucial, and is assumed here only in order to simplify
the notation and avoid non-essential floor and ceiling signs.
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Theorem 1.3 There is an absolute positive constant c such that the following holds. Let G = (V,E)
be a graph on n vertices. Suppose that there are integers m and s, such that n = ms, and there
are positive reals γ < p/2 < p ≤ 1 so that for every two disjoint sets of vertices X, Y ⊂ V , each of
size at most s, the number of edges e(X, Y ) between X and Y deviates from p|X||Y | by at most γs2.
Suppose, further, that m ≤ p/γ. Then K(G) ≥ c log m.

2 Proofs

Let G = (V,E) , n, m, s, p and γ satisfy the assumptions of Theorem 1.3. Fix an m by m symmetric
matrix A = A(i, j) and unit vectors x1, x2, . . . , xm in Sm−1 such that

∆ ≥ c5 log m · δ, (3)

where c5 is an absolute positive constant,

∆ = ∆(A) = max
y1,y2...,ym∈Sm−1

∑
1≤i6=j≤m

A(i, j)〈yi, yj〉 =
∑

1≤i6=j≤m

A(i, j)〈xi, xj〉

and
δ = δ(A) = max

ε1,ε2,...,εm∈{−1,1}

∑
1≤i6=j≤m

A(i, j)εiεj .

The existence of such an A follows from the result of [2] that K(G) ≥ Ω(log m).
By a simple lemma, proved in [4],

δ(A) ·m ≥
∑

1≤i6=j≤m

|A(i, j)|. (4)

Let V = V1 ∪ V2 · · · ∪ Vm be an arbitrary partition of V into m pairwise disjoint sets, each of size
s. Define a real matrix B = B(u, v)u,v∈V as follows. For each two vertices u, v that lie in distinct
sets, u ∈ Vi, v ∈ Vj , i 6= j, put B(u, v) = A(i,j)

e(Vi,Vj)
. In any other case, B(u, v) = 0. Define

∆(B) = max
f :V→S|V |−1

∑
u,v

B(u, v)〈f(u), f(v)〉,

and
δ(B) = max

ε:V→{−1,1}

∑
u,v

B(u, v)ε(u)ε(v).

Our objective is to show that ∆ ≥ Ω(log m) · δ. Note, first that

∆(B) ≥ ∆(A). (5)

Indeed, this simply follows by defining f(u) = xi for each u ∈ Vi and by noticing that with this
choice ∑

u,v

B(u, v)〈f(u), f(v)〉 =
∑

1≤i6=j≤m

∑
u∈Vi,v∈Vj

B(u, v)〈f(u), f(v)〉
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=
∑

1≤i6=j≤m

A(i, j)
e(Vi, Vj)

e(Vi, Vj)〈xi, xj〉 = ∆(A).

To bound δ(B) consider an arbitrary function ε : V → {−1, 1}. For each fixed i, 1 ≤ i ≤ m,
express the vector εi = ε(v)v∈Vi as a sum of a constant vector and a vector with sum of coordinates
zero. If Xi = {v ∈ Vi : ε(v) = 1}, Yi = {v ∈ Vi : ε(v) = −1}, and 1Z denotes the characteristic vector
of a set Z ⊂ Vi, then

εi =
|Xi| − |Yi|

s
1Vi +

2|Yi|
s

1Xi −
2|Xi|

s
1Yi .

For each 1 ≤ i 6= j ≤ m, let Bij denote the s by s submatrix (B(u, v)u∈Vi,v∈Vj . Then.∑
u,v

B(u, v)ε(u)ε(v) =
∑
i6=j

εt
iBijεj ,

where the vectors εi are considered as column vectors.
Fix admissible i 6= j, and define µi by |Xi| = µis. Then |Yi| = (1− µi)s and

εi = (2µi − 1)1Vi + 2(1− µi)1Xi − 2µi1Yi .

Therefore

εt
iBijεi = (2µi − 1)(2µj − 1)1t

Vi
Bij1Vj + (2µi − 1)2(1− µj)1t

Vi
Bij1Xj − (2µi − 1)2µj1t

Vi
Bij1Yj

+2(1− µi)(2µj − 1)1t
Xi

Bij1Vj + 2(1− µi)2(1− µj)1t
Xi

Bij1Xj − 2(1− µi)2µj1t
Xi

Bij1Yj

−2µi(2µj − 1)1t
Yi

Bij1Vj − 2µi2(1− µj)1t
Yi

Bij1Xj + 2µi2µj1t
Yi

Bij1Yj .

The first term among these nine, summed over all pairs i 6= j, gives∑
i6=j

(2µi − 1)(2µj − 1)
A(i, j)

e(Vi, Vj)
e(Vi, Vj) =

∑
i6=j

A(i, j)(2µi − 1)(2µj − 1) ≤ δ,

where the last inequality follows from the fact that for every i , −1 ≤ 2µi − 1 ≤ 1, and the fact
that as the function

∑
i6=j A(i, j)νiνj is linear in every νj , it attains its maximum over [−1, 1]m at a

vertex.
Each other term among the remaining eight ones can be bounded using the fact that the number

of edges between any two subsets X, Y of V , of size at most s each, deviates from its expectation
p|X||Y | by at most γs2. Therefore, for example,

(2µi − 1)2(1− µj)1t
Vi

Bij1Xj = (2µi − 1)2(1− µj)
A(i, j)

e(Vi, Vj)
e(Vi, Xj)

≤ (2µi − 1)2(1− µj)
A(i, j)

e(Vi, Vj)
p · sµj · s + (2µi − 1)2(1− µj)

|A(i, j)|
e(Vi, Vj)

γs2

≤ p
A(i, j)s2

e(Vi, Vj)
(2µi − 1)2(1− µj)µj + O(|A(i, j)|γ

p
),
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where in the last inequality we used the fact that e(Vi, Vj) ≥ (p− γ)s2 ≥ p
2s2 and that the absolute

value of each of the terms (2µi − 1), 2(1− µj) is at most 2.
Each of the other terms among the eight terms above can be bounded in the same manner,

expressing each of them as a sum of two summands, the main term (like the term pA(i,j)s2

e(Vi,Vj)
(2µi −

1)2(1− µj)µj above), and the error term (like the O(|A(i, j)|γp ) above).
The sum of all those eight main terms is

p
A(i, j)s2

e(Vi, Vj)
[ (2µi − 1)2(1− µj)µj − (2µi − 1)2µj(1− µj)

+2(1− µi)(2µj − 1)µi + 2(1− µi)2(1− µj)µiµj − 2(1− µi)2µjµi(1− µj)

−2µi(2µj − 1)(1− µi)− 2µi2(1− µj)(1− µi)µj + 2µi2µj(1− µi)(1− µj) = 0.

The sum of all eight error terms for a fixed admissible i, j is at most O( |A(i,j)|γ
p ), and summed over

all i 6= j it can be bounded, using (4) and the assumption that m ≤ p/γ, by O( δmγ
p ) = O(δ).

Altogether, we conclude that∑
u,v

B(u, v)ε(u)ε(v) ≤ δ + O(δ) = O(δ),

which, together with (5), completes the proof of the theorem. 2

The two propositions are simple consequences of Theorem 1.3.
Proof of Proposition 1.1 A simple application of Chernoff’s bound (c.f., e.g., [3], Appendix A)
implies that if G = G(n, p) and np > 1 then, almost surely, the number of edges between any
two sets of vertices X, Y of size at most s each deviates from its expectation p|X||Y | by at most
O(
√

ps3/2
√

log(en/s).) Therefore, as n/s = m, one can define here

γ = O(
√

p log m√
s

) = O(
m1/2p1/2(log m)1/2

n1/2
).

Thus, if m satisfies

m ≤ O(
p1/2n1/2

m1/2(log m)1/2
),

the assumptions in the theorem will hold, and we can thus choose, for example, m = Θ((pn)1/4)
to obtain the desired lower bound for K(G). The upper bound follows from the results of [2], as
the chromatic number of G (which is an upper bound for θ(G)) is well known to be, almost surely,
Θ(np/ log(np)). 2

Proof of Proposition 1.2 By a well known lemma (see, e.g., [1] or [3]), in any (n, d, λ)-graph the
number of edges between any two sets X and Y of size at most s each deviates from d

n |X||Y | by less
than λ

√
|X||Y | ≤ λs. Thus we can take here p = d

n , γ = λ
s and m = (d/λ)1/2, and apply Theorem

1.3. 2
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In particular, if λ = O(
√

d) then the Grothendieck constant is Θ(log d) (as the chromatic number
of any d-regular graph cannot exceed d). We note that this can be used to give, for each fixed g and
for infinitely many values of n, an explicit example of a graph G on n vertices whose girth exceeds g

for which K(G) ≥ c(g) log n. That is, the Grothendieck constant is, up to a constant factor, as large
as it is in a complete graph of the same size.
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