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1. IntroductionA dominating set of a digraph ~G is a set S of vertices such that for everyvertex v =2 S there exists some u 2 S with ~uv 2 E( ~G). The dominationnumber 
( ~G) of ~G is de�ned as the cardinality of the smallest dominatingset.We de�ne a \domination parameter" of an undirected graph G as thedomination number of one of its orientations, determined by the follow-ing two player game. Players A and D orient the unoriented edges ofthe graph G alternately with D playing �rst, until all edges are oriented.Player D (frequently called the Dominator) is trying to minimize the dom-ination number of the resulting digraph, while player A (Avoider) tries tomaximize the domination number. This game gives a unique number de-pending only on G, if we suppose that both A and D play according totheir optimal strategies. We call this number the game domination numberof G and denote it by 
g(G).As the domination number of any orientation of a graph is at leastas large as the domination number of the graph itself, we clearly have
(G) � 
g(G). Also 
g(G) � DOM(G), where DOM(G) denotes the



GAME DOMINATION NUMBER 3maximal domination number among all orientations of G. This parameterwas examined in [6].Similar orientation games with di�erent goals for the players were in-troduced and discussed in [1], [3], [4] and [5].In Section 2 we determine the game domination number for severalclasses of graphs including complete graphs, complete bipartite and tri-partite graphs, paths and cycles. Then we obtain sharp lower and upperbounds for the game domination number of trees in terms of the smallestdegree that is at least three.Finally, in Section 4 we prove several inequalities, relating the gamedomination number to other graph parameters such as the number ofvertices and edges, independence number and 2-domination number. Weestablish a Nordhaus-Gaddum type upper bound for the sum of the gamedomination number of a graph and its complement.For additional results on related domination parameters we refer thereader to two excellent books [8] and [9].
2. ExamplesIn this section we determine the game domination number for a fewclasses of graphs. These elementary examples enable the reader to gain a



4 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�Ofeel for the parameter; also, some of the examples will be needed in thesequel.Example 2.1. For the complete graph Kn on n � 4 vertices, we have
g(Kn) = 2.Proof. Let us see �rst why 
g(Kn) � 2, i.e. why one vertex cannot dom-inate the oriented graph. Player A can clearly avoid a source in K4, andif n � 5 then there exists a collection of n edge-disjoint paths of length 2,one centered at each vertex (see [4] ). Whenever D orients one of theseedges from the central vertex, A can orient the other edge of the cor-responding path towards the central vertex. Thus the in-degree of eachvertex becomes at least one.On the other hand, 
g(Kn) � 2 since the dominator can pick two ver-tices, u and v, say and then reply to each move ~wu by ~vw, and to eachmove ~wv by ~uw. This strategy ensures that fu; vg becomes a dominatingset of the resulting digraph. �Note, that in Example 2.1 the dominator made use of very few edges.The same idea can be applied for much sparser graphs.Example 2.2. Let G be a graph on n � 4 vertices containing all but oneedges of a copy of K2;n�2. Then 
g(G) = 2. Also, if G contains a set S



GAME DOMINATION NUMBER 5of s vertices such that every vertex not in S has at least 2 neighbors in S,then 
g � s. �Example 2.3. Let Kn;m denote a complete bipartite graph with n � mvertices in the two partite sets, then

g(Kn;m) = 8>>>>>>>>><>>>>>>>>>:

d(m + 1)=2e if n = 12 if n = 23 if n = 3; 4 or 54 otherwise. �Example 2.4. If G is a complete k-partite graph (k � 3) with at leastthree vertices in each partite class, then 
g(G) = 3. �Now we turn to some sparser graphs that (as expected) have largergame domination numbers. They also show that the game dominationnumber can be much larger than the domination number. The reader isencouraged to verify the statement of the next example.Example 2.5. For the three dimensional cube Q3 and the Petersen graphP we have 
g(Q3) = 3 and 
g(P ) = 4. �Example 2.6. For a path Pn on n vertices we have 
g(Pn) = dn=2e.



6 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�OProof. The vertices of the path can be partitioned into dn=2e sets of dis-joint edges and possibly one single vertex. Each of these sets can bedominated by one of its vertices regardless of the orientation of the edges,showing 
g(Pn) � dn=2e.For the lower bound, A would like to prevent D creating many verticesthat dominate both their neighbors. Although A cannot do this, he caneasily achieve that no even numbered vertex (with the vertices of thepath labeled with 1; 2; : : : ; n from left to right) dominates three vertices(including itself). Indeed, whenever D orients an edge out of an evenvertex, A immediately orients the other edge in.This strategy results in an oriented path, where to dominate the dn=2eodd vertices we must choose dn=2e vertices, as no vertex will dominatetwo odd vertices. �Example 2.7. For a cycle Cn on n vertices, 
g(Cn) = bn2 c.Proof. We show �rst that D can achieve an orientation with dominationnumber bn2 c. Indeed, following his second move D can make sure thatthere is a vertex dominating both of its neighbors. The remaining n � 3vertices can be partitioned into dn�32 e independent edges (with possiblyone single vertex), and these vertices will be dominated by dn�32 e verticesregardless of the orientation. Thus 
g(Cn) � n=2.



GAME DOMINATION NUMBER 7On the other hand player A can force the dominating set to be as bigas bn2 c using the same idea as in case of paths: he labels the verticesby 1; 2; : : : ; n , and ensures that no even vertex dominates both of itsneighbors. Then, to dominate the dn2 e odd vertices we need at least bn2 cvertices, giving 
g � bn=2c. �Our next example is a family of less natural graphs, this result will beused later.Example 2.8. Let G be a "lollipop" on n vertices formed by an evencycle with a tail (a single path) attached to one of its vertices. Then
g(G) = bn2 c.Proof. To prove that 
g(G) � bn2 c, write v for the vertex of degree 3,and u for its neighbor on the path. The dominator D starts the gamewith ~vu, and in his second move also orients an edge away from v. Thusv dominates 3 vertices (including itself), and as the cycle is even, theremaining vertices can be partitioned into a matching (with possibly asingleton), showing that 
g(G) � bn2 c. The lower bound can be shown asin the previous examples. �First it seems that by adding edges to a graph we cannot increase itsgame domination number. Indeed, this is clearly the case if we add an



8 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�Oeven number of edges to a graph. However, rather surprisingly, this doesnot hold if we add exactly one edge to our graph.Example 2.9. Let G be obtained from the complete bipartite graph Kt;4(t � 6) as follows. Let Kt;4 = K(M;N) with M = fe; f; g; : : : ; zg, N =fa; b; c; dg), and G = Kt;4 + ab + cd� dz. Then 
g(G) = 2, while 
g(G +dz) = 3.Proof. PlayerD has an easy strategy to �nish the game with a two-elementdominating set: he starts with ~az, then he ensures that every vertex inM is dominated by at least one vertex of fa; dg and one vertex of fb; cg.Whenever A plays ab or cd, the dominator orients the other so that eitherfa; dg or fb; cg becomes the dominating set. Hence 
g(G) � 2.What about 
(G + dz)? Playing the game on G + dz, the Avoidercan force the Dominator to be the �rst to orient an edge in N . Clearlythe only way D could end up with a dominating set of size 2 is to usetwo independent vertices of N : fa; cg; fa; dg; fb; cg or fb; dg. The strategyof A will be to try to dominate some of these pairs from vertices of M ,making them impossible to become dominating sets. He cannot "kill" allof the four possible dominating pairs, but at least two disjoint pairs hecan. Whenever D orients the �rst edge of N , A can orient the other sothat none of the four possible pairs could dominate the graph. We leave it



GAME DOMINATION NUMBER 9to the reader to verify that D cannot do any better by orienting an edgeof N before A \kills" two of the possible dominating pairs. �The \jump" can be larger then one, as a little modi�cation of the pre-vious example shows us.Example 2.10. If G is the same as in the previous example, (k� 1)(G+dz)+G has game domination number 2k and adding only one edge to thegraph, k(G+ dz) has game domination number 3k.We believe, that this is the biggest possible jump: if 
g(G) � 2k then
g(G+ ab) � 3k. 3. TreesFirst we shall derive a sharp lower bound for the game dominationnumber of trees, then we look for upper bounds in terms of di�erent pa-rameters.Theorem 3.1. For any tree T on n vertices
g(T ) � �n2�:Proof. We apply induction on the number of vertices. We clearly need dn2 evertices to dominate if n � 3.



10 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�OTo proceed with the induction, if n � 4 we need to �nd either a vertexwith at least two leaves attached to it or a leaf attached to a vertex ofdegree two. One of these always exists, we might for example consider avertex v and the longest path starting from v. This path ends in a leafand the previous vertex has either degree two, or another leaf adjacentwith it. The two cases are essentially the same, and we shall discuss onlyone in detail.Suppose that there are two leaves u and v attached to a vertex w. PlayerA could play the game in T � fu; vg according to his strategy resultingin a domination number at least dn�22 e. Whenever D orients one of theedges adjacent to u or v, A immediately orients the other edge from theleaf. Thus two of the three vertices u; v; w are needed in the dominatingset. At least another dn�22 e � 1 vertices are needed from the rest of thegraph, giving no dominating set smaller than dn2 e. �Theorem 3.2. Let T denote a tree on n vertices that is not a path, andlet d denote the smallest degree in T that is at least three. Then
g(T ) � min��n2 + n� 22(d� 1)� ; �23n�� ;where the b23nc bound takes over the other only if d = 3.



GAME DOMINATION NUMBER 11Proof. We need to provide a strategy for player D resulting in a digraphwith small domination number. Suppose that the tree has k vertices ofdegree at least d. An easy counting argument shows that k � bn�2d�1 c. Weorient the edges so that the digraph we obtain has a small dominating setcontaining these k vertices.Note, that the remaining n�k vertices of T can be partitioned into pathsattached to the k vertices of large degree. We claim that these vertices canbe dominated by bn�k2 c vertices in addition to the k vertices of degree atleast d. Indeed, a path of even length 2l contains l independent edges anda dominating set of size l regardless of the orientation. Thus all D needsto take care of are the odd paths. But a path of length 2l + 1 startingfrom a dominating vertex v can easily be dominated by another l verticesif D takes the �rst move (he dominates the �rst vertex from v), and byl + 1 vertices otherwise. As D starts the game, he is able to make the�rst move in at least half of the odd paths dominating the vertices on oddpaths by at most half of them.Thus we have a dominating set of the resulting digraph of size
g(T ) � k + �n� k2 � = �n + k2 � � �n2 + n� 22(d� 1)�:If d = 3, then we do not put every vertex of degree three or largerinto the dominating set. Instead, we partition the vertices of T into stars



12 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�Oof at least two vertices (the existence of such a partition is obvious byinduction). Player D can easily dominate a star K1;r with b23(r + 1)cvertices even if A starts the orientation, unless r = 3. In K1;3 two verticeswill dominate if D starts the game and three if A does. Thus the strategyof D is to make use of a star-partition: he starts in a K1;3 (if there is any)then plays in the same star as A, except if he chooses another K1;3. ThenD does the same, ensuring that at least half of the three-stars will bedominated by two vertices, which in average gives a dominating set of sizeat most 5=8 < 2=3 of the vertices in these stars. This strategy provides adomination number at most b23nc in the resulting digraph. �Note, that both bounds in the previous theorem are sharp, for exampleif T is constructed from a path of k vertices with d � 1 or d � 2 leavesattached to each vertex such that each of the k vertices has degree d � 4.Then 
g(T ) = bn2 + n�22(d�1)c as A can always orient edges from leaves to thecentral vertices.For d = 3 consider a tree of three levels. The �rst level has only onevertex of degree k + 2, the next level has k vertices of degree 3 and twoleaves, and the third level contains 2k leaves. It is easy to check, that thistree has game domination number 2n=3, showing that the second part ofthe theorem is also sharp.



GAME DOMINATION NUMBER 13Let us spell out one of the inequalities in the previous proof, which givesa slightly stronger version of the theorem.Corollary 3.3. If T is a tree on n vertices with k � 1 vertices of degreeat least 3, then 
g(T ) � �n+ k2 � : �We summarize our results for trees in the following inequalities. Note,that the general upper bound could have been improved a lot for specialtrees.Corollary 3.4. For any tree T we have�12n� � 
g(T ) � �23n�: �Corollary 3.5. For any connected G we have
g(G) � �23n�: �



14 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�O4. InequalitiesFirst we shall give a lower bound for the game domination number ofa graph in terms of its maximal degree. This corresponds to the easiestbasic inequality on the domination number: 
(G) � n�+1 .During our game A orients half of the edges and he might succeed indecreasing the out-degree of each vertex to about �=2. This prompts usto make the following conjecture.Conjecture 4.1. For any graph G with n vertices and maximal degree �,we have 
g(G) � 2n(1+o(1))� .We have not been able to prove this conjecture, but the followingsomewhat weaker result is an improvement on the trivial lower bound
g(G) � 
(G) � n�+1 .Theorem 4.2. If G is a graph with n vertices and maximal degree �,then 
g(G) � � 4n3� + 7� :Proof. The goal of A is to ensure that the out-degree of any vertex is atmost 3�+34 . We can add edges to the graph, until it becomes a 2k-regularmultigraph G0, with 2k = � or 2k = �+ 1 depending on the parity of �.As shown by Tarsi [13], this graph G0 has a k-system, i.e. n edge-disjointk-stars, one centered at each vertex of the graph. Corresponding to these,



GAME DOMINATION NUMBER 15there are n edge-disjoint stars in G, each with at most k edges, centeredat di�erent vertices, and at any vertex v, at most k of the incident edgesdo not belong to the star centered at v.The strategy of A is to orient an edge of the same star, in which Dmade his previous move, into the central vertex. Hence each vertex willhave out-degree at most b3�+34 c, and dominate at most b3�+74 c of the nvertices. �Note, that when we provided strategies for D to obtain upper boundsfor the game domination number we usually did that by �nding a smallset S of vertices dominating every other vertex at least twice, and thusensuring that at least one of those edges can be oriented by D out ofS, making S a dominating set of the resulting digraph. The concept ofmultiple domination was introduced by Fink and Jacobson in [7]. Theycall a set S k-dominating if every vertex of V �S is adjacent to at least kvertices in S. The k-domination number, 
k(G), is the minimal cardinalityof a k-dominating set. Our argument above shows that 
g(G) � 
2(G).This gives the following immediate bounds, by some of the results on2-domination numbers in [7] and [12].
Theorem 4.3. For any graph G: 
g(G) � 
2(G) � �2(G) � 2�0(G).



16 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�OIn the inequality above, �0(G) denotes the independence number of G,and �2(G) is the 2-independence number, i.e. the maximal cardinality ofa set I of the vertices such that the graph spanned by I has maximaldegree at most 1. The complete graph shows that the inequality is sharp:
g(Kn) = 2�0(Kn) = 2.Theorem 4.4. If the minimal degree Æ(G) � 3, then 
g(G) � 
2(G) �n=2.For G = tK4 we have 
g(G) = 2t, v(G) = 4t, so both inequalities aresharp in Theorem 4.4. We have seen the game domination number oftrees to fall between n=2 and 2n=3. Clearly the proof implies that thisupper bound holds for any connected graph, as player D can concentratehis attention on a spanning tree of the graph (if player A moves outsideof the spanning tree, D continues to orient tree edges according to hisstrategy). The following theorem improves the upper bound for graphswith minimal degree at least two.Theorem 4.5. If a graph G has minimal degree at least 2, then 
g(G) �bn2 c.Proof. Our goal is to �nd a large 1-factor in the graph and use thoseedges to dominate the pairs of vertices by one of them regardless of theirorientation. If G has a complete matching, this gives us a dominating set.



GAME DOMINATION NUMBER 17Suppose �rst that n = 2k + 1 odd, and there is a matching of size k,containing the edges (v1; u1); : : : (vk; uk), leaving only one more vertex forv to dominate. From the minimal degree condition, v is connected to avertex of the matching, say v1 . If u1 is also connected to v, then the proofis done, as the resulting triangle vv1u1 can easily be dominated by onevertex if D starts the game. Otherwise u1 is connected to another vertexof the matching, say v2. Following this algorithm we build an alternatingpath vv1u1v2u2 : : : ui until ui is connected to a previous vertex on thisalternating path. If this vertex is v or uj, then we end up with an oddcycle and a matching (we might need to change the matching edges alongthe alternating path up to the cycle) and �nish with a dominating set ofsize at most n=2 as before in Example 2.7. Finally, if ui is attached toa vertex vj on the path, then we have an even cycle with an odd pathattached to it, and some independent edges of the original matching, andwe can easily get the desired dominating set by Example 2.8.We shall call a component odd (even), if its order is odd (even). Now wesuppose that a maximal matching of G covers all but t � 2 vertices. Bythe extended version of Tutte's theorem there is a set S of s vertices suchthat after deleting S from the graph we shall get s + t odd components.Choose S to be maximal among all such sets. Note, that S might be



18 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�Oempty, if G was not connected and had exactly t odd components. Weshall use this S to dominate the graph.First note, that there exists a complete matching in every even compo-nent of G � S (as there is a matching covering all but t vertices of thegraph). We claim that if U is an odd component of G � S and u 2 U ,then U �fug also has a complete matching. Otherwise it has a cut set Kwith k vertices leaving at least k+2 odd components in U �fug, since Uhad an odd number of vertices. But then S [ fug [K would be a cut-setof order s+ k + 1 giving s+ t+ k + 1 odd components, contradicting themaximality of S.The strategy of D is simple: he ensures that the s+ t odd componentsof G � S will be dominated \eÆciently", i.e. by less then half of theirvertices plus the vertices of S. To show how this can be done we needto distinguish three types of odd components in G� S depending on thenumbers of edges connecting them to S.First, there may be some isolated components, which must be odd com-ponents of G with all but one vertex covered by the matching. It is easyto see that these can be dominated by half of their vertices if D managesto start the game in at least half of them. He starts in one, and startsanother isolated component every time A does so, achieving his goal.



GAME DOMINATION NUMBER 19Second, there are odd components attached to S with at least two edges,but these can be dominated from S by orienting one of those edges out ofS, and using the complete matching on the remaining part of it.Third, there are odd components attached to S by only one edge be-tween S and a vertex v in the odd component. In this case either D isable to orient the bridge from S toward v or if A has done this, he startsthe game in the component and succeeds exactly like above when we hadan almost complete matching missing only vertex v. Note, that in that ar-gument we did not use the fact that v has degree at least two (that mightnot hold here), this was only needed for the vertices of the matching.Even if we have to choose every vertex of S into the dominating set, itcannot be larger thans+ n� s� s� t2 = n� t2 < �n2� ;completing the proof. �This theorem is sharp as the examples of cycles with n vertices show.The upper bound for the game domination number can be further strength-ened if the minimal degree is larger using a probabilistic argument.Theorem 4.6. For every graph G = (V;E) with n vertices and minimumdegree Æ � 2 and for every real number p between 0 and 1, 
g(G) �np+ 2n(1� p)Æ + 1 + nÆp(1� p)Æ. Therefore, 
g(G) � (1 + o(1))n ln(Æ+1)Æ+1 ,



20 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�Owhere the o(1)-term tends to zero as Æ tends to in�nity, and the above theestimate is tight, up to the o(1) error term.Proof. By Theorem 4.3 it suÆces to prove that there is a set S of at mostnp+2n(1�p)Æ+1+nÆp(1�p)Æ vertices of G, such that each vertex not in Shas at least two neighbors in S. To prove the existence of such an S let Xbe a random set of vertices of G obtained by choosing each vertex v 2 V ,randomly and independently, to be a member of X with probability p.Let us �x arbitrarily some set N(v) of precisely Æ neighbors of each vertexv 2 V , let Y denote the set of all vertices v such that neither v nor anymember of N(v) lies in X, and Z will denote the set of vertices u suchthat precisely one member of N(u) is in X. The expected cardinalities ofX; Y and Z are, respectively, np, n(1� p)Æ+1 and nÆp(1� p)Æ. Moreover,by adding to X two arbitrarily chosen neighbors of u for each u 2 Z, weobtain a set S of cardinality jXj+2jY j+ jZj such that each vertex not inS has at least 2 neighbors in S. By linearity of expectation the expectedcardinality of S is np + 2n(1 � p)Æ+1 + nÆp(1 � p)Æ and hence there issuch a set of cardinality at most this quantity. For large Æ we can choosep = ln Æ+ln ln ÆÆ and check that for this choice of p the resulting set S is ofcardinality at most n ln(Æ+1)Æ+1 +O(n ln ln ÆÆ ), as needed.The tightness of the estimate follows easily from the fact that the gamedomination number is always at least as large as the domination number



GAME DOMINATION NUMBER 21of the graph and the well-known fact that there are undirected graphswith n vertices and domination number (1+ o(1))n ln(Æ+1)Æ+1 where the o(1)-term tends to zero as Æ tends to in�nity (see for example the discussionfollowing Theorem 2.2 on page 7 in Alon and Spencer [2]). �In 1956 Nordhaus and Gaddum [11] established sharp bounds on thesum and product of the chromatic numbers of a graph and its comple-ment. Similar results have been found for several parameters, includingthe following due to Jaeger and Payan [10].Theorem 4.7. If G is a graph of order n, then 
(G) + 
( �G) � n+1 andthis bound is sharp.We establish a sharp Nordhaus-Gaddum-type inequality for the gamedomination number of a graph and its complement.Theorem 4.8. For a graph G with n vertices, 
g(G) + 
g( �G) � n + 2.Furthermore, the bound is sharp.Proof. If the minimum degrees of G and �G are at least two then by The-orem 4.5, 
g(G) + 
g( �G) � n. Hence, we may assume that Æ( �G) � 1.Then Æ(G) � 2, otherwise we have a vertex of degree at least n� 2 in thecomplement as well, and the dominator D can use these two vertices to



22 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�Odominate almost half of both the graph and its complement, which resultsin dominating sets whose sum of sizes is at most n + 2 even if we havechosen every remaining vertex into the corresponding dominating set.Suppose now that Æ( �G) � 1 and Æ(G) � 2. Thus there is a vertex vin G with degree at least n � 2. If another vertex u of G has degree atleast n� 2, then 
g(G) � 3 as using u, v and possibly one more vertex asdominating set, D can dominate G. On the other hand, if there exists anedge in �G, then 
g( �G) � n� 1, otherwise we need n vertices to dominate�G, but two vertices suÆce to dominate G, providing the desired bound ineither case.We remain with the case when d(v) � n � 2 and d(u) � n � 3 forevery u 6= v. Then by Theorem 4.5 player D can dominate in �G with
g( �G) � dn�12 e + 1 vertices by adding v to the dominating set. Also,using the star of G centered at v, player D can easily dominate G byb(n� 2)=2c+ 2 vertices. Hence 
g(G) + 
g( �G) � n + 2.The complete graph Kn shows that this bound is sharp: 
g(Kn) = 2and 
g( �Kn) = n. �
We believe that the inequality in Theorem 4.8 can be strengthened forconnected graphs.



GAME DOMINATION NUMBER 23Conjecture 4.9. If both G and �G are connected graphs with n vertices,then 
g(G) + 
g( �G) � 23n+ 3.If true, this inequality is sharp, as shown by a tree of order n with gamedomination number 23n (see Section 3).References[1] M. Aigner, E.Triesch and Zs.Tuza, Searching for acyclic orientations of graphs,Discrete Mathematics 144 (1995) 3-10.[2] N. Alon and J.H. Spencer, The probabilistic method (Wiley, New York, 1992).[3] N. Alon and Zs.Tuza, The acyclic orientation game on random graphs, RandomStructures and Algorithms 6 (1995) 261-268.[4] B. Bollob�as and Tam�as Szab�o, The oriented cycle game, Discrete Mathematics186 (1998) 55-67.[5] G. Chartrand, F. Harary, M. Schultz and D. Vanderjagt, Achievement and Avoid-ance of a Strong Orientation of a Graph, Congressus Numerantium 108 (1995)193-203.[6] G. Chartrand, D.W. VanderJagt, B.Q. Yue, Orientable Domination in Graphs,Congressus Numerantium 119 (1996) 51-63.[7] J.F. Fink and M.S. Jacobson, n-domination in graphs, in Y.Alavi and A.J.Schwenk, editors, Graph Theory with Applications to Algorithms and ComputerScience (Wiley, New York, 1985) 283-300.[8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater editors, Domination in Graphs (MarcelDekker, New York, 1998).



24 NOGA ALON, J�OZSEF BALOGH, B�ELA BOLLOB�AS, AND TAM�AS SZAB�O[9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination inGraphs (Marcel Dekker, New York, 1998).[10] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombred'absorption d'un graphe simple, C.R. Acad. Sci. Ser. A 274 (1972) 728-730.[11] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math.Monthly 63 (1956) 175-177.[12] C. Stracke and L. Volkmann, A new domination conception, J. Graph Theory 17(1993) 315-323.[13] M. Tarsi, On the decomposition of graphs into stars, Discrete Mathematics 36(1981) 299-304.


