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Abstract

We prove that there is a set F in the plane so that the distance between any two

points of F is at least 1, and for any positive ε < 1, and every line segment in the

plane of length at least ε−1−o(1) there is a point of F within distance ε of the segment.

This is tight up to the o(1) term in the exponent, improving earlier estimates of Peres,

of Solomon and Weiss, and of Adiceam.

Mathematics subject classification codes: 51F99, 52C99

1 Introduction

A (planar) dense forest is a set F ⊂ R2 so that there exists a function f : (0, 1)→ R+ such

that for any ε ∈ (0, 1) and any line segment ` in the plane of length at least f(ε), there

is a point x ∈ F whose distance from ` is at most ε. A function f satisfying the above is

called a visibility function for F . The forest is uniformly discrete if there is a positive r so

that the distance between any two points of F is at least r. The forest has finite density

if there exists a finite C so that for every t ≥ 1 the number of points of F in the ball of

radius t centered at the origin is at most Ct2. It is clear that any uniformly discrete forest

has finite density, and that the converse is not true in general.

One reason for the terminology “dense forest” is a visibility problem related to Pólya’s

Orchard Problem, see [5]. Indeed, a set F is a dense forest as above if and only if for any

small ε > 0, when we stand anywhere in a forest with tree trunks of radius ε centered at

the points of F , and look in any direction, we can never see further than distance f(ε).
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The problem of existence of such forests, but only for a given fixed ε > 0, was considered

by Bishop in [4], where he described a construction, due to Peres, of a uniformly discrete

dense forest (for a fixed given ε) with visibility function f(ε) = O(ε−4). The same ideas can

be used to show the existence of a dense forest of finite density with the above visibility

function, but do not imply that there are uniformly discrete dense forests.

Solomon and Weiss [7] were the first to consider the problem of existence of a uniformly

discrete dense forest, that is, a fixed uniformly discrete set F that works for all values of

ε > 0. They proved the existence of such a forest using homogeneous dynamics and relying

on a theorem of Ratner. Their proof provides no explicit bound for the visibility function.

They also observed that the problem is closely related to a well known question of Danzer,

and asked if the O(ε−4) estimate (for the finite density case) can be improved. Adiceam

[1] proved the existence of a dense forest with visibility function c(δ)ε−2−δ, for any fixed

δ > 0, however his forest is of finite density, but is not uniformly discrete. Here we prove

the existence of a uniformly discrete forest with visibility function ε−1−o(1). As Ω(ε−1)

is a trivial lower bound for the visibility function (even if we consider only vertical line

segments), this is tight up to the o(1) term in the exponent. A more precise statement of

the result follows.

Theorem 1.1. There are absolute positive constants r and C so that there exists a uni-

formly discrete planar forest in which the distance between any two points is at least r,

and the function

f(ε) =
2C
√

log(1/ε)

ε

is a visibility function.

The result is stronger than that in [7] as it gives an explicit nearly tight estimate for the

visibility function, and is stronger than that in [1] in two respects: the forest is uniformly

discrete, and the visibility function is significantly smaller. On the other hand, the proof

is probabilistic, whereas the forests of Solomon and Weiss in [7], of Peres in [4] and of

Adiceam in [1] are constructed explicitly, and their properties are proved using techniques

from dynamics (in [7]), Diophantine approximation (in [4]), and Fourier analysis (in [1]).

2 Proof

In this section we prove Theorem 1.1. Throughout the proof we make no attempt to

optimize the absolute constants involved. The proof is probabilistic, combining some
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geometric considerations with the Lovász Local Lemma and a compactness argument. We

will use the following basic version of the Local Lemma (c.f, e.g., [3], Chapter 5).

Lemma 2.1. Let Ai, i ∈ I be a finite set of events in a probability space. Suppose that

the probability of each event is at most p, and each event Ai is mutually independent of

all other events but at most d. If ep(d + 1) ≤ 1 then with positive probability none of the

events holds.

Here is an outline of the proof of Theorem 1.1. We first define a family H of horizontal

strips in the plane, and a family V of (broken) vertical strips. The horizontal strips are

wider than the vertical ones, and the two families are defined in a way that ensures that

any line segment that crosses a horizontal strip contains a significant portion in that strip,

and this portion is not too close to its boundary, and is not too close to any vertical strip.

Next we tile the plane by crosses, each consisting of 5 unit squares. Let V C be the set

of all crosses in the tiling that intersect a vertical strip, and let HC denote the set of all

crosses that intersect a horizontal strip and do not belong to V C. Replace each cross by

a smaller cross consisting of all points of the cross whose distance from its boundary is at

least, say, 0.05. Our forest F will contain exactly one point in each such smaller cross.

Therefore, it will be uniformly discrete (with r = 0.1). Define a sequence εi = 2−i
2
. Now

number the horizontal and vertical strips by the nonzero integers, in order. Let hp be the

horizontal strip number p and let vq be the vertical strip number q. For each i ≥ 1, the

points in the (smaller) crosses corresponding to the horizontal and vertical strips hp, vq,

where p = 2ib, q = 2ib′, with b, b′ odd, are used to handle all line segments of length f(εi).

This is done as follows.

In each smaller cross as above we place one point, randomly, uniformly and indepen-

dently. Using compactness and the Local Lemma we show that there is such a placement

that handles all line segments of length f(εi). The union over i of all these sets of points

provides the required forest.

We proceed with the details. The absolute constants appearing throughout the proof

can be easily improved.

For each (positive or negative) integer p, let `p denote the horizontal line y = 120p,

and let hp denote the horizontal strip consisting of all points within distance at most 50

from `p.

For each integer q let mq denote the broken line obtained from the vertical line x = 120q

by adding to it detours inside the horizontal strips as follows. Each segment of the form

(x = 120q, 120p− 20 ≤ y ≤ 120p+ 20) is replaced by the following three segments:
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• 120q − 80 ≤ x ≤ 120q, y = 120p− 20

• x = 120q − 80, 120p− 20 ≤ y ≤ 120p+ 20

• 120q − 80 ≤ x ≤ 120q, y = 120p+ 20

Let vq be the vertical broken strip consisting of all points within distance 10 from mq.

We say that a line segment ` crosses a horizontal strip hp, if it contains points below

and above it. Similarly, ` crosses a vertical broken strip vq if it contains points in its left and

its right sides. Note that although each horizontal strip and each vertical strip intersect,

any line segment that crosses a horizontal strip contains a sub-segment of length at least,

say, 10 that lies in the horizontal strip and its distance from the boundary of the strip

and from any vertical strip is at least 5. Similarly, any line segment that crosses a vertical

strip contains a sub-segment of length at least 10 whose distance from the boundary of

the strip is at least 5.

A cross is a closed planar region consisting of a unit square whose vertices lie on the

standard square lattice, and the 4 other unit lattice squares that share an edge with it.

It is easy to see that there is a tiling of the plane with crosses, fix such a tiling. For any

vertical broken strip vq, with q ∈ Z \ {0}, let cvq denote the set of all crosses in the tiling

that intersect vq. For any horizontal strip hp, let chp denote the set of all crosses that

intersect hp and do not belong to any of the sets cvq, q ∈. Now replace each cross x by a

smaller subset of it x′, which is also cross-shaped, consisting of all points of the cross x of

`∞-distance at least 0.05 from its boundary. For each q ∈ Z \ {0} put cv′q = {x′ : x ∈ cvq},
and for each p ∈ Z\{0}, define ch′p = {x′ : x ∈ chp}. It is easy to see that any line segment

` that crosses a horizontal strip hp contains a subset of total length at least, say, 1, where

it crosses hp, in which every point lies inside one of the smaller crosses in ch′p. Similarly, if

` crosses a vertical (broken) strip vq, it must contain, where it crosses it, a subset of total

length at least 1 consisting of points that lie inside one of the small crosses in cv′q.

Split the set of all small crosses in ∪p 6=0ch
′
p ∪q 6=0 cv

′
q into pairwise disjoint families

C1, C2, C3, . . . as follows. All crosses in ch′p belong to Ci iff the largest power of 2 that

divides p is 2i (that is, |p| = 2ib, where b is odd). Similarly, the crosses in cv′q belong to

Ci iff the largest power of 2 dividing q is 2i.

Lemma 2.2. For each i ≥ 1, there is a set of points Fi consisting of exactly one point in

each of the crosses in Ci, so that for any line segment ` of length at least 2i
2
2i+15i2 there

is a point in Fi whose distance from ` is at most 2−i
2
.

Proof: Define εi = 2−i
2

and ε = εi/4. Fix an ε by ε square grid in the plane, and note
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that by the triangle inequality it suffices to prove that there is a set Fi consisting of one

point in each cross in Ci, so that for any line segment ` of length at least 2i
2
2i+15i2 and

at most, say, 2i
2
2i+16i2 whose end points belong to the grid there is a point of Fi whose

distance from ` is at most ε. The product space of all placements of one point in each

(closed) cross is compact, by Tichonoff’s Theorem. For each fixed line segment ` as above,

the set of placements that contain at least one point within distance at most ε from `, is

a closed set in this space. Our objective is to show that the intersection of all these sets

is nonempty. By compactness it suffices to show that this is the case for the intersection

of any finite family of these sets. Fix a finite family `i, i ∈ I of such line segments. Let

C ′ be the set of all crosses in Ci that intersect any of these lines. Place a random point,

uniformly and independently, in each member of C ′. For each line segment ` in our family

let E` be the event that none of these random points lies within distance at most ε from

`.

To complete the proof it suffices to show that with positive probability none of these

events happens. This is done using the local lemma. We first bound the probability of

each event E`. Fix a line ` as above. Since its length is at least 2i
2
2i+15i2 it must cross at

least

b2i22i+15i2/2i+1c > 2i
2
213i2

horizontal or vertical strips whose crosses belong to the family Ci. For each such crossing,

it contains a subset of total length at least 1 inside the smaller crosses in C ′. Note that

if a line segment contains a subset of length at least w inside a small cross, then the

probability that the random point selected in this cross lies within distance ε from this

segment is bigger than wε/5. The probability this is not the case is thus smaller than

(1− εw/5) < e−εw/5. As the points selected in distinct small crosses are independent, the

probability that none of the points in the crosses of C ′ intersected by ` lies within distance

ε from it is at most e−ε
∑

c wc/5, where the sum in the exponent ranges over all crosses c in

C ′, and wc denotes the total length of the intersection of ` with c. As noted above, this

sum is at least 2i
2
213i2 and we thus conclude that

Prob[E`] ≤ e−ε2
i2213i2/5 < e−2

8i2 ,

where here we used the fact that ε = εi/4 = 2−i
2−2.

Each event E` is mutually independent of all other events E`′ besides those corre-

sponding to line segments `′ in our family that intersect some of the smaller crosses in C ′

intersected by `. Any end-point of such a line `′ lies within distance at most

R =
3

2
2i

2
2i+16i2 + 4
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from the midpoint of `, implying that the lines `′ whose number we have to bound have

their endpoints in a disc of area at most πR2. The number of the ε by ε grid points inside

this disc is roughly its area divided by ε2, and thus the number of possibilities to choose

the two endpoints is smaller than

10
81

16
24i

2
24i+64i8/ε4 < 2624i

2
24i+64i824i

2
28 ≤ 278216i

2
.

Therefore each event E` is mutually independent of all other events but less than

D = 278216i
2
, and as the probability P of each such event satisfies P < e−2

8i2 ≤ e−16i2e−240

we conclude that the product eP (D+ 1) is (much ) smaller than 1, implying, by the Local

Lemma (Lemma 2.1) that with positive probability none of the events E` in the family

holds. By compactness, this completes the proof of the lemma. 2

To complete the proof of Theorem 1.1, let F now be the union of all sets Fi (i ≥ 1),

with Fi as in Lemma 2.2. This is clearly a uniformly discrete forest, where the distance

between any two points is at least 0.1. For any ε < 1/2, let i be the minimum index so

that ε ≥ εi = 2−i
2
. By the minimality ε < 2−(i−1)

2
. By the properties of Fi there is a

point within distance εi ≤ ε of any line segment of length

2i
2
2i+15i2 = 2(i−1)

2
23i+14i2 <

1

ε
23
√

log(1/ε)+17(log(1/ε) + 1)2,

implying that the function

f(ε) =
2O(
√

log(1/ε))

ε

is a visibility function for our forest. This completes the proof of the theorem. 2

3 Concluding remarks and open problems

• We have seen that there is a uniformly discrete forest with visibility function f(ε) =

ε−1−o(1). Although the estimate f(ε) = ε−1−o(1) is tight up to the o(1)-term in the

exponent, the most interesting open problem here is to decide whether or not the

o(1)-term is required. As pointed out by Solomon and Weiss [7], the existence of a

forest of finite density with visibility function O(1/ε) is equivalent to an old problem

of Danzer about the existence of a set of finite density in the plane which intersects

every convex set of area at least ε. The related question if there is such a uniformly

discrete set was suggested by Boshernitzan. See [6] for some related results and

problems.
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• Like the results in [7] and in [1], our proof here can be extended to any dimension

d ≥ 2. To simplify the presentation we described here only the planar case d = 2.

• The proof here applies the Lovász Local Lemma in its symmetric form. It is tempting

to try to apply the non-symmetric lemma and prove simultaneously the desired result

for all values of εi. This, however, does not work as the events corresponding to long

segments depend on too many events corresponding to smaller segments. This is the

reason for the extra complication arising from the need to handle each of the values

εi separately.

• As shown in [7] the existence of a dense forest of finite density with visibility func-

tion O(1/ε) (which is equivalent to a positive answer to Danzer’s problem) is also

equivalent to the statement that for any ε > 0 there is a set Nε of O(1/ε) points in

the unit square [0, 1]2 that intersects every rectangle of area ε in the unit square.

The area here is measured, of course, according to the usual Lebesgue measure. It is

interesting to note that there are examples of probability distributions on [0, 1]2 for

which there are no such sets Nε. This follows from Theorem 1.3 in [2] which asserts

that for any large n there is a set N of n points in the unit square so that any set of

points that intersects any line segment that contains at least α(n) of the points is of

cardinality at least n/4, where α(n) is a function growing (slowly) to infinity with

n. Taking ε = α(n)/n and considering the discrete uniform probability distribution

on the points of N supplies an example of a distribution as above.

• After the completion of this short paper, and following a discussion with Gady

Kozma, we found a variant of the proof of the main result which provides a better

estimate for the o(1) term in the exponent. A careful version of this alternative proof

establishes the existence of a uniformly discrete planar forest with visibility function

f(ε) = O(
1

ε
log(

1

ε
) log log(

1

ε
)).

We believe that the original proof described here is instructive but include also a brief

ouline of the alternative argument, without an optimized choice of the parameters,

in a version that gives visibility function O(1ε log3(1ε )).

For every positive integer i, define εi = 100−100
i
. The idea is to show that a small

perturbation of a construction that works for all ε ≥ εi is, with positive probabil-

ity, good for all ε ≥ εi+1. The final construction is the limit of this sequence of

constructions. Define

`i = 10010+3i100100
i
.
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We want to ensure that after step number i the constructed set of points contains at

least 1002i members within distance εi/4 from any (discrete) line segment of length

`i (and also works for all ε ≥ εi). Note that the definition of a dense forest only

requires one point within distance εi, but the stronger condition enables us to get

a better estimate. The initial construction, for i = 1, is obtained by following the

basic approach described in Section 2, placing a random point in each small cross

and applying the local lemma and compactness. Assuming we have a construction

that satisfies the above for εi, shift each of its points, randomly and independently,

by at most εi/2, placing it in a uniformly chosen point within distance εi/2 from

its current location. It is not difficult to check that for any fixed line segment L

of length `i+1, each of the points that lies, before the shift, within distance εi/4

from L, has probability exceeding εi+1

10εi
to lie, after the random shift, within distance

εi+1/4 of L. Thus the number of shifted points satisfying that is a binomial random

variable with expectation at least

`i+1

`i
1002i

εi+1

10εi
≥ 1003 · 1002i

10
= 10 · 1002i+2.

The probability that the value of this variable is less than 1002i+2 can be bounded

by the standard estimates for binomial distributions (c.f., e.g., [3], Appendix A), and

this together with the Lovász Local Lemma and compactness provides the required

construction for step number i+ 1. This completes the (brief sketch of the) proof.
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