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Abstract

Answering a question of Wilf, we show that if n is sufficiently large, then one cannot cover an
n× p(n) rectangle using each of the p(n) distinct Ferrers shapes of size n exactly once. Moreover,
the maximum number of pairwise distinct, non-overlapping Ferrers shapes that can be packed in
such a rectangle is only Θ(p(n)/ log n).

1 Introduction

A partition p of a positive integer n is an array p = (x1, x2, · · · , xk) of positive integers so that
x1 ≥ x2 ≥ · · · ≥ xk and n =

∑k
i=1 xi. The xi are called the parts of p. The total number of distinct

partitions of n is denoted by p(n). A Ferrers shape of a partition p = (x1, x2, · · · , xk) is a set of n
square boxes with sides parallel to the coordinate axes so that in the ith row we have xi boxes and all
rows start at the same vertical line. The Ferrers shape of the partition p = (4, 2, 1) is shown in Figure
1. Clearly, there is an obvious bijection between partitions of n and Ferrers shapes of size n.

If we reflect a Ferrers shape of a partition p with respect to its main diagonal, we get another
shape, representing the conjugate partition of p. Thus, in our example, the conjugate of (4,2,1) is
(3,2,1,1).
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Figure 1: The Ferrers shape of (4,2,1)

Recently, Herb Wilf [6] has asked the following intriguing question: consider all distinct Ferrers
shapes consisting of n boxes. Is it true that for n sufficiently large, one can always tile a rectangle
of side lengths p(n) and n using each of these shapes exactly once ? Obviously, in such a tiling, if
one exists, the shapes cannot overlap each other. For small values of n, one gets mixed answers: for
n = 1, 2, 4 such a tiling exists, however, for n = 3 there is no such tiling.

In this short paper we answer Wilf’s question in the negative by showing that for n sufficiently
large no such tiling exists. In fact, we prove the following stronger statement.

Theorem 1 If n is sufficiently large, then one cannot cover an n × p(n) rectangle by using each of
the p(n) distinct Ferrers shapes of size n exactly once. Moreover, the maximum fraction of the area of
this rectangle that can be covered by non-overlapping distinct Ferrers shapes of size n is at most c

logn ,
for some absolute constant c.

The c/ log n upper bound is tight, up to the constant c, and shows that as n grows we cannot even
cover a fixed fraction of the area by non-overlapping distinct shapes.

To prove the result, we use some geometric properties that are shared by the vast majority of
the Ferrers shape of size n and imply that these shapes cannot be packed in an efficient way. The
geometric properties we need can be derived from the extensive available information on the typical
form of a Ferrers shape, given, for example, in [4], as well as in several earlier papers. However, in order
to make the paper self-contained, we prefer to derive all of them directly from the Hardy-Ramanujan
asymptotic formula for p(n). This is done in the next section. In Section 3, we apply the geometric
properties to prove our main result. Throughout the paper we assume, whenever this is needed, that
the size n of the Ferrers shapes considered is sufficiently large.

2 Some geometric properties of typical Ferrers shapes

The corner of the first row and first column of a Ferrers shape will be called the apex of that shape.
In this section we prove some asymptotic geometric properties of Ferrers shapes of size n. Our basic
tool is the well-know Hardy-Ramanujan asymptotic formula for the number of shapes of size n, see,
e.g., [1]. It asserts that

p(n) = (1 + o(1))
eC
√
n

4n
√

3
, (1)
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where C = π
√

2
3 , and the o(1)-term tends to 0 as n tends to infinity.

Lemma 1 Let x1 ≥ x2 ≥ . . . ≥ xk denote the parts of the partition corresponding to the Ferrers shape
F , and let y1 ≥ y2 . . . ≥ ys denote the parts of the conjugate partition. The following hold for all but
at most p(n)/(log n)2 Ferrers shapes F of size n.

• I. There exists an absolute constant c1 so that for n sufficiently large, we have c1
√
n log n < x1

and also, c1
√
n log n < y1.

• II. There exists an absolute constant c2 > 0 so that F has at least c2
√
n parts of size at least

c2
√
n each.

Proof:

• I. This follows from classical results. Erdős and Lehner [2] proved that for almost all partitions
of n the largest term and the number of terms differ from

√
6

2π

√
n log n by less than c

√
nω(n),

where ω(n)→∞ arbitrary slowly. A result of Szalay and Turán (Theorem IV in [5]) makes this
information more precise by showing that this holds for all but O(p(n)e−ω(n)) partitions. To get
the required result, set ω(n) = 2 log log n.

For self-containment, however, we include a short direct proof for this lemma. The inequalities
for x1 and y1 are clearly equivalent by taking conjugates. Thus it suffices to prove the statement
for x1.

We need to prove that for almost all partitions we have x1 > c1
√
n log n, for some positive

constant c1. Let S be the set of partitions of n violating this constraint, and attach two additional
parts x0 and x−1 in all possible ways to all partitions in S so that the following hold:

x0 + x−1 = 3 · [c1

√
n log n],

and
x−1 ≥ x0 ≥ c1

√
n log n.

Let S′ be the set of partitions obtained this way. It then follows that x−1 and x0 are the two
largest parts in all partitions in S′, and that S′ contains partitions of the integer n+3·[c1

√
n log n].

As x−1 ≥ x0, we must have 1.5 · c1
√
n log n ≤ x−1 ≤ 2 · c1

√
n log n, so we have 0.5 · c1

√
n log n

choices for x−1. This implies

|S′| = |S| · 0.5 · c1

√
n log n ≤ p(n+ 3 · [c1

√
n log n]),

which yields

|S| = |S′|
0.5 · c1

√
n log n

≤ p(n+ 3 · [c1
√
n log n])

0.5 · c1
√
n log n

≤ p(n) · e1.5Cc1 logn

0.5 · c1
√
n log n

≤ p(n) · n1.5Cc1

0.5 · c1
√
n log n

,

as
√
n+ 3c1

√
n log n <

√
n+ 1.5c1 log n. By choosing a sufficiently small c1 (e.g., c1 = 1/1000),

we see that all but p(n)/n0.49 partitions satisfy x1 ≥ c1
√
n log n. (Note that it is not difficult
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to show that in fact for every fixed r there is some c1 > 0 so that for all but at most p(n)/nr

partitions of n, x1 ≥ c1
√
n log n. This can be done by adding to each partition that does not

satisfy the above more than 2 parts with a prescribed sum, and by repeating the above argument.
For our purpose here, however, the above estimate suffices.)

• II. It is known ([5], Theorem II) that for any λ satisfying

11 logn ≤ λ ≤
√

6
2π
√
n log n− 3

√
n log log n,

the number of terms exceeding λ is(
1 +O(

1
log n

)

)√
6
π

√
n log

1
1− e−πλ/

√
6n
,

with the exception of O(p(n)n−7/4) partitions, and our claim follows.

Here, too, we inlcude a self-contained, short proof relying only on (1). Let S = { p : p =
(x1, . . . , xk) is a partition of n so that |{i|xi ≥ c2

√
n}| < c2

√
n}. Let F be a family of at least,

say, 20.1c2
√
n subsets of a set of cardinality 10c2

√
n in which the Hamming distance between

any two subsets is larger than 2c2
√
n. (The existence of such a family is easy and follows

from the Gilbert-Varshamov bound, see, e.g., [3].) Let the underlying set of F be the set
{c2
√
n+ 1, c2

√
n+ 2, · · · , 11c2

√
n}.

Define S′ = {P ∪ F |P ∈ S, F ∈ F}. It is not too difficult to check that all |S| · |F| partitions in
S′ are pairwise distinct; indeed, if two such unions have the same P or the same F then they
clearly differ. On the other hand, for distinct P, P ′ in S and distinct F, F ′ in F , P ∪ F and
P ′ ∪ F ′ do not have the same sets of parts of size bigger than c2

√
n, by the definition of S and

the choice of F . Therefore, we have
|S′| = |S| · |F|

which yields

|S| ≤ |S′|
20.1c2

√
n
. (2)

All the elements of S′ are partitions of integers not larger than n + 110c2
2n. As these are all

distinct it follows that

|S′| ≤
∑

k≤n+110c22n

p(k) ≤ eC
√
n(1+110c22) ≤ eC

√
n+55C·c22

√
n,

and therefore, by inequality (2),

|S| ≤ eC
√
ne55C·c22

√
n

20.1c2
√
n

which gives the desired result, as by choosing, say, c2 = 0.001, the second term of the numerator
becomes much smaller than the denominator.

This completes the proof of Lemma 1. 3
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3 The proof of the main result

In this section we prove Theorem 1. Let us call a partition having properties I and II regular. Assume
that Kp(n)/ log n disjoint Ferrers shapes are packed in an n× p(n) rectangle for n large enough. We
may and will assume, without loss of generality, that all the apexes are in the left upper corner of the
Ferrers shapes used, and that all the partitions are regular.

Define a diamond as follows. The diamond is a plane region which is the union of a disk and two
triangles. The disk is centered at the origin of the xy plane and has radius c2

4

√
n. One triangle is the

convex hull of the vertices

(0,
c2

4
√
n), (

c2

4
√
n, 0), (

c1√
2

√
n log n,

c1√
2

√
n log n).

The second triangle is the mirror image of the first triangle with respect to (0, 0). The point (0, 0) is
the center of the diamond.

For every apex of a Ferrers shape in the packing, draw a translated copy of the diamond centered
at the apex. Note that the diamonds associated with the apexes are pairwise disjoint. Indeed, if the
disk of a diamond intersects with the disk of another one, then looking at the corresponding partitions,
we see that their Durfee squares are overlapping. In case of any other intersection, either the squares
are ovelapping, or the first row of one of the partitions intersects the first column of the other.

Figure 2: A diamond

For the last step, define the exceptional region as the four quarterdisks around the four corners
of the n× p(n) rectangle, with radius c2

2

√
n log n each. It is easy to check that diamonds centered in

the rectangle but not in the exceptional region have at least half of their areas in the rectangle. The
exceptional region may contain very few (O(log2 n)) apexes of partitions, since apexes have distance
at least c2

√
n from each other. Each diamond not located in the exceptional region covers at least

( c1√
2

√
n log n ×

√
2 c24
√
n)/2 = c1c2

8 n log n from the rectangle, and those pieces are disjoint. Since the
area of the rectangle is np(n), this gives an absolute constant upper bound for K, completing the
proof. 2

It is not difficult to see that the assertion of the theorem is tight, up to the multiplicative constant
c. Indeed, one can first omit all shapes for which, in the notation of Lemma 1, either x1 > C

√
n log n or
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y1 > C
√
n log n, where C is an absolute constant chosen to ensure that there are less than p(n)/ log n

such shapes (it is easy to see that such a C exists.) Then it is possible to pack the remaining shapes
along diagonals, where the apex of each shape touches the furthest point on the main diagonal of the
previous shape. An illustration appears in Figure 3.
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Figure 3: An efficient packing
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