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Abstract

A substantial number of results and conjectures deal with the existence of a
set of prescribed type which contains a fair share from each member of a finite
collection of objects in a space, or the existence of partitions in which this is
the case for every part. Examples include the Ham Sandwich Theorem in Mea-
sure Theory, the Hobby-Rice Theorem in Approximation Theory, the Necklace
Theorem and Ryser’s Conjecture in Discrete Mathematics. The techniques in
the study of these results combine combinatorial, topological, geometric, proba-
bilistic and algebraic tools. This paper contains a brief description of the topic,
focusing on several recent existence results and their algorithmic aspects. This
is mainly a survey paper, but it also contains several novel results.

1 Introduction

The problem of the existence of a set with desired properties that has a fair share
of each of a family of measures has been studied in several areas. The related notion
of fair partitions has also received a considerable amount of attention. Although
there have been several earlier results of this type it is common to view the Ham
Sandwich Theorem as the initial statement in the area.

Theorem 1.1 (The Ham Sandwich Theorem) For any collection of d probabil-
ity measures in Rd, each absolutely continuous with respect to the Lebesgue measure,
there is a hyperplane that bisects all measures.

Thus, each of the two half-spaces determined by the separating hyperplane contains a
fair share of each of the measures. This was conjectured by Steinhaus and proved by
Banach, using the Borsuk-Ulam Theorem, a fundamental result in Topology which
asserts that any continuous function from Sn to Rn maps two antipodal points to
the same image.

The Ham Sandwich Theorem is first mentioned in [45], where Steinhaus at-
tributes the proof to Banach (for d = 3, but the proof for general d is essentially
identical).

There are numerous results and questions dealing with partitions of prescribed
types of Euclidean spaces and the ways they can split measures. See [40] for a
comprehensive recent survey of the subject. The formulation of most of these results
is geometric, dealing with sets or measures in Euclidean spaces. There are, however,
also purely combinatorial results and conjectures of the same flavor. Here we focus
on questions of this type. The following examples of two results and two conjectures
illustrate the diversity of the topic.

Theorem 1.2 (The Cycle and Triangles Theorem) Let G be a cycle of length
3m and let P be an arbitrary partition of its set of vertices into pairwise disjoint sets
P1, P2, . . . , Pm, each of size 3. Then there is an independent set S of G that contains
exactly one vertex of each set Pi. Moreover, all vertices of G can be partitioned into
3 independent sets S1, S2, S3, each containing exactly one point of each Pi.
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This result (for one set S) was conjectured by Du, Hsu and Hwang in [16], the
stronger conjecture is due to Erdős [18]. It was proved (in a strong form) by Fleis-
chner and Steibitz in [21], using the algebraic technique of [8]. Additional proofs of
the initial conjecture of [16] and of some variants appear in [42], [2] and [1].

Theorem 1.3 (The Necklace Theorem) Let N be an open necklace with kai
beads of type i, for 1 ≤ i ≤ t. Then it is possible to cut N in at most (k − 1)t
points and partition the resulting intervals into k collections, each containing ex-
actly ai beads of type i, for all 1 ≤ i ≤ t.

A continuous version of this result for k = 2 has been proved in [29], the discrete
result for k = 2 is proved in [24], and a short derivation of it from the Borsuk-Ulam
Theorem appears in [9]. The general result is proved in [3].

Conjecture 1.4 (Rota’s Basis Conjecture) Let B1, B2, . . . , Bn be n bases of a
matroid of rank n. Then there is a partition of the elements in the (multi)set B1 ∪
B2 ∪ . . . ∪ Bn into n pairwise disjoint bases A1, A2, . . . , An of the matroid, where
each Ai contains exactly one element of each Bj.

This was conjectured in [28]. It has been proved in several special cases. It is also
known that there are always at least n/2 disjoint bases Ai satisfying the desired
property [11] and that there are (1 − o(1))n pairwise disjoint independent sets Ai,
each of size (1− o(1))n, and each containing at most one element from any Ai [35].

A Latin Square of order n is an n by n matrix in which each row and each column
is a permutation of the n symbols [n] = {1, 2, . . . , n}. A Latin transversal in such a
square is a set of n entries containing one element in each row, one in each column
and one copy of each symbol.

Conjecture 1.5 (Ryser’s Conjecture, [41], [13]) Every Latin Square of odd or-
der contains a Latin transversal.

An equivalent formulation of this conjecture is that for every proper edge coloring of
the complete bipartite graph Kn,n by n colors, where n is odd, there is a rainbow per-
fect matching, that is, a perfect matching in which no two edges have the same color.
It is known that there is a rainbow matching of size at least n−O(log n/ log log n),
as proved in [31], improving an estimate of [30]. It is also known that for every
n besides 3 there are examples of Latin Squares of order n that cannot be parti-
tioned into Latin Transversals. Therefore while the existence of one fair matching
is conjectured to always hold (for odd n) the corresponding partition result here
fails. This was proved by Euler for all even n, by Mann for all n ≡ 1 mod 4 [33],
and independently by Wanless and Webb and by Evans [46], [19] for the remaining
cases.

In the rest of this paper we describe several recent variants and extensions of the
examples above. The next section deals with the Necklace Theorem focusing on the
investigation of random necklaces and on the algorithmic aspects of the problem. In
Section 3 we consider problems dealing with subgraphs of prescribed type in edge
colored graphs that contain a fair or nearly fair share of each color. The results
in Subsection 3.2 here are new. The final Section 4 contains a discussion of open
problems.
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2 Necklaces

The bound (k − 1)t in the Necklace Theorem (Theorem 1.3) is tight for all
admissible values of the parameters. One example demonstrating this is a necklace
in which all the beads of each type appear contiguously. In this case at least k − 1
cuts are needed somewhere in the interval of beads of type i for every i just in order
to ensure that each of the collections contains a positive number of beads of each
type. A possible interpretation of the Theorem is the following. Suppose that k
mathematically oriented thieves want to distribute the necklace fairly among them.
The statement ensures that if the number of beads of each of the t types is divisible
by k then they can always do it by opening the necklace at the clasp and making
at most (k − 1)t cuts between beads. This raises two natural questions. The first
is if the bound (k − 1)t can typically be improved. The second is the algorithmic
problem of finding the cuts and the partition into k fair collections efficiently. In
this section we briefly describe recent results about both problems.

2.1 Random Necklaces

As mentioned above the bound (k − 1)t in the Necklace Theorem is tight. Is
the typical minimum number of required cuts smaller? This is studied in a recent
joint work in progress with Dor Elboim, Janós Pach and Gábor Tardos, [6]. The
random model considered is a necklace of total length n = ktm consisting of exactly
km beads of type i for each 1 ≤ i ≤ t, chosen uniformly among all intervals of n
beads as above. Call a set of cuts of such a necklace fair, if it is possible to split the
resulting intervals into k collections, each containing exactly m beads of each type.
For a necklace N , let X = X(N) be the minimum number of cuts in a fair collection.
When N is chosen randomly as above, X is a random variable which we denote by
X(k, t,m). By Theorem 1.3 we have X(k, t,m) ≤ (k− 1)t with probability 1. In [6]
we study the typical behavior of the random variable X = X(k, t,m). The results
are asymptotic, where at least one of the three variables k, t,m tends to infinity.
As usual, we say that a result holds with high probability (whp, for short), if the
probability that it holds tends to 1 when the relevant parameter(s) tend to infinity.

The problem of determining the asymptotic behavior of X(k, t,m) turns out to
be connected to several seemingly unrelated topics, including matchings in nearly
regular hypergraphs with small codegrees and random walks in Euclidean spaces.

The first observation in [6] is the following.

Proposition 2.1 For every fixed k and t, as m tends to infinity, X = X(k, t,m) ≥⌈
(k−1)(t+1)

2

⌉
whp.

The proof is a simple first moment argument, whose details are omitted.
The main result describes the asymptotic behavior of X = X(k, t,m) for two

thieves (k = 2) and any fixed number of types t, as m tends to infinity.

Theorem 2.2 Let t be a fixed positive integer and m→∞.

1. For all 1 ≤ s < t+1
2 ,

P
(
X(2, t,m) = s

)
= Θ

(
ms− t+1

2
)
. (2.1)
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2. When t is odd and s = t+1
2 ,

P
(
X(2, t,m) = s

)
= Θ

( 1

logm

)
. (2.2)

3. For all t+1
2 < s ≤ t,

P
(
X(2, t,m) = s

)
= Θ(1). (2.3)

Two additional results deal with the case m = 1, in which every thief should get
a single bead of each type.

Theorem 2.3 For t and k/ log t tending to infinity, the random variable X =
X(k, t, 1) is o(kt) whp.

Theorem 2.4 The random variable X = X(2, t, 1) is at least 2H−1(1/2)t− o(t) =
0.220...t − o(t) whp, where H−1(x) is the inverse of the binary entropy function
H(x) = −x log2 x− (1− x) log2(1− x) taking values in the interval [0, 1/2].

On the other hand, X ≤ 0.4t+ o(t) holds whp.

The upper bound above was obtained jointly with Alweiss, Defant and Kravitz, c.f.
[6].

The proof of Theorem 2.2 applies the first and second moment and is rather
lengthy and technical. A brief outline of the argument for the special case t = 3
follows. For t = 3 the probability that for the random necklace N , X(N) = 1 is
easily seen to be Θ(1/m). By Theorem 1.3 for every N , we have X(N) ≤ 3. Thus,
it remains to show that the probability that X(N) ≤ 2 is Θ(1/ logm). In order to
estimate this probability, note that two cuts suffice if and only if there is a balanced
partition of N into two cyclic intervals that is fair. There are exactly 3m balanced
partitions into two cyclic intervals. For 0 ≤ i < 3m, we denote by Pi the balanced
partition into an interval starting at position i + 1 and ending at position i + 3m,
and its complement.

Let Y = Y (N) denote the random variable counting the number of fair partitions
into cyclic intervals. Clearly, X(N) ≤ 2 if and only if Y is positive. This probability
is lower bounded by the second moment method. It is not too difficult to check that
the expectation of Y is Θ(1) and the expectation of Y 2 is Θ(logm). Therefore, by
the Paley-Zygmund Inequality [38], [39] the probability that Y is positive is at least
Ω(1/ logm).

The proof of the upper bound for the probability that Y is positive is more
interesting. It is done by defining another random variable Z = Z(N). It is then
shown that Z is positive with probability O(1/ logm), and that the probability
that Y is positive but Z is not, is even lower. The crucial step in bounding the
probability that Z is positive, is the analysis of the probability that an appropriate
two-dimensional random walk does not return to the origin in a certain number of
steps. For this one can apply a slightly modified version of a classical argument of
Dvoretzky and Erdős [17]. The details will appear in [6].

The proof of Theorem 2.3 applies a hypergraph edge-coloring result of Pippenger
and Spencer [36]. This result asserts that the edges of any hypergraph of constant
uniformity and large maximum degree k in which every pair of vertices lie in at most
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o(k) common edges, can be partitioned into (1 + o(1))k matchings. By cutting the
necklace into intervals of large constant size it is possible to define an appropriate
hypergraph and show that whp it satisfies the conditions of the theorem of [36],
which provides the required result.

2.2 The algorithmic aspects

The proof of Theorem 1.3 is topological. It starts by converting the problem into
a continuous one dealing with interval coloring. Let I = [0, 1] be the unit interval.
An interval t-coloring is a coloring of the points of I by t colors, such that for each
i, 1 ≤ i ≤ t, the set of points colored i is (Lebesgue) measurable. Given such a
coloring, a k-splitting of size r is a sequence of numbers 0 = y0 ≤ y1 ≤ . . . ≤ yr ≤
yr+1 = 1 and a partition of the family of r + 1 intervals F = {[yi, yi+1) : 0 ≤ i ≤ r}
into k pairwise disjoint subfamilies F1, . . . , Fk whose union is F , such that for each
1 ≤ j ≤ k the union of the intervals in Fj captures precisely 1/k of the total measure
of each of the t colors. The continuous version of the theorem is then the following.

Theorem 2.5 Every interval t-coloring has a k-splitting of size (k − 1) · t.

It is not difficult to show that this implies the Necklace Theorem. Indeed, the
necklace can be converted to an interval coloring by replacing each bead by a small
interval of the corresponding color. If the splitting ensured by the last theorem
contains cuts that lie inside intervals corresponding to beads, it can be shown that
these can be shifted to produce a splitting of the discrete necklace. The proof of
Theorem 2.5 proceeds by first showing, by a simple combinatorial argument, that
its validity for (t, k1) and for (t, k2) implies its validity for (t, k1k2). The main step
is a proof that the assertion of the theorem holds for any prime k. This is done
by applying a fixed point theorem of Bárány, Shlosman and Szücs [14], which can
be viewed as an extension of the Borsuk-Ulam Theorem. Indeed, the case k = 2
of Theorem 2.5 admits a short proof using the Borsuk-Ulam Theorem, as shown in
[9]. It can also be derived quickly from the Ham Sandwich Theorem, applying it to
the measures obtained by placing the interval along the moments curve in Rt. The
assertion of the theorem actually holds for general continuous probability measures,
and not only for ones corresponding to interval colorings. Indeed, for k = 2 this
extension is the Hobby-Rice Theorem [29], and the general case is proved in [3]. It is
worth noting that a classical result of Liapounoff [32] implies that for any collection
of t continuous probability measures µi on [0, 1] and any 0 ≤ α ≤ 1 there is a subset
A of [0, 1] with µi measure α for each 1 ≤ i ≤ t. The assertion of Theorem 2.5 for
general continuous measures shows that for α = 1/k the interval can be partitioned
into k such sets Ai, each being a union of a relatively small number of intervals.

The topological proof of the main step in the derivation of Theorem 1.3 is non-
constructive, and does not supply any efficient algorithm for finding the required
(k − 1)t cuts that provide a fair partition for a given input necklace. For k = 2 this
algorithmic problem, raised in [4], is called the Necklace Halving Problem. A recent
result of Filos-Ratsikad and Goldberg [20] shows that this is a hard problem.

PPA and PPAD are two complexity classes introduced by Papadimitriou, [34].
Although this is not our focus here, we include a very brief paragraph about the
relevance of these classes to some of the problems discussed here. Both PPA and
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PPAD are contained in the class TFNP, which is the complexity class of total search
problems, consisting of all problems in NP where a solution exists for every instance.
A problem is PPA-complete if and only if it is polynomially equivalent to the canon-
ical problem LEAF, described in [34]. Similarly, a problem is PPAD-complete if
and only if it is polynomially equivalent to the problem END-OF-THE-LINE. A
problem is PPA-hard or PPAD-hard if the respective canonical problem is polyno-
mially reducible to it. A number of important problems, such as several versions of
Nash Equilibrium, have been proved to be PPAD-complete. It is known that PPAD
⊆ PPA. Hence, PPA-hardness implies PPAD-hardness, and if a PPA-hard problem
admits an efficient algorithm, so do all problems in PPA (and hence also in PPAD).
Filos-Ratsikas and Goldberg [20] showed that the Necklace Halving problem, which
is the problem of finding a collection of t cuts that provide a fair partition of a given
input necklace with beads of t types and an even number of beads of each type,
is PPA-hard [20]. This suggests the problem of finding an efficient algorithm for
obtaining a fair partition using a somewhat larger number of cuts. An early result
in this direction appears in [12], but it only provides a partition in which the number
of beads of each type in the two collections are close to each other, and the number
of cuts is exponential in the number of types. A recent improved algorithm is given
in [7]. Its performance is described in the next result.

Theorem 2.6 There is a polynomial time algorithm that given an input necklace
with beads of t types, in which the number of beads of each type is an even number
that does not exceed m, produces a collection of at most t(logm+O(1)) cuts and a
partition of the resulting intervals into two collections, each containing exactly half
of the beads of each type.

The algorithm proceeds by first converting the problem to the continuous interval
coloring problem described above. The continuous problem is tackled using a linear
algebra procedure based on Carathéodory’s Theorem for cones. Its solution can then
be rounded to produce a solution of the discrete problem. The details are sketched
below.

Proof of Theorem 2.6 (sketch):

Given a necklace with mi beads of color i for 1 ≤ i ≤ t, where m = maxmi,
replace each bead of color i by an interval of µi-measure 1/mi and µj-measure 0 for
all j 6= i. These intervals are placed next to each other according to the order in the
necklace, and their lengths are chosen so that altogether they cover [0, 1]. We first
describe a procedure that splits the interval into two collections so that for every
i the difference between the µi-measures of the two collections is at most ε, where
ε = 1

2m . The number of cuts used here is at most t(logm + O(1)). It is then not
too difficult to round the cuts and get a solution of the discrete problem without
increasing the number of cuts.

Let µi be the t measures defined above. Our objective is to describe an efficient
algorithm that cuts the interval in at most t(2 + dlog2

1
εe) places and splits the

resulting intervals into two collections C0, C1 so that µi(Cj) ∈ [12 −
ε
2 ,

1
2 + ε

2 ] for all
i ∈ [t] = {1, 2, . . . , t}, 0 ≤ j ≤ 1.

For each interval I ⊂ [0, 1] denote µ(I) = µ1(I) + . . .+ µt(I). Thus µ([0, 1]) = t.
Using 2t− 1 cuts split [0, 1] into 2t intervals I1, I2, . . . , I2t so that µ(Ir) = 1/2 for all
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r. Note that it is easy to find these cuts efficiently, since each measure µi is uniform
on its support. For each interval Ir let vr denote the t-dimensional vector

(µ1(Ir), µ2(Ir), . . . , µt(Ir)).

By a simple linear algebra argument, which is a standard fact about the prop-
erties of basic solutions for Linear Programming problems, one can write the vector
(1/2, 1/2, . . . , 1/2) as a linear combination of the vectors vr with coefficients in [0, 1],
where at most t of them are not in {0, 1}. This follows from Carathédory’s Theorem
for cones. Here is the simple proof, which also shows that one can find coefficients
as above efficiently. Start with all coefficients being 1/2. Call a coefficient which is
not in {0, 1} floating and one in {0, 1} fixed. Thus at the beginning all 2t coefficients
are floating. As long as there are more than t floating coefficients, find a nontrivial
linear dependence among the corresponding vectors and subtract a scalar multiple
of it which keeps all floating coefficients in the closed interval [0, 1] shifting at least
one of them to the boundary {0, 1}, thus fixing it.

This process clearly ends with at most t floating coefficients. The intervals with
fixed coefficients with value 1 are now assigned to the collection C1 and those with
coefficient 0 to C0. The rest of the intervals remain. Split each of the remaining
intervals into two intervals, each with µ-value 1/4. We get a collection J1, J2, . . . , Jm
of m ≤ 2t intervals, each of them has the coefficient it inherits from its original
interval. Each such interval defines a t-vector as before, and the sum of these vectors
with the corresponding coefficients (in (0, 1)) is exactly what the collection C1 should
still get to have its total vector of measures being (1/2, . . . , 1/2).

As before, we can shift the coefficients until at most t of them are floating,
assign the intervals with {0, 1} coefficients to the collections C0, C1 and keep at
most t intervals with floating coefficients. Split each of those into two intervals
of µ-value 1/8 each and proceed as before, until we get at most t intervals with
floating coefficients, where the µ-value of each of them is at most ε/2. This happens
after at most dlog2(1/ε)e rounds. In the first one, we have made 2t − 1 cuts and
in each additional round at most t cuts. Thus the total number of cuts is at most
t(2 + dlog2(1/ε)e)− 1.

From now on we do not increase the number of cuts, and show how to shift
them and allocate the remaining intervals to C0, C1. Let I denote the collection of
intervals with floating coefficients. Then |I| ≤ t and µ(I) ≤ ε/2 for each I ∈ I.
This means that

t∑
i=1

∑
I∈I

µi(I) ≤ tε/2.

It follows that there is at least one measure µi so that∑
I∈I

µi(I) ≤ ε/2.

Observe that for any assignment of the intervals I ∈ I to the two collections
C0, C1, the total µi-measure of C1 (and hence also of C0) lies in [1/2−ε/2, 1/2+ε/2],
as this measure with the floating coefficients is exactly 1/2 and any allocation of the
intervals with the floating coefficients changes this value by at most ε/2. We can thus
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ignore this measure, for ease of notation assume it is measure number t, and replace
each measure vector of the members in I by a vector of length t−1 corresponding to
the other t−1 measures. If |I| > t−1 (that is, if |I| = t), then it is possible to shift
the floating coefficients as before until at least one of them reaches the boundary, fix
it assigning its interval to C1 or C0 as needed, and omit the corresponding interval
from I ensuring its size is at most t − 1. This means that for the modified I the
sum

t−1∑
i=1

∑
I∈I

µi(I) ≤ (t− 1)ε/2.

Hence there is again a measure µi, 1 ≤ i ≤ t− 1 so that∑
I∈I

µi(I) ≤ ε/2.

Again, we may assume that i = t−1, observe that measure number t−1 will stay
in its desired range for any future allocation of the remaining intervals, and replace
the measure vectors by ones of length t− 2. This process ends with an allocation of
all intervals to C1 and C0, ensuring that at the end µi(Cj) ∈ [1/2− ε/2, 1/2 + ε/2]
for all 1 ≤ i ≤ t, 0 ≤ j ≤ 1. These are the desired collections. It is clear that
the procedure for generating them is efficient, requiring only basic linear algebra
operations.

This completes the (sketch of the) proof. The full details can be found in [7]. 2

3 Graphs

3.1 Fair representation

Theorem 1.2 and Conjecture 1.5 mentioned in Section 1 are two examples of
fair representation problems dealing with graphs. There are quite a few additional
results and conjectures of this type. We start this section by discussing several
examples.

An optimal proper edge coloring of the complete graph K2n on an even number of
vertices is a coloring of the edges by 2n− 1 colors, each forming a perfect matching.
Given such an edge coloring, the fair share of a spanning tree in each color class
is exactly 1. Brualdi and Hollingsworth [10] conjectured that for each such edge
coloring ofK = K2n where n > 4 one can partition all edges ofK into n pairwise edge
disjoint rainbow spanning trees, that is, each tree containing exactly one edge of each
color. Constantinos [15] conjectured that it is even possible to find such a partition
in which all trees are isomorphic. This is proved for all sufficiently large n in a recent
paper of Glock, Kühn, Montgomery and Osthus [23]. The proof is probabilistic, and
is based on hypergraph matching results and the so-called absorption technique.
This technique starts by removing an appropriate small part of the graph, finding
an approximate partition of the rest, and then using the small part to complete it
to a precise partition. The details, which require quite some work, can be found in
[23]. Similar ideas are useful in the study of several related problems, as described
in [23] and its references.
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The Cycle and Triangles Theorem (Theorem 1.2) has been proved in [21] using
the algebraic approach of [8]. This approach enables one to bound the chromatic
number of a graph, and in fact even its so-called list chromatic number, by showing
that a certain coefficient of an appropriate polynomial is nonzero. Subsequent proofs
of the theorem (at least of the statement about the existence of a single independent
set of the required form) apply topological ideas. The shortest proof is the one in
[1] where the result is derived from Schrijver’s Theorem on vertex critical subgraphs
of the Kneser graph. This Theorem, which strengthens the result of Lovász about
the chromatic number of the Kneser graph, is proved in [43] using the Borsuk-Ulam
Theorem.

Theorem 3.1 (Schrijver [43]) For n > 2k the family of independent sets of size k
in the cycle Cn cannot be partitioned into fewer than n−2k+2 intersecting families.

Now let G be a cycle of length 3m and let P be a partition of its set of vertices
into pairwise disjoint sets P1, P2, . . . , Pm, each of size 3. Assuming the first assertion
of Theorem 1.2 fails, there is no independent set of G that contains exactly one vertex
of each set Pi. In this case each independent set of size m in the cycle G contains at
least two vertices in some set Pi, and we can partition all these independent sets into
m families, where a set S belongs to family number i iff i is the smallest index so that
|S∩Pi| ≥ 2. Note that each such family is intersecting, as each member of it contains
at least two vertices among the three vertices of Pi. But since m < 3m − 2m + 2
this contradicts Theorem 3.1 with n = 3m and k = m, proving the existence of an
independent set containing one vertex in each Pi.

The short proof above can be extended in several ways. In particular the follow-
ing holds.

Proposition 3.2 ([1]) If V = V1 ∪ V2 ∪ · · · ∪ Vm is a partition of the vertex set of
a cycle C into m pairwise disjoint sets, and |Vi| is odd for all i, then for any vertex
v of C there is an independent set S of C so that v 6∈ S and |S ∩ Vi| = (|Vi| − 1)/2
for all i.

In an attempt to strengthen Ryser’s Conjectures (Conjecture 1.5), Stein [44] sug-
gested the stronger conjecture that for any partition P of the edges of the complete
bipartite graph Kn,n into n pairwise disjoint color classes, each containing exactly
n edges, there exists a rainbow matching of size n − 1. This turned out to be too
strong. A counterexample was found by Pokrovskiy and Sudakov in [37], where the
authors describe a coloring as above so that every matching misses at least Ω(log n)
color classes. This shows that in some natural cases tight fair representations fail
and suggests relaxed versions of questions of this type, as discussed in the following
subsection.

3.2 Nearly fair representation

A special case of the approach described here was initiated in discussions with
Eli Berger and Paul Seymour. Let G = (V,E) be a graph and let P be an arbitrary
partition of its set of edges into m pairwise disjoint subsets E1, E2, . . . , Em. The sets
Ei are called the color classes of the partition. For any subgraph H ′ = (V ′, E′) of G,
let x(H ′, P ) denote the vector (x1, x2, . . . , xm), where xi = |Ei ∩ E′| is the number
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of edges of H ′ that lie in Ei. Thus, in particular, x(G,P ) = (|E1|, . . . , |Em|). In
a completely fair representation of the sets Ei in H ′, each entry xi of the vector

x(H ′, P ) should be equal to |Ei| · |E
′|
|E| . Of course such equality can hold only if all

these numbers are integers. But even when this is not the case the equality may
hold up to a small additive error.

We are interested in results and conjectures asserting that when G is either the
complete graph Kn or the complete bipartite graph Kn,n, then for certain graphs H
and for any partition P of E(G) into color classes E1, . . . , Em, there is a subgraph
H ′ of G which is isomorphic to H so that the vector x(H ′, P ) is close (or equal)

to the vector x(G,P ) |E(H′)|
|E(G)| . As mentioned in the previous subsection, Stein [44]

conjectured that if G = Kn,n and P is any partition of the edges of G into n sets,
each of size n, then there is always a rainbow matching of size n− 1 in G. However,
this turned out to be false as shown by a clever counter-example of Pokrovskiy and
Sudakov [37].

In [1] it is conjectured that when G = Kn,n, P is arbitrary, and H is a matching
of size n, then there is always a copy H ′ of H (that is, a perfect matching H ′ in G),
so that

‖x(H ′, P )− 1

n
x(G,P )‖∞ < 2.

This is proved in [1] (in a slightly stronger form) for partitions P with 2 or 3 color
classes. Here we first prove the following, showing that when allowing a somewhat
larger additive error (which grows with the number of colors m but is independent
of n) a similar result holds for partitions with any fixed number of classes.

Theorem 3.3 For any partition P of the edges of the complete bipartite graph Kn,n

into m color classes, there is a perfect matching M so that

‖x(M,P )− 1

n
x(Kn,n, P )‖∞ ≤ ‖x(M,P )− 1

n
x(Kn,n, P )‖2 < (m− 1)2(3m−2)/2.

It is worth noting that a random perfect matching M typically satisfies

‖x(M,P )− 1

n
x(Kn,n, P )‖∞ ≤ Om(

√
n).

The main challenge addressed in the theorem is to get an upper bound independent
of n.

Theorem 3.3 is a special case of a general result which we describe next, starting
with the following definition.

Definition 3.4 Let G be a graph and let H be a subgraph of it. Call a family of
graphs H (which may have repeated members) a uniform cover of width s of the
pair (G,H) if the following four conditions hold.

• Every member H ′ of H is a subgraph of G which is isomorphic to H.

• The number of edges of each such H ′ which are not edges of H is at most s.

• Every edge of H belongs to the same number of members of H.
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• Every edge in E(G)−E(H) belongs to the same positive number of members
of H.

An example of a uniform cover of width s = 2 for G = Kn,n and H a perfect
matching in it is the following. Let the n edges of H be aibi where {a1, a2, . . . , an}
and {b1, b2, . . . , bn} are the vertex classes of G. Let H be the family of all perfect
matchings of G obtained from H by omitting a pair of edges aibi and ajbj and by
adding the edges aibj and ajbi. The width is 2, every edge of H belongs to exactly(
n
2

)
− (n − 1) members of H, and every edge in E(G) − E(H) belongs to exactly 1

member of H.

Theorem 3.5 Let G be a graph with g edges, let F be a subgraph of it with f edges,
and suppose there is a uniform cover of width s of the pair (G,F ). Then for any
partition P of the edges of G into m subsets, there is a copy H of F in G so that

‖x(H,P )− f

g
x(G,P )‖∞ ≤ ‖x(H,P )− f

g
x(G,P )‖2 ≤ (m− 1)2(m−2)/2sm.

Theorem 3.3 is a simple consequence of Theorem 3.5. A similar simple conse-
quence is the following.

Proposition 3.6 For any partition P of the edges of the complete graph Kn into
m color classes, there is a Hamilton cycle C so that

‖x(C,P )− 2

n− 1
x(Kn, P )‖∞ ≤ ‖x(C,P )− 2

n− 1
x(Kn, P )‖2 < (m− 1)2(3m−2)/2.

Similar statements follow, by the same reasoning, for a Hamilton cycle in a complete
bipartite graph, or for a perfect matching in a complete graph on an even number
of vertices. We proceed to describe two more general applications.

For a fixed graph T whose number of vertices t divides n, a T -factor in Kn is
the graph consisting of n/t pairwise vertex disjoint copies of T . In particular, when
T = K2 this is a perfect matching.

Theorem 3.7 For any fixed graph T with t vertices and q edges and any m there
is a constant c = c(t, q,m) ≤ (m − 1)2(m−2)/2(qt)m so that for any n divisible by t
and for any partition P of the edges of the complete graph Kn into m subsets, there
is a T -factor H so that

‖x(H,P )− 2q

(n− 1)t
x(Kn, P )‖∞ ≤ ‖x(H,P )− 2q

(n− 1)t
x(Kn, P )‖2 ≤ c.

Another application, proved together with Sacheth Sathyanarayanan, is the fol-
lowing.

Theorem 3.8 For any fixed d and m there is a constant c = c(d,m) so that for any
d-regular graph on n vertices H and for any partition P of the edges of the complete
graph Kn into m subsets, there is a copy of H so that

‖x(H,P )− d

n− 1
x(Kn, P )‖∞ ≤ ‖x(H,P )− d

n− 1
x(Kn, P )‖2 ≤ c.
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Note that Proposition 3.6 is a special case of the result above (with a specific value
of c(2,m)).

We proceed with the proofs of the results above, starting with the proof of
Theorem 3.5.

Proof of Theorem 3.5: Let P be a partition of the edges of G into m color classes
Ei. Put

y = (y1, y2, . . . , ym) =
f

g
x(G,P ).

Let H be a copy of F in G for which the quantity ‖y − x‖22 =
∑m

j=1(yi − xi)2 is
minimum where x = (x1, x2, . . . , xm) = x(H,P ). Let H be a uniform cover of width
s of the pair (G,H). Suppose each edge of H belongs to a members of H and each
edge in E(G)−E(H) belongs to b > 0 such members. For each member H ′ of H, let
vH′ denote the vector of length m defined as follows. For each 1 ≤ i ≤ m, coordinate
number i of vH′ is the number of edges in E(H ′)−E(H) colored i minus the number
of edges in E(H)−E(H ′) colored i. Note that the `1-norm of this vector is at most
2s and its sum of coordinates is 0. Therefore, its `2-norm is at most

√
2s2. Note

also that x(H ′, P ) = x(H,P ) + vH′ .

We claim that the sum S of all |H|-vectors vH′ for H ′ ∈ H is a positive multiple
of the vector (y−x). Indeed, each edge in E(G)−E(H) is covered by b members of
H, and each edge of E(H) is covered by a members of H. In the sum S above this
contributes to the coordinate corresponding to color number i, b times the number
of edges of color i in E(G)−E(H) minus (|H|−a) times the number of edges of color
i in H. Equivalently, this is b times the number of all edges of G colored i minus
(|H|+ b−a) times the number of edges of H colored i. Since the sum of coordinates
of each of the vectors vH′ is zero, so is the sum of coordinates of S, implying that
bg = (|H|+ b− a)f , that is, |H|+ b− a = g

f b. Since g
f y = x(G,P ) this implies that

S = bg
f (y − x), proving the claim.

Since the vector y − x is a linear combination with positive coefficients of the
vectors vH′ it follows, by Carathéodory’s Theorem for cones, that there exists a set
L of linearly independent vectors vH′ so that y − x is a linear combination with
positive coefficients of them. Indeed, starting with the original expression of y − x
mentioned above, as long as there is a linear dependence among the vectors vH′

participating in the combination with nonzero (hence positive) coefficients, we can
subtract an appropriate multiple of this dependence and ensure that at least one
of the nonzero coefficients vanishes and all others stay non-negative (positive, after
omitting all the ones with coefficient 0). As each vector vH′ has m coordinates and
their sum is 0, it follows that |L| ≤ m− 1.

We can now solve the system of linear equations y − x =
∑
zH′vH′ with the

variables zH′ for vH′ ∈ L. Note that it is enough to consider any |L| ≤ m − 1
coordinates of y − x and solve the system corresponding to these coordinates. By
Cramer’s rule applied to this system each zH′ is a ratio of two determinants. The
denominator is a determinant of a nonsingular matrix with integer coefficients, and
its absolute value is thus at least 1. The numerator is also a determinant, and by
Hadamard’s Inequality its absolute value is at most the product of the `2-norms
of the columns of the corresponding matrix. The norm of one column is at most
‖y − x‖2 (this can be slightly improved by selecting the |L|-coordinates with the
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smallest `2-norm, but we do not include this slight improvement here). Each other
column has norm at most (2s2)1/2. Therefore each coefficient zH′ satisfies 0 ≤ zH′ ≤
‖y − x‖2(2s2)(m−2)/2. By taking the inner product with y − x we get

‖y − x‖22 =
∑

vH′∈L
zH′〈y − x, vH′〉

≤
∑

vH′∈L,〈y−x,vH′ 〉>0

zH′〈y − x, vH′〉

≤ (m− 1)‖y − x‖2(2s2)(m−2)/2 max〈y − x, vH′〉.

Therefore, there is a vH′ so that

‖y − x‖2
(m− 1)(2s2)(m−2)/2

=
‖y − x‖22

(m− 1)(2s2)(m−2)/2‖y − x‖2
≤ 〈y − x, vH′〉,

that is,

‖y−x‖2 ≤ (m−1)(2s2)(m−2)/2〈y−x, vH′〉 = (m−1)2(m−2)/2sm−2〈y−x, vH′〉. (3.1)

By the minimality of ‖y − x‖22

‖x+ vH′ − y‖22 = ‖x− y‖22 − 2〈y − x, vH′〉+ ‖vH′‖22 ≥ ‖x− y‖22,

implying that
2s2 ≥ ‖vH′‖22 ≥ 2〈y − x, vH′〉.

Plugging in (3.1) we get

‖y − x‖2 ≤ (m− 1)2(m−2)/2sm,

and the desired results follows since ‖y − x‖∞ ≤ ‖y − x‖2. 2

The assertions of Theorem 3.3 and Proposition 3.6 follow easily from Theo-
rem 3.5. Indeed, as described above there is a simple uniform cover of width s = 2
for the pair (Kn,n,M) where M is a perfect matching. There is also a similar uni-
form cover H of width s = 2 for the pair (Kn, C) where C is a Hamilton cycle. The
n(n− 3)/2 members of H are all Hamilton cycles obtained from C by omitting two
nonadjacent edges of it and by adding the two edges that connect the resulting pair
of paths to a cycle.

To prove Theorem 3.7 we need the following simple lemma.

Lemma 3.9 Let T be a fixed graph with t vertices and q edges, suppose t divides n
and let H be a T -factor in Kn. Then there is a uniform cover of width at most qt
of the pair (Kn, H).

Proof Let H be a fixed T -factor in Kn, it consists of p = n/t (not necessarily
connected) vertex disjoint copies of T which we denote by T1, T2, . . . , Tp. Let H1 be
the set of all copies H ′ of the T -factor obtained from H by replacing one the copies
Ti by another copy of T on the same set of vertices, in all t! possible ways. Note
that if T has a nontrivial automorphism group some members of H1 are identical,



14 Noga Alon

and H1 is a multiset. By symmetry it is clear that each edge of H belongs to the
same number of members of H1. Similarly, each edge connecting two vertices of the
same Ti which does not belong to H lies in the same positive number of members of
H1. Beside these two types of edges, no other edge of Kn is covered by any member
of H1. Let H2 be the (multi)-set of all copies of the T -factor obtained from H by
choosing, in all possible ways, t of the copies of T , say, Ti1 , Ti2 , . . . , Tit , removing
them, and replacing them by all possible placements of t vertex disjoint copies of T
where each of the newly placed copies contains exactly one vertex of each Tij . Again
by symmetry it is clear that each edge of H belongs to the same number of members
of H2. In addition, each edge of Kn connecting vertices from distinct copies of T in
H belongs to the same (positive) number of members of H2. No other edges of Kn

are covered by any H ′ ∈ H2. It is now simple to see that there are two integers a,
b, so that the multiset H consisting of a copies of each member of H1 and b copies
of each member of H2 is a uniform cover of the pair (Kn, H). The width of this
cover is clearly qt, as every member of H2 contains qt edges not in E(H), and every
member of H1 contains at most q edges not in E(H). This completes the proof.
�

The assertion of Theorem 3.7 clearly follows from the last lemma together with
Theorem 3.5.

Proof of Theorem 3.8: By Theorem 3.5 it suffices to show that there is a uniform
cover of bounded width of the pair (Kn, H). Fix a copy H ′ of H in Kn and let H be
the (multi)-set of all

(
n
2

)
graphs Hu,v obtained from H ′ by swapping a pair of vertices

u, v. Specifically, for every pair of distinct vertices u, v of H ′, let Hu,v be the graph
obtained from H ′ by removing all edges incident with u or with v, and by adding all
edges connecting v to a neighbor of u and all edges connecting u to a neighbor of v.
It is clear that each graph Hu,v is isomorphic to H ′ (by the isomorphism swapping
u and v). It is also clear that each Hu,v contains at most 2d edges that do not lie
in H ′. Therefore the width of the collection is at most 2d. It remains to check that
this is a uniform cover.

Let xy be an edge of H ′. This edge belongs to Huv iff either {u, v} ∩ {x, y} = ∅,
or one of the members of {u, v} is x and the other is a neighbor of y (or y itself),
or, symmetrically, if one of the members of {u, v} is y and the other is a neighbor
of x. Altogether there are

(
n−2
2

)
+ 2d− 1 such (unordered) pairs {u, v}. This is the

same number for every edge xy, as needed for a uniform cover. Now let xy be a
non-edge of H ′. Then it belongs to Hu,v iff either one of the members of {u, v} is x
and the other is a neighbor of y or one of the members of {u, v} is y and the other is
a neighbor of x. There are exactly 2d such pairs Hu,v, independently of the specific
choice of the non-edge xy. This shows that H is indeed a uniform cover of (Kn, H),
completing the proof. 2

Remark

A similar argument shows that for every d-regular spanning subgraph H of the
complete bipartite graph Kn,n there is a uniform cover of width at most 2d of the
pair (Kn,n, H). Indeed, here the family of all

(
n
2

)
copies of H obtained from a fixed

one by swapping every pair of vertices in one of the two color classes is such a uniform
cover. This and Theorem 3.5 implies a result about nearly fair representations of
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any regular spanning subgraph of Kn,n. Theorem 3.3 is a special case.

Additional remarks

• The statement of Theorem 3.7 holds for any graph H consisting of n/t (not
necessarily connected) vertex disjoint components, each having t vertices and
q edges. The proof applies with no need to assume that all these components
are isomorphic.

• The proof of Theorem 3.5 is algorithmic in the sense that if the cover H is
given then one can find, in time polynomial in n and |H|, a copy H of F
satisfying the conclusion. Indeed, the proof implies that as long as we have a
copy H for which the conclusion does not hold, there is a member H ′ ∈ H for
which ‖x(H ′, P )− f

gx(G,P )‖22 is strictly smaller than ‖x(H,P )− f
gx(G,P )‖22.

By checking all members of H we can find an H ′ for which this holds. As
both these quantities are non-negative rational numbers smaller than n4 with
denominator g2 < n4, this process terminates in a polynomial number of steps.
We make no attempt to optimize the number of steps here.

• Theorem 3.5 can be extended to r-uniform hypergraphs by a straightforward
modification of the proof.

• There are graphs H for which no result like those proved above holds when
G is either a complete or a complete bipartite graph even if the number of
colors is small. A simple example is when G = K2n, H = K1,2n−1 and m = 3.
The edges of K2n can be partitioned into two vertex disjoint copies of Kn

and a complete bipartite graph Kn,n. For this partition, every copy of the
star H misses completely one of the color classes, although its fair share in
it is roughly a quarter of its edges. More generally, let H be any graph with
a vertex cover of size smaller than m − 1 (that is, H contains a set of less
than m − 1 vertices touching all its edges). Consider a partition of the edges
of the complete graph Kn into m − 1 pairwise vertex disjoint copies of the
complete graph on bn/(m − 1)c vertices, and an additional class containing
all the remaining edges. Then any copy of H in this graph cannot contain
edges of all those m− 1 complete subgraphs, as the edges of the copy can be
covered by less than m− 1 stars. It is easy to see that similar examples exist
for G = Kn,n as well.

4 Open problems

Several open problems and conjectures dealing with the topic of this article are
mentioned in the previous sections. In this final section we discuss several additional
intriguing problems.

• Recall that the random variable X(k, t,m) is the minimum number of cuts in
a fair partition of a random necklace with km beads of each of t types into
k parts. Theorem 2.2 determines the asymptotic behavior of this variable for
k = 2 and fixed t, as m tends to infinity. It will be interesting to study the
behavior of this random variable for all admissible values of the parameters.
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• Theorem 2.4 provides upper and lower bounds for the ratio X(2, t, 1)/t, im-
plying that the liminf of this quantity is at least roughly 0.22 and the limsup
is at most 0.4. Both these bounds can be slightly improved, as shown in [6],
but there is still a large gap between the upper and lower bounds. While the
problem of closing this gap appears to be difficult, it is not even known if the
limit of this ratio as t tends to infinity exists. Naturally, we believe it does
exist, but have not been able to prove it.

• The algorithmic aspects of the Necklace Theorem (Theorem 1.3) are discussed
in Subsection 2.2. The computational aspects of some of the other results
described here are also interesting. In particular, the algorithmic question cor-
responding to the Cycle and Triangles Theorem (Theorem 1.2) is challenging.
The input of this problem is a cycle of length 3m and a partition P of its
set of vertices into pairwise disjoint sets P1, P2, . . . , Pm, each of size 3. The
output, in the simpler problem, is an independent set containing exactly one
vertex in each Pi, and in the harder problem it is a proper 3-coloring of the
cycle in which each color class contains exactly one vertex of each Pi. There
is no known efficient algorithm for solving this problem, and yet it is also not
known to be PPA-hard (or PPAD hard). On the other hand, Haviv [25] proved
that the more general algorithmic problem corresponding to Proposition 3.2
is PPA-hard. Specifically, he showed that the following problem is PPA-hard.
The input is a partition V = V1∪V2∪· · ·∪Vm of the vertex set of a cycle C into
m pairwise disjoint sets Vi, and the output is an independent set containing
at least |Vi|/2− 1 vertices of each Vi. The proof proceeds by reduction to the
PPA-hardness results in [20], and the sets Vi have to be polynomially large (in
m) for establishing hardness. Therefore this hardness result does not apply to
the Cycle and Triangles Problem. It is worth noting that as Theorem 1.2 ad-
mits several very different proofs, including an algebraic one and a topological
one, proving hardness for it may be difficult, as it would imply hardness for
the algorithmic version of each of the corresponding techniques from which it
can be deduced.

Note that if we replace the sets Pi of size 3 in Theorem 1.2 by sets of size 4, then
the corresponding algorithmic problem does admit a simple efficient solution.
This follows from the proof in [5]. The invariant studied there is the so-called
strong chromatic number of a graph. The strong chromatic number sχ(G) of
a graph G with n vertices is the smallest number k such that after adding
kdn/ke − n isolated vertices to G, for any partition of the set of vertices of
the resulting graph into disjoint subsets P1, P2, . . . , Pdn/ke, each of size k, there
is a proper vertex coloring of G by k colors so that each color class contains
exactly one vertex of each Pi. The Cycle and Triangles Theorem asserts that
the strong chromatic number of a cycle of length 3m is 3, and as shown in [5]
it is easy to see that the strong chromatic number of any graph with maximum
degree 2 is at most 4. For higher degrees, it is proved in [5] that the strong
chromatic number of any graph with maximum degree d is at most O(d). The
hidden constant in this O notation has been vastly improved by Haxell [26],
who showed that this maximum possible strong chromatic number is at most
3d − 1. For large values d this is further improved in [27] to (11/4 + ε)d
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for all d > d0(ε). It is believed, but not known, that the sharper bound 2d
always holds. Regarding the algorithmic problem it is shown in [22] how to
find efficiently one independent set containing a vertex of each set Pi in any
partition of the vertex set of any given input graph G with maximum degree
d into sets Pi, each of size at least 2d+ 1.

• The discussion in Subsection 3.2 suggests the following conjecture.

Conjecture 4.1 For every d there exists a c(d) so that for any graph H with
at most n vertices and maximum degree at most d and for any partition P of
the edges of Kn into m color classes, there is a copy H ′ of H in Kn so that

‖x(H ′, P )− |E(H)|
|E(Kn)|

x(Kn, P )‖∞ ≤ c(d).

The analogous conjecture for bipartite bounded-degree graphs H with at most
n vertices in each color class and for partitions of the edges of Kn,n is also
plausible. Note that the conjecture asserts that the same error term c(d)
should hold for any number of colors m. Note also that c(d) must be at least
Ω(d) as shown by the example of a star H = K1,d and the edge-coloring of
K2n with m = 3 colors described in Subsection 3.2.

• Another interesting question related to the results in Subsection 3.2 is whether
or not for any d there is a constant c(d) so that for any graph H on n vertices
with maximum degree d there is a uniform cover of width at most c(d) of the
pair (Kn, H). Together with Sacheth Sathyanarayanan we proved that this

is not the case for 3-uniform hypergraphs. Indeed, let H
(3)
n be the tight 3-

uniform cycle of length n in which the vertices are v0, v1, v2, . . . vn−1 and the
edges are all triples {vi, vi+1, vi+2} where the indices are reduced modulo n.

This hypergraph is 3-regular, and it can be shown that if K
(3)
n denotes the

complete 3-uniform hypergraph on n vertices then any uniform cover of the

pair (K
(3)
n , H

(3)
n ) is of width Ω(n). The definition of a uniform cover of a pair

of hypergraphs is defined just as it is defined for graphs in Definition 3.4.
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