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Abstract

We describe a deterministic, polynomial time algorithm for finding edge-disjoint paths connect-
ing given pairs of vertices in an expander. Specifically, the input of the algorithm is a sufficiently
strong d-regular expander G on n vertices, and a sequence of pairs si, ti, (1 ≤ i ≤ r) of vertices,
where r = Θ(nd log d

log n ), and no vertex appears more than d/3 times in the list of all endpoints
s1, t1, . . . , sr, tr. The algorithm outputs edge-disjoint paths Q1, . . . , Qr, where Qi connects si and
ti. The paths are constructed online, that is, the algorithm produces Qi as soon as it gets si, ti

and before the next requests in the sequence are revealed. This improves in several respects a long
list of previous algorithms for the above problem, whose study is motivated by the investigation of
communication networks. An analogous result is established for vertex disjoint paths in blow-ups
of strong expanders.

1 Introduction

Given an undirected graph G = (V,E) and a set of pairs si, ti, 1 ≤ i ≤ r, we are interested in finding
r edge-disjoint paths Q1, . . . , Qr, where Qi connects si and ti. This problem received a consider-
able amount of attention, motivated by a variety of communication contexts including the study of
communication systems and distributed-memory computer architectures.

The corresponding decision problem for general graphs G is NP-complete, although it is in P for
every fixed r, as shown by Robertson and Seymour in [18]. If G is a sufficiently strong bounded
degree expander on n vertices, then it is known that edge-disjoint paths always exist and can be found
efficiently provided r is not too large (and no vertex appears too many times as an si or a ti). This
has first been shown by Peleg and Upfal in [17] for r = Θ(nε) where ε > 0 depends on the expansion
properties of the graph. Improvements by Broder, Frieze and Upfal [6], [7], Frieze [8], Leighton and
Rao [12] and Leighton, Lu, Rao and Srinivasan [13],[14] showed that if the expansion properties of
the graph are sufficiently strong, then the paths always exist even if r is Θ( n

logc n) where c depends on
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the expansion properties but is always at least 2. Finally Frieze [9] showed that disjoint paths always
exist and can be found in randomized polynomial time even if r = Θ( n

logn). This is optimal, up to
the dependence of the constant factor on the degree of regularity of the graph and its expansion, as
the distance between each pair of points si, ti may be Ω(log n). The problem of finding the paths by a
deterministic, efficient algorithm remained open. In the present paper we present such a deterministic
algorithm, and also further improve the lower bound for the number of paths r, making it optimal,
up to a constant factor, as a function of the number of vertices of G as well as its degree of regularity.
More crucially, our algorithm works in the online setting, that is, it produces the i-th path as soon as
its endpoints si, ti are presented.

Our algorithm can also be used to improve a related result, by Kleinberg and Rubinfeld [11]. In
this paper the authors present a simple online algorithm which is allowed to reject some of the pairs
and manages to connect at least a fraction of Ω( 1

logn log logn) of the maximum number of pairs that can
be connected offline by disjoint paths in an n vertex expander. Applying our algorithm to d-regular
expanders on n vertices, we can connect online any desired set of Θ(nd/ log n) pairs (in which no
vertex appears as an endpoints more than Θ(d) times). This is trivially within a factor Θ( 1

logn) of
the optimum (as the total number of edges is nd/2). The algorithm is polynomial, though it is less
efficient than the one of [11].

Finally, we describe a result for vertex disjoint paths, providing a variant of non-blocking networks
with optimal parameters.

1.1 The main results

Our results hold for sufficiently strong expanders, the precise definition is given below. We note that
there are many explicit constructions of graphs with these expansion properties. In particular, the
assertion of both theorems below hold for Ramanujan graphs of sufficiently large (constant) degree, as
well as for an appropriate (fixed) power of any bounded degree expander. It is convenient to state the
theorems in terms of a game played by two players, an Adversary and a Router. The game, which we
call the Routing Game for G is played on a d-regular graph G = (V,E) on n vertices, and proceeds in
rounds. In each round of the game, the adversary picks a pair of vertices si, ti of G, and the router has
to provide a path Qi from si to ti. The game is played for r rounds. The router wins if she manages to
produce r edge disjoint paths during these r rounds. Our main result asserts that if G is a sufficiently
strong expander, then the router wins the game even if the number of rounds r is as large as possible
(up to a constant factor), as long as no vertex is chosen by the adversary as an si or a ti too many
times. Moreover, she can produce the required paths in deterministic polynomial time. Note that the
paths are determined online and once a path is produced, it cannot be modified.

Throughout the paper we use the following definition, in which d > 60.

Definition 1.1 A graph G = (V,E) is a d-regular very strong expander on n vertices if it satisfies
the following:
(i) The average degree in any subgraph of G on at most n/10 vertices is at most d/6.
(ii) The average degree in any subgraph of G on at most n/2 vertices is at most 2d/3.
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In the following theorem and throughout the paper, all logarithms are in base 2.

Theorem 1.1 Let G = (V,E) be a very strong d-regular expander on n vertices, and suppose r =
nd

150 logn . Then there is a deterministic, polynomial time algorithm that enables the router to win the
routing game with r rounds on G, provided no vertex is chosen by the adversary as an si or a ti more
than d/3 times.

It is easy to see that the value of r is the largest possible, up to an absolute constant factor, as very
strong expanders can contain n/2 disjoint pairs of vertices si, ti so that for all i the distance between
si and ti is at least, say, log n/10. It is also obvious that the adversary can trivially win in d+1 rounds
if he is allowed to choose the same vertex as an si or ti more than d times, hence the d/3 limit is also
optimal, up to a constant factor.

Definition 1.2 An (n, d, λ)-graph is a d-regular graph G on n vertices so that the absolute value of
every nontrivial eigenvalue of the adjacency matrix of G is at most λ.

This notion was introduced by the first author in the 80s, motivated by the fact that if λ is much
smaller than d, then these graphs behave in many respects like random d-regular graphs.

Theorem 1.2 There is an absolute constant c > 0 so that the following holds. Let G = (V,E) be an
(n, d, λ)-graph where d > 8λ, and put r = cnd log(d/4λ)

logn . Then there is a deterministic polynomial time
algorithm that enables the router to win the routing game for r rounds on G provided the adversary
does not choose any vertex as an si or a ti more than d/3 times.

The known explicit constructions of Ramanujan graphs given in [15], [16] supply infinite families of
(n, d, 2

√
d− 1)-graphs. For such graphs, the number of rounds above is r = Θ(nd log d

logn ). Note that
this is optimal up to a constant factor for any d-regular graph, as it is not difficult to show that any
d-regular graph on n vertices contains bn/2c disjoint pairs si, ti so that for every i the distance between
si and ti is at least logn

log(d−1) − 1.
Besides the above two results we describe an analogous result for vertex disjoint paths on blow-

ups of very strong expanders. This result is also optimal in the relevant parameters, up to absolute
constant factors.

1.2 Overview

Here is a rough description of the procedure that enables the router to win the game on a very strong
expander G for r rounds. Throughout the game, the router maintains a dense subgraph G′ of G that
does not share any edge of the disjoint paths Qi she has already constructed. As a dense subgraph
of a very strong expander, the subgraph G′ also enjoys strong expansion properties and thus has a
logarithmic diameter. In addition, the router maintains a collection P of edge-disjoint paths from all
the vertices that may still appear as endpoints in the future requests of the adversary, to the vertices
of the subgraph G′. The paths in P and the paths Qi used to satisfy the previous requests do not
share any edges. When a new request s`, t` appears, the router uses the paths in P that connect s`
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and t` to G′ together with a short path in G′ between their endpoints, to produce the required path
Q`. She then omits the edges of Q` from G′ and updates this subgraph to keep it dense. In addition
she updates the collection of paths P by solving an appropriate network flow problem.

The detailed proofs require to establish several properties of expanders, and combine them with
Menger’s Theorem as well as with some spectral techniques.

1.3 Organization

The next section contains the main lemmas needed for the proofs. Theorem 1.1 is proved in Section
3, and Theorem 1.2 is proved in Section 4. A result for vertex disjoint paths is described in Section 5,
and the final section contains some concluding remarks.

2 Lemmas

In order not to overload the paper with parameters, we have chosen to describe the results for specific
values of (some of) the constants. The analysis can be easily modified to deal with other values. It
will be convenient to assume, throughout the paper, that d > 60. We further assume, whenever this
is needed, that the numbers of vertices n, n′ of our graphs are sufficiently large, and omit all floor and
ceiling signs whenever these are not crucial.

We need the following additional definition, which is similar to Definition 1.1, with somewhat
different parameters and with the regularity assumption replaced by one on the minimum degree.

Definition 2.1 A graph G′ = (V ′, E′) is a d′-strong expander on n′ vertices if its minimum degree is
at least d′ and it satisfies the following:
(i) The average degree in any subgraph of G′ on at most n′/10 vertices is at most 2d′/9.
(ii) The average degree in any subgraph of G′ on at most n′/2 vertices is at most 8d′/9.

Our first simple lemma asserts that if one deletes a relatively small number of edges from a very strong
expander, then the resulting graph contains a large subgraph with high minimum degree.

Lemma 2.1 Let G = (V,E) be a very strong d-regular expander on n vertices. Let W ⊂ E be a set
of edges, where |W | ≤ nd

150 . Let Dense(G,W ) be the subgraph of G obtained from G−W by repeatedly
omitting from G−W vertices of degree smaller than 3d/4 + 2 as long as there are such vertices. Then
the subgraph Dense(G,W ) has more than n− 15|W |

d vertices.

Proof: Suppose this is false. Then during the process of producing Dense(G,W ) from G all the
vertices in a set X of exactly k = 15|W |

d ≤ n
10 vertices have been omitted. Each vertex of X is

connected in G−W by at most 3d
4 + 1 edges to V −X, and hence in G the number of edges between

X and V −X is at most |W | + k(3d
4 + 1). But since k ≤ n

10 this number has to be at least k 5d
6 , by

property (i) in the definition of a very strong expander. We conclude that

k
5d
6
≤ |W |+ k(

3d
4

+ 1),
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implying that k( d12 − 1) ≤ |W |. As d > 60, k d
15 < k( d12 − 1) ≤ |W |, it follows that k < 15|W |

d ,
contradicting the choice of k and completing the proof.

The above lemma will be applied repeatedly in our algorithm, we thus state the following simple
corollary.

Corollary 2.2 Let G = (V,E) be a very strong expander. Starting with V1 = V,E1 = E and G1 =
G = (V1, E1) consider a process of ` steps, where in step number i we choose a set of edges Wi in Ei,
and define Gi+1 = (Vi+1, Ei+1) = Dense(Gi,Wi). If

∑`
i=1 |Wi| ≤ nd

150 then the graph G`+1 has more
than

n− 15
∑`
i=1 |Wi|
d

vertices.

Note that the conclusion holds even if during the above process we also delete, in each step i, some
additional edges of G besides Wi, as long as these extra edges lie outside Vi, as these do not change
the graph Gi. Although this fact is obvious we mention it explicitly as indeed additional edges will be
omitted when we apply the corollary in the next section.

The following fact is an immediate consequence of the definitions.

Lemma 2.3 Any subgraph of minimum degree at least d′ = 3d
4 of a very strong d-regular expander is

a d′-strong expander.

We also need the following property of strong expanders.

Lemma 2.4 For every integer d′, any d′-strong expander G′ on n′ vertices has diameter at most
2
3 log n′ + 14 (< log n′).

Proof: Fix a vertex v of G′. For each i ≥ 0, let Vi denote the set of all vertices within distance i from
v. Suppose that |Vi+1| ≤ n′

10 . Then the number of edges in the induced subgraph of G′ on Vi+1 is at
most 1

9d
′|Vi+1|, since the average degree in this induced subgraph is at most 2

9d
′. On the other hand,

these edges include all edges that touch vertices in Vi. As the average degree of the induced subgraph
of G′ on Vi is at most 2

9d
′ and the minimum degree in G′ is at least d′, there are at least 8

9d
′|Vi| edges

touching vertices of Vi. It thus follows that

1
9
d′|Vi+1| ≥

8
9
d′|Vi|,

implying that |Vi+1| ≥ 8|Vi|. By the last inequality |Vs| ≥ n′

10 for s = 1
3 log(n′/10).

Repeating the computation above for sets of size bigger than n′/10 but smaller than n′/2 we
conclude, by part (ii) of the definition of a strong expander, that if |Vi+1| ≤ n′

2 then 4
9d
′|Vi+1| ≥ 5

9d
′|Vi|,

implying that |Vi+1| ≥ 5
4 |Vi|. It follows that for s as above, |Vs+8| > n′

2 , that is, for any vertex v of
G′, more than half the vertices are within distance s+ 8 < 1

3 log n′ + 7 of v. This clearly implies that
the distance between any two vertices of G′ is at most 2s+ 16 < 2

3 log n′ + 14 < log n′, where the last
inequality follows from the fact that n′ is sufficiently large. This completes the proof.

The final ingredient we need is the following somewhat technical lemma, that will play a crucial
role in the proof of the main results.
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Lemma 2.5 Let G = (V,E) be a d-regular very strong expander on n vertices, and let G̃ = (V, Ẽ) be
a subgraph of G. Let G′ = (V ′, E′) be a subgraph of G̃ of minimum degree at least d′ = 3d

4 on a set V ′

of n′ vertices, and let V ” be a subset of V ′ satisfying |V ”| ≥ 9n
10 . Let S be a sequence of vertices of G̃

so that each vertex appears in S at most d
3 (= 4

9d
′) times. Suppose that G̃ contains a collection of |S|

edge disjoint paths P = {Ps, s ∈ S}, where for each s ∈ S, Ps starts in s and ends at a vertex of G′

(and may possibly be of length 0 in case s ∈ V ′.) Then there is a collection P ′ = {P ′s, s ∈ S}of edge
disjoint paths in G̃, where for each s, P ′s starts at s and ends at V ”.

Remark: Note that in the above lemma the elements s in the subscript of each path Ps are elements
of the sequence S, and the same vertex of G may appear more than once as such an s. Although this
notation may be a bit confusing, it is convenient to use it here.
Proof: We apply Menger’s Theorem (or, equivalently, the max-flow min-cut and the integrality
theorems for network flows). We may and will assume that the paths in P contain no edges of G′, and
that only the last vertex of each path in P lies in V ′. Indeed, if this is not the case for some path Ps,
simply replace it by its initial segment until the first vertex of V ′ along the path.

Let H be the graph obtained from G̃ by adding to it two new vertices, x and y. The vertex x is
joined to each vertex v ∈ V that appears in S by mv parallel edges, where mv is the number of times
v appears in the sequence S. The vertex y is joined by |S| parallel edges to each vertex of V ”. Our
objective is to show that there are |S| =

∑
mv edge disjoint paths in H from x to y. By Menger’s

Theorem, (c.f., e.g., [19]), this is equivalent to showing that any cut separating x and y contains at
least |S| edges. Let (X,Y ) be such a cut, where x ∈ X, y ∈ Y and X and Y form a partition of the
vertex set of H into two disjoint parts. Since there are |S| parallel edges joining y to each vertex of
V ”, it follows that if some vertex of V ” lies outside Y then the size of the cut is at least |S|. We thus
may and will assume that V ” ⊂ Y , implying that X contains at most n′ − 9n

10 ≤
n′

10 vertices of V ′.
Let p denote the number of paths Ps in P so that the cut (X,Y ) either contains the edge xs

corresponding to this path, or contains any other edge of the path. Then P contains |S|−p additional
paths, and all their endpoints belong to X. We claim that each vertex v ∈ V ′ is the end vertex of at
most 7

9d
′ of these paths. Indeed, by assumption, there are at most d

3 ≤
4
9d
′ trivial paths, of length 0,

that end (and start) at v. In addition, there can be at most d
4 = d′

3 nontrivial paths that end at v,
since each such path contains an edge of G incident with v which does not lie in the graph G′, and
there are at most d/4 such edges, as the degree of v inside G′ is at least d′ = 3d

4 . This proves the claim,
and implies that the number of vertices of V ′ that belong to X is at least

|S| − p
7d′/9

.

Since this number is at most n′/10, as mentioned above, and as by Lemma 2.3 G′ is a d′-strong
expander, it follows that the number of edges of G′ from X to Y is at least |X|7d′9 ≥ |S|−p. Altogether
this shows that the size of (X,Y ) is at least |S|, completing the proof.
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3 The algorithm

In this section we prove Theorem 1.1. It is convenient to consider the following equivalent formulation
of the routing game between the two players, the adversary and the router. The game starts with
a sequence S of length nd/3 in which each of the n vertices of the d-regular very strong expander
G = (V,E) appears d/3 times. In round number i the adversary picks two vertices si, ti from S, hands
them to the router and omits them from S. The router then has to construct a path Qi from si to ti,
making sure that it does not share any edge of the previous paths Qj . Our objective is to show that
the router can produce such paths, in deterministic polynomial time, for r = nd

150 logn steps.
In order to achieve this goal, the router maintains, during the game, the set of paths Qj constructed

so far, as well as a subgraph of G and a collection of paths from the remaining vertices of S to this
subgraph. More precisely we assume that after the end of the first ` − 1 rounds the router has
already constructed ` − 1 edge disjoint paths Q1, Q2, . . . , Q`−1, where Qi is a path from si to ti. In
addition she maintains a subgraph G` = (V`, E`) of G and a collection P` = {Ps : s ∈ S`} where
S` = S − {s1, t1, . . . , s`−1, t`−1} } of edge disjoint paths, so that the following conditions hold:
(i) The minimum degree of G` is at least 3d

4 + 2.
(ii) The number of vertices of G` is at least n − 15(`−1) logn

d (which exceeds 9n/10 provided ` ≤ r =
nd

150 logn .) In fact, G` is the graph Dense(G,W`), for some explicit set Wl of no more than (`− 1) log n
edges.
(iii) For each s ∈ S` the path Ps in the collection P` is a path from s to the graph G`, such that the
paths in P` are edge-disjoint from each other and from each of Q1, . . . , Q`−1 and contain no edges of
G`.
(iv) G` contains no edge of any of the paths Q1, . . . , Q`−1.

At the beginning ` = 1, there are no paths Qi, S1 = S, P1 is a collection of |S| = nd3 trivial
paths (each of length 0), G1 = (V1, E1) is simply G = (V,E) and W1 = ∅. Trivially this satisfies all
the requirements above. Suppose, now, by induction, that the router has managed to compute paths
Q1, . . . , Q`−1, a collection of paths P`, a set of edges W` and a subgraph G` so that all requirements
above hold. The adversary now picks a pair of vertices s`, t` that lie in S`, presents them to the router
and omits them from S` to get S`+1 = S`−{s`, t`}. The router first constructs the path Q` as follows.
The collection P` contains disjoint paths P ′1 = Ps`

and P ′2 = Pt` from s` and t`, respectively, to the
set of vertices of G`. By Lemma 2.3 and Lemma 2.4, the diameter of G` is at most log n, hence there
is a path Q′` of length at most log n between the two endpoints of the paths P ′1 and P ′2, and this path
consists of edges of G`, and thus does not intersect any of the paths Q1, . . . , Q`−1, by item (iv) above.
The union of the paths P ′1, Q

′
` and P ′2 is a (not necessarily simple) path between s` and t` and hence

contains the edges of such a simple path, which will be Q`. Note that this path can be constructed
efficiently, the most difficult computational task here is that of finding the short path Q′`, which is
easy.

The router can now generate the graph G`+1. Set W`+1 = W` ∪ Q′`, and then use Lemma 2.1 to
define G`+1 = Dense(G,W`+1) ( = Dense(G`, Q′`) ). By Lemma 2.1 and Corollary 2.2 the number of
vertices of G`+1 is at least n− 15` logn

d ≥ 9n
10 , showing that items (i) and (ii) above (with `+1 replacing
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`) hold for G`+1. Furthermore, G`+1 is a subgraph of G` and is edge-disjoint from Q′`, so G`+1 satisfies
(iv), with `− 1 replaced by `.

We now show that (iii) is satisfied, with ` replaced by `+ 1. Let P ′` = P`−{ Ps`
, Pt` }. The graph

G̃ consisting of all edges of the paths in P ′` together with all edges of the graph G` besides those of
Q′`, its subgraph G′ = G` − E(Q′`) (which has minimum degree at least 3d

4 + 2 − 2 = 3d
4 ) and the

set V ” = V`+1 satisfy the conditions in Lemma 2.5 with respect to S`+1. Thus, there is a collection
P`+1 of edge-disjoint paths in G̃ from the vertices of S`+1 to V ”. Without loss of generality each of
these paths contains only one vertex of V ”- its end vertex, and hence it contains no edge of G`+1.
This shows that item (iii) holds, with ` replaced by `+ 1. The whole procedure can be performed in
polynomial time, as the only nontrivial algorithmic task is that of solving an appropriate network flow
problem for finding the paths in the collection P`+1. This completes the proof of the theorem.

4 An improved bound for (n, d, λ)-graphs

There are many known explicit constructions of graphs that satisfy the assumptions in Theorem 1.1.
Recall the definition of an (n, d, λ)-graph (Definition 1.2). By a lemma in [2] (see also [4], Chapter 9),
the average degree of any subgraph of such a graph on a set of bn vertices is at most bd + (1 − b)λ.
Therefore, if λ ≤ 2d

27 then any such graph is a very strong expander. It is known that if d is fixed and
n is large, then λ cannot be much smaller than 2

√
d− 1, and the Ramanujan graphs of [15], [16] are

infinite families of explicit (n, d, 2
√
d− 1)-graphs for any d which is p + 1 for a prime p congruent to

1 modulo 4. Thus there are explicit constructions satisfying the assumptions in Theorem 1.1.
In fact, one can use any family of expanders to get examples satisfying the assumptions of Theorem

1.1. Indeed, it is well known (see [1] ) that a family of d-regular graphs (with a loop in each vertex)
is a family of expanders (that is, any set X of at most half the vertices has at least c|X| neighbors
outside the set, where the same c > 0 applies to all members of the family), if and only if there is
a fixed λ < d so that every graph G in the family is an (n, d, λ)-graph for n = |V (G)|. Raising the
graphs to an appropriate power raises d and λ to the same power, and we can thus get a family of
(n,D, µ)-graphs with µ ≤ D1−ε.

Moreover, using (n, d, λ)-graphs one can in fact slightly improve the result in Theorem 1.1 getting
an extra log(d/4λ) factor in the number of rounds in the routing game, as stated in Theorem 1.2. This
follows by repeating the reasoning of the proof of Theorem 1.1, replacing Lemma 2.4 by the following
result (whose proof is similar to that of a lemma proved in [3]).

Lemma 4.1 Let G′ be a subgraph of an (n, d, λ)-graph G, where λ < d/4, in which the minimum
degree is at least 3d/4. Then the diameter of G′ is at most logn

log(d/4λ) .

Remark: The constant 4 can be easily reduced, we make no attempt to optimize it here.
Proof: Let X be a set of vertices of G′, let B denote the set of all non-neighbors of the vertices of X
in G′, and assume that |B| ≥ n/2. Then each vertex of X has (in G) at most d/4 neighbors in B. By
Theorem 9.2.4 in [4] this implies that

|X|(d
4

)2 ≤ λ2|B|(n− |B|)/n < λ2(n− |B|).
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Thus n − |B|, which is the number of vertices within distance 1 (in G′) from X is at least |X|( d
4λ)2.

By a repeated application of the above it follows that for every vertex v the number of vertices of G′

which are within distance at most log(n/2)
2 log(d/4λ) from v exceeds n/2, implying the desired result.

Theorem 1.2 can be proved by repeating the proof of Theorem 1.1, using the fact that each of the
paths Q′` will now be of length at most logn

log(d/4λ) . We omit the details.

5 Vertex disjoint paths

Finding vertex disjoint paths between pairs of vertices is more difficult than finding edge disjoint ones.
Indeed, if G is any d-regular graph then obviously it cannot contain nontrivial d + 1 vertex disjoint
paths starting at a vertex and its d neighbors. Thus, when we deal with vertex disjoint paths we have
to assume that not too many paths start at a neighborhood of a given vertex. Since we are interested
in the online problem, we consider the Vertex Routing Game, which is the vertex disjoint analog of
the routing game discussed in the introduction. In each round of this game, played on a graph G, the
adversary presents a pair of vertices si, ti, and the router has to provide a path between them, keeping
all paths produced vertex disjoint. Obviously the adversary is not allowed to use a vertex as an si or
a ti in case this vertex has already been used by the router, and in addition, he has to be restricted
to avoid some trivial cases like the one mentioned above. It is easy to deduce a result for this game
from our results for the edge disjoint game, as follows.

Theorem 5.1 Let G = (V,E) be a d-regular very strong expander on n vertices, and let H be the
d-blow-up of G, that is, the graph obtained by replacing each vertex v of G by an independent set
Iv of d vertices, and each edge uv of G by a complete bipartite graph with vertex classes Iu, Iv. Put
r = nd

150 logn . Then the router can win the vertex routing game played on H for r rounds, provided none
of the vertices si, ti given by the adversary is equal to a vertex used already by the router for previous
paths, and no set Iv contains more than d/3 of them. Moreover, the router wins by a polynomial time
deterministic algorithm.

This is optimal, up to a constant factor, as the distance between each si and ti may be Ω(log n) and
the total number of vertices of H is nd. The d/3 requirement is also essentially optimal (up to a
constant factor) by the comment preceding the theorem, and the assumption that all vertices si, ti
differ from previously used vertices is, of course, necessary for getting vertex disjoint paths. The proof
is simple: one uses the strategy for edge-disjoint paths on the original graph G and replaces them
online by vertex disjoint paths in H in the obvious way. If we start with a Ramanujan graph G, then
the bound for r can be increased by another Θ(log d) factor.

6 Concluding remarks

We have given a deterministic, polynomial time algorithm for finding edge-disjoint paths in expanders
online. For a sufficiently strong d-regular expander on n vertices G (for example, a bounded degree
Ramanujan graph) and a sequence of pairs si, ti, (1 ≤ i ≤ r) of vertices of G, where r = Θ(nd log d

logn ),
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and no vertex appears more than d/3 times in the list of all endpoints s1, t1, . . . , sr, tr, the algorithm
outputs edge-disjoint paths Q1, . . . , Qr, where Qi connects si and ti. This improves the previously
best known result on the problem, due to Frieze [9], in several respects:

• The number of pairs r is bigger by a log d factor than the one given in [9], it is best possible up
to a constant factor, and matches the bound obtained for r for random graphs by Frieze and
Zhao [10].

• The algorithm is deterministic, whereas the one given in [9] is randomized.

• Most crucially, the algorithm is online, that is, the path Qi is produced as soon as si, ti are given,
and before the subsequent requests sj , tj are revealed.

The result can be applied to a related problem considered by Kleinberg and Rubinfeld in [11], where
one is allowed to reject some of the requested paths. This improves the approximation guarantee of
[11] from Ω( 1

logn log logn) to Ω( 1
logn) of the optimum. Although the algorithm is more complicated than

that of [11], and not all the paths it produces are necessarily short, it has another advantage that it can
decide arbitrarily which paths it rejects and which paths it accepts (and its approximation guarantee
is 1 if the total number of paths requested is O( nd

logn) ).
We have also shown that blow-ups of sufficiently strong expanders enjoy a similar property with

respect to vertex disjoint paths. This is related to the notion of non-blocking networks, such as the
one constructed in [5]. Although it does not ensure short paths and the routing algorithm is more
complicated than the one of [5], the extra property we have here is that there are no pre-specified
distinguished sets of vertices of size O(n/ log n) each, which are specified at the beginning as inputs
and outputs. Indeed, one can route here a path between any desired pair of vertices as long as the total
number of paths is at most O(n/ log n) (which is optimal) and the endpoints satisfy some minimal
requirement (which is also essentially optimal.)

It will be interesting to find a version of our algorithm in which all paths are guaranteed to be of
logarithmic length. This remains open.
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