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Abstract

One of the major contributions of Paul Erdős is the development of the Probabilistic Method

and its applications in Combinatorics, Graph Theory, Additive Number Theory and Combinatorial

Geometry. This short paper describes some of the beautiful applications of the method, focusing

on the long-term impact of the work, questions and results of Erdős. This is mostly a survey, but

it contains a few novel results as well.

1 The Probabilistic Method

The Probabilistic Method is one of the most significant contributions of Paul Erdős, and part of his

greatness is the fact that applications of the probabilistic method and of random graphs have become

so common that it is now possible to use those without explicitly mentioning him. The method is a

powerful tool with numerous applications in Combinatorics, Graph theory, Additive Number Theory

and Geometry and had an immense impact on the development of theoretical Computer Science as

well. The results and tools are far too numerous to cover in a short survey, even if the focus is only on

those influenced directly by the work and problems of Erdős, and thus this paper is mainly a selection

of topics that illustrate the method, and is not meant to be a comprehensive treatment of the whole

area. Several books that contain more material on the subject are [13], [18], [54], [61].

It is convenient to classify the applications of probabilistic techniques in Discrete Mathematics into

three groups. The first one deals with the study of random combinatorial objects, like random graphs

or random matrices. The results here are essentially results in Probability Theory, although many

of them are motivated by problems in Combinatorics. The second group consists of probabilistic

constructions. These are applications of probabilistic arguments in order to prove the existence of

combinatorial structures which satisfy a list of prescribed properties. Existence proofs of this type

often supply extremal examples to various questions in Discrete Mathematics. The third group, which

contains some of the most striking examples, focuses on the application of probabilistic reasoning in

the proofs of deterministic statements whose formulation does not give any indication that randomness

may be helpful in their study.
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Random graphs are covered in another chapter of this volume. The present chapter contains a

brief description of several results in each of the other two groups, as well as a very brief discussion of

some of the applications of the probabilistic method in theoretical Computer Science. The influence

of the work and questions of Paul Erdős in all these has been crucial.

This is mostly a survey paper, but it contains several new results, presented in subsections 3.2 and

3.5, as well.

2 Probabilistic constructions

The applications of probabilistic constructions have yielded numerous results in Combinatorics, Graph

Theory, Combinatorial Geometry and Additive Number Theory. Below is a selection of several repre-

sentative examples.

2.1 Ramsey Numbers

Let H1, H2, . . . ,Hk be k finite, undirected, simple graphs. The (multicolor) Ramsey number

r(H1, H2, . . . ,Hk)

is the minimum integer r such that in every edge coloring of the complete graph on r vertices by k

colors, there is a monochromatic copy of Hi in color i for some 1 ≤ i ≤ k. By a (special case of) a

well known theorem of Ramsey (c.f., e.g., [49]), this number is finite for every sequence of graphs Hi.

The determination or estimation of these numbers is usually a very difficult problem. When each

graph Hi is a complete graph with more than two vertices, the only values that are known precisely

are those of r(K3,Km) for m ≤ 9, r(K4,K4), r(K4,K5) and r(K3,K3,K3). Even the determination

of the asymptotic behavior of Ramsey numbers up to a constant factor is a hard problem, and despite

a lot of efforts by various researchers (see, e.g., [49], [22] and their references), there are only a few

infinite families of graphs for which this behavior is known.

In one of the first applications of the probabilistic method in Combinatorics, Erdős [26] proved

that if
(
n
k

)
21−(k2) < 1 then R(Kk,Kk) > n, that is, there exists a 2-coloring of the edges of the complete

graph on n vertices containing no monochromatic clique of size k. This implies that R(Kk,Kk) > 2k/2

for all k ≥ 3. The proof is extremely short: the probability that a random two-edge coloring of Kn

contains a monochromatic copy of Kk is at most
(
n
k

)
21−(k2) < 1 , and hence there is a coloring with

the required property.

It is worth noting that although this argument seems almost trivial today, it was far from being

obvious when published in 1947. In fact, several prominent researchers believed, before the publication

of this short paper, that R(Kk,Kk) may well be bounded by a polynomial in k. In particular, Paul

Turán writes in [68] that he had conjectured for a while that R(Kk,Kk) is roughly k2, and that Erdős’s

result showed that this quantity behaves very differently than expected.

A particularly interesting example of an infinite family for which the asymptotic behavior of the

Ramsey number is known, is the following result of Kim and of Ajtai, Komlós and Szemerédi.

2



Theorem 2.1 ([56], [3]) There are two absolute positive constants c1, c2 such that

c1m
2/ logm ≤ r(K3,Km) ≤ c2m2/ logm

for all m > 1.

The upper bound, proved in [3], is probabilistic, and applies a certain random greedy algorithm.

There are several subsequent proofs, all are based on probabilistic arguments. The lower bound is

proved by a “semi-random” construction and proceeds in stages. The detailed analysis is subtle, and is

based on certain large deviation inequalities. An alternative analysis of this probabilistic construction,

inspired by the differential equation method of Wormald [72], is given by Bohman in [17]. It is worth

noting that the question of obtaining a super-linear lower bound for r(K3,Km) is mentioned already in

[26], and Erdős has established in [28], by an appropriate probabilistic construction, an Ω(m2/ log2m)

lower bound. More on this appears in another chapter of this volume.

Even less is known about the asymptotic behavior of multicolor Ramsey numbers, that is, Ramsey

numbers with at least 3 colors. The asymptotic behavior of r(K3,K3,Km), for example, has been very

poorly understood for quite some time, and Erdős and Sós conjectured in 1979 (c.f., e.g., [22]) that

lim
m7→∞

r(K3,K3,Km)

r(K3,Km)
=∞.

This has been proved in [12], where it is shown that in fact r(K3,K3,Km) is equal, up to logarithmic

factors, to m3. A more complicated, related result proved in [12], that supplies the asymptotic behavior

of infinitely many families of Ramsey numbers up to a constant factor is the following.

Theorem 2.2 For every t > 1 and s ≥ (t − 1)! + 1 there are two positive constants c1, c2 such that

for every m > 1

c1
mt

logtm
≤ r(Kt,s,Kt,s,Kt,s,Km) ≤ c2

mt

logtm
,

where Kt,s is the complete bipartite graph with t vertices in one color class and s vertices in the other.

The proof of the lower bound forms yet another example of a probabilistic construction, where each of

the first three color classes is a randomly shifted copy of an appropriate Kt,s-free graph that contains

a relatively small number of large independent sets, as shown by combining some spectral techniques

with character sum estimates.

2.2 Combinatorial Geometry

There are several striking examples where a probabilistic construction supplies rather easily counter-

examples to well studied conjectures in Combinatorial Geometry. The following result of Erdős and

Füredi illustrates this point.

Theorem 2.3 ([34]) For every d ≥ 1 there is a set of at least b12( 2√
3
)dc points in the d-dimensional

Euclidean space Rd, such that all angles determined by three points from the set are strictly less than

π/2.
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The proof is obtained by considering a random set of binary vectors in Rd. We omit the details but

mention that this disproves an old conjecture of Danzer and Grünbaum [23] which suggests that the

maximum cardinality of such a set is at most 2d − 1. The authors of [23] did prove, motivated by a

question of Erdős and Klee, that the maximum cardinality of a set of points in Rd in which all angles

are at most π/2 is 2d.

A range space S is a pair (X,R), where X is a (finite or infinite) set and R is a (finite or infinite)

family of subsets of X. The members of X are called points and those of R are called ranges. If A is a

subset of X then PR(A) = {r∩A : r ∈ R} is the projection of R on A. In case this projection contains

all subsets of A we say that A is shattered. The Vapnik-Chervonenkis dimension (or VC-dimension) of

S, denoted by V C(S), is the maximum cardinality of a shattered subset of X. If there are arbitrarily

large shattered subsets then V C(S) =∞.

A subset N ⊂ A is an ε-net for A if any range r ∈ R satisfying |r ∩A| ≥ ε|A| contains at least one

point of N .

A well known result of Haussler and Welzl [52], following earlier work of Vapnik and Chervonenkis

[69], asserts that for any n and ε > 0, any set of size n in a range space of VC-dimension d contains

an ε-net of size at most O(dε log(1/ε)).

The authors of [62] asked in 1990 whether or not in all natural geometric scenarios of bounded

V C-dimension, there always exists an ε-net of size O(1/ε). This problem received a considerable

amount of attention over the years, until it has finally been answered negatively in [5] and in [63], by

constructions that have essential probabilistic ingredients. The following, however, is still open.

Problem 2.4 Are there sets Xn of points in the plane and a sequence εn > 0 tending to zero so that

the minimum size of an εn-net for Xn with respect to line ranges is Ω( 1
εn

log( 1
εn

)) ?

2.3 Additive Number Theory

Erdős and Turán [41] asked if for any asymptotic basis of order 2 of the positive integers (that is, a

set A of positive integers so that each sufficiently large integer has a representation as a sum of two

elements of A), there must be, for any constant t, integers that have more than t such representations.

Erdős has used in [27] a probabilistic construction to prove the existence of a set A of integers such

that every n is represented as n = x+ y with x, y ∈ A at least once but at most O(lnn) times. This

settles a problem posed by Sidon and shows that in the Erdős-Turán question mentioned above one

cannot expect to necessarily have too many representations of an integer n, although the question, as

posed, is still wide open.

A somewhat similar question is considered by Canfield and Wilf in [21] and by Ljujić and Nathanson

in [60]. For two sets A and M of positive integers and for a positive integer n, let p(n,A,M) denote the

number of partitions of n with parts in A and multiplicities in M , that is, the number of representations

of n in the form n =
∑

a∈Amaa where ma ∈M ∪ {0} for all a, and all numbers ma but finitely many

are 0. There are simple examples of M and A in which M is finite so that p(n,A,M) = 1 for all n, but

it seems more difficult to find infinite sets A and M for which p(n,A,M) has a polynomial growth in
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n. For the specific cases of A = {k!}∞k=1, A = {kk}∞k=1 (and many other cases), the existence of such

an infinite M is proved in [6] using a probabilistic construction and answering questions raised in [21]

and [60]. These constructions are tailored to fit the growth of the given sequence A, and are general

enough to ensure that the same sequence M can work simultaneously for several sequences A. The

analysis is based on some large deviation inequalities.

Erdős and Newman studied in [39] another problem dealing with bases for sets of integers. They

studied bases for m-element subsets A of {1, . . . , n}, where a set B is a basis for A if A ⊂ B + B =

{b1 + b2 : b1, b2 ∈ B}. Since {0} ∪A is a basis for A, and there is a set X with at most c
√
n elements

such that X + X ⊃ {1, . . . , n} it follows that for any m-element subset of {1, . . . , n} there is always

a basis of size min(c
√
n,m + 1). Erdős and Newman showed by a simple probabilistic construction

that if m is somewhat smaller than
√
n, say m = O(n1/2−ε), then almost no m-element set has a basis

of size o(m). Similarly, if m is at least n1/2+ε then almost all m-element sets require a basis of size

at least c
√
n. For the borderline case when m is of the order

√
n their counting argument only yields

existence of sets that need a basis of size c
√
n log logn/ log n, and they asked if every m-set of size

m =
√
n has a basis with o(m) elements. This is established in [7], where it is shown that in fact any

such set has a basis of size O(
√
n log logn/ log n). The argument is probabilistic.

Estimating the size of the smallest possible basis for explicitly given sets is often far harder. Erdős

and Newman showed that any basis for the set of squares {t2 : t = 1, . . . , n} (which is a subset of

{1, 2, . . . , n2}) is of size at least n2/3−o(1) for large values of n, which is an improvement over the trivial

lower bound of n1/2. They constructed a small basis for the squares, of size only O
(

n
logM n

)
for any M .

Wooley asked about powers other than the squares. Whereas it is likely that any basis for the set of

d-th powers {td : t = 1, . . . , n} is of size Ω(n1−ε) for every ε > 0 and d ≥ 2, only a modest improvement

of the n2/3−o(1) lower bound of Erdős and Newman for large values of d is proved in [7], where it is

shown that the set {td : t = 1, . . . , n} does not have a basis of size O(n
3/4− 1

2
√
d
− 1

2(d−1)
−ε

) for any ε > 0.

3 Deterministic Theorems

3.1 Sum-free subsets

A subset A of an abelian group is called sum-free if there is no solution to the equation x+ y = z with

x, y, z ∈ A. Erdős [31] showed that any set of n positive integers contains a sum-free subset of size at

least n/3. The proof is a simple yet intriguing application of the probabilistic method, and proceeds

as follows. Let A be a set of n positive integers, choose a real x uniformly between 0 and 1 and let

B = Bx be the set of all a ∈ A so that ax mod 1 ∈ (1/3, 2/3). It is not difficult to check that B is

always sum-free, and that the expected value of the size |Bx| of B is n/3. Therefore, there is a fixed

x so that the size of Bx is at least n/3, providing the required result.

In [8] the authors showed that a similar proof gives a lower bound of (n + 1)/3. Bourgain [20]

has further improved this estimate to (n + 2)/3. It seems possible that the constant 1/3 cannot be

replaced by a larger constant, but this is an open problem. The best known upper bound is 11/28,
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proved by Lewko [59], improving earlier estimates of 3/7 in [31] and 12/29 in [8]. In subsection 3.2 we

present a further (modest) improvement. It is worth noting that for general abelian groups there is a

similar result proved in [8]: any set of n nonzero elements in any abelian group contains a sum-free

subset with more than 2n/7 elements. The constant 2/7 is best possible.

3.2 The sum-free subset constant

For a set B of nonzero integers, let s(B) denote the maximum cardinality of a sum-free subset of B.

The infimum value of the ratio s(B)
|B| as B ranges over all nonempty sets of nonzero integers is called the

sum-free subset constant, and is denoted by δ. As mentioned in the previous subsection Erdős proved

that δ ≥ 1/3 and observed that δ ≤ 3/7. The upper bound has been improved in [8] and further

improved in [59]. All these upper bounds are established by exhibiting a set B and by computing

s(B). The next statement shows that for any given example B it is possible to construct another one

which gives a (slightly) better upper bound for δ.

Proposition 3.1 Let B be a finite set of b nonzero integers and define s = s(B). Put

p = [b(b− 1) + 1](b− s+ 1), q = dp!(e− e−1 + 3)/2e − p+ 2 and m = d q

b(b− 1) + 1
eb.

Then there is a set C of at most m elements so that

s(C)

|C|
≤ s(B)

|B|
− 1

|C|
.

The result of [59] is proved by exhibiting an explicit set B of 28 nonzero integers for which s(B) = 11.

Therefore δ ≤ 11/28. By the proposition above this can be improved to 11/28− ε for some ε which is

roughly 10−50,000. It is possible to get a slightly bigger value of ε, but as this is certainly far from giving

a tight bound, we make no serious attempt to optimize this value here. Note that the proposition

above implies that δ is an infimum, and not a minimum, that is, there is no finite set B so that

δ = s(B)
|B| .

Proof. Put |B| = b, s = s(B). Let n be a large integer, to be chosen later, and let G be the graph

whose set of vertices is {1, 2, . . . , n}, where i and j are adjacent iff the two sets iB and jB intersect

(and i 6= j). It is clear that the maximum degree of this graph is at most b(b− 1) and hence, by the

Hajnal-Szemerédi Theorem [51], it has a proper coloring f with k = b(b − 1) + 1 colors and nearly

equal color classes. This coloring provides a partition of [n] = {1, 2, . . . , n} into k sets Ij , so that each

of the set Bj = ∪i∈Ij iB is a set of exactly |Ij |b nonzero integers.

Claim: If n is sufficiently large then at least one of these sets Bj does not contain a sum-free subset

containing s elements from each of the sets iB for all i ∈ Ij .
Indeed, assuming this is not the case, fix a sum-free subset Aj in each Bj so that |Aj∩iB| = s for all

i ∈ Ij . Using the sets Aj , define a coloring g of Ij by b−s+1 colors as follows. Let x1 < x2 < . . . < xb

be the members of B and suppose i ∈ Ij . By assumption Aj contains at least one of the elements ixq for
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some q ∈ {1, 2, . . . , b−s+1}. Let q be the smallest index for which this holds and define g(i) = q. The

ordered pair (f(i), g(i)) defines a coloring of the integers in [n] by k(b−s+1) = [b(b−1)+1](b−s+1)

colors.

Note that there is no monochromatic Schur triple in this coloring, that is, there are no i, j, t ∈ [n]

so that i + j = t and (f(i), g(i)) = (f(j), g(j)) = (f(t), g(t)). This is because if there is such a triple

then for (f ′, g′) = (f(i), g(i)) we have iB ∪ jB ∪ tB ⊂ Bf ′ , and for xg′ ∈ B ixg′ , jxg′ , txg′ all lie in

Af ′ . This contradicts the fact that Af ′ is sum-free, as ixg′ + jxg′ = txg′ . Thus there are indeed no

monochromatic Schur triples.

An old Theorem of Schur (c.f., e.g., [49]) asserts that if n is sufficiently large as a function of

the number of colors used then there must be a monochromatic Schur triple, contradiction. This

contradiction proves the assertion of the claim.

Returning to the proof of the proposition, note that the number of colors in the construction above

is p = [b(b − 1) + 1](b − s + 1). By [71] if n is at least q = dp!(e − e−1 + 3)/2e − p + 2 then there is

a monochromatic Shcur triple. This implies that if indeed n is at least that large, then at least one

of the sets Bj cannot contain a sum-free subset that consists of s elements from each iB for i ∈ Ij .
Hence s(Bj) ≤ |Ij |s− 1 and as the size of each set Ij is at most d q

b(b−1)+1e the set C = Bj completes

the proof of the proposition. 2

3.3 List coloring and Euclidean Ramsey Theory

The list chromatic number (or choice number) χ`(G) of a graph G = (V,E) is the minimum integer s

such that for every assignment of a list Lv of s colors to each vertex v of G, there is a proper vertex

coloring of G in which the color of each vertex is in its list. This notion was introduced independently

by Vizing in [70] and by Erdős, Rubin and Taylor in [40]. In both papers the authors realized that

this is a variant of usual coloring that exhibits several new interesting properties, and that in general

χ`(G), which is always at least as large as the chromatic number of G, may be arbitrarily large even

for graphs G of chromatic number 2.

It is natural to extend the notion of list coloring to hypergraphs. The list chromatic number χ`(H)

of a hypergraph H is the minimum integer s such that for every assignment of a list of s colors to

each vertex of H, there is a vertex coloring of H assigning to each vertex a color from its list, with no

monochromatic edges.

An intriguing property of list coloring of graphs, which is not shared by ordinary vertex coloring,

is the fact that the list chromatic number of any (simple) graph with a large average degree is large.

Indeed, it is shown in [4] that the list chromatic number of any graph with average degree d is at least

(12 − o(1)) log2 d, where the o(1)-term tends to zero as d tends to infinity. For r ≥ 3, simple examples

show that there is no nontrivial lower bound on the list chromatic number of an r-graph in terms of

its average degree. However, such a result does hold for simple hypergraphs. Recall that a hypergraph

is simple if every two of its distinct edges share at most one vertex. The following result is proved in

[10].
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Theorem 3.2 For every fixed r ≥ 2 and s ≥ 2, there is a d = d(r, s), such that the list chromatic

number of any simple r-graph with n vertices and nd edges is greater than s.

A similar result for the special case of d-regular 3-uniform simple hypergraphs has been obtained

independently in [53]. A subsequent proof with a better upper estimate for d(r, s) appears in a recent

paper of Saxton and Thomason [67].

The proof of the theorem is probabilistic and proceeds by induction on r. For simplicity we only

outline the idea for the case of graphs with a large minimum degree. Let G = (V,E) be a graph with n

vertices and minimum degree d. Choose a random set B of about n/
√
d vertices and assign a random

list of size s out of a set S of 2s− 1 colors to each vertex of B. A simple computation shows that if,

say, d > 10s, then with positive (and in fact high) probability many of the vertices v not in B have

every subset of size s of S assigned to at least one of their B-neighbors. Fix such a choice of the set

B and lists of colors to its vertices. Note now that for each fixed choice of a coloring f of the vertices

of B from their lists, at least s distinct colors appear on the B-neighbors of any vertex v of the type

mentioned above. If we now assign a random list to such a vertex v, then with probability at least(
2s−1
s

)−1
> 4−s it will be a forbidden list, that is, it will consist only of colors assigned by f to its

neighbors, showing that the coloring f of the B vertices cannot be extended to a proper list coloring

of the whole graph. There are only s|B| possible colorings of the vertices of B from their lists, and the

probability that no vertex v gets a forbidden list is small enough to ensure that this will not happen

for any of these colorings. This argument suffices to show that the list chromatic number of G exceeds

s. The hypergraph case is more complicated, and we do not include it here.

The argument above suggests an interesting algorithmic question: given a graph G = (V,E) with

minimum degree d > 10s, can we find, deterministically and efficiently, lists of size s for each v ∈ V
so that there is no proper coloring of G assigning to each vertex a color from its list? This problem

is open, as is the simpler NP version of it, that is, that of finding sets Sv and providing a certificate

that there is no proper coloring using the lists. Here the sets do not have to be found efficiently, and

we only require that one will be able to check the certificate efficiently.

The last theorem has an interesting application in Euclidean Ramsey Theory - yet another subject

initiated by Erdős and his collaborators. A well known problem of Hadwiger and Nelson is that of

determining the minimum number of colors required to color the points of the Euclidean plane so

that no two points at distance 1 have the same color. Hadwiger showed already in 1945 that 7 colors

suffice, and Moser and Moser noted in 1961 that 3 colors do not suffice. These bounds have not been

improved, despite a considerable amount of effort by various researchers, see [55, pp. 150-152] and the

references therein for more on the history of the problem.

A more general problem is considered in [35], [36], [37], where the main question is the investigation

of finite point sets K in the Euclidean space for which any coloring of an Euclidean space of dimension

d by r colors must contain a monochromatic copy of K. There are lots of intriguing conjectures

that appear in these papers. One of them asserts that for any set K of 3 points which do not

form an equilateral triangle the minimum number of colors required for coloring the plane with no

monochromatic isometric copy of K is 3. The situation is very different for list coloring. A simple
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Corollary of the theorem above is the following.

Theorem 3.3 ([10]) For any finite set X in the Euclidean plane and for any positive integer s, there

is an assignment of a list of size s to every point of the plane, such that whenever we color the points

of the plane from their lists, there is a monochromatic isometric copy of X.

3.4 Turán numbers and Dependent random choice

For a graph H and an integer n, the Turán number ex(n,H) is the maximum possible number of edges

in a simple graph on n vertices that contains no copy of H. The asymptotic behavior of these numbers

for graphs H of chromatic number at least 3 is well known, and is determined by the Erdős-Stone-

Simonovits Theorem. For bipartite graphs H, however, the situation is considerably more complicated,

and there are relatively few nontrivial such graphs H for which the order of magnitude of ex(n,H) is

known. A rather general result with a relatively simple proof, described in [11], asserts that for every

fixed bipartite graph H in which the degrees of all vertices in one color class are at most r, there is

a constant c = c(H) so that ex(n,H) ≤ cn2−1/r. This is tight for all values of r, as it is known that

for every r and t > (r − 1)!, there is a simple graph with n vertices and at least cr,tn
2−1/r edges,

containing no copy of the complete bipartite graph Kr,t.

The basic tool in the proof is a simple and yet surprisingly powerful method, whose probabilistic

proof may be called “dependent random choice”, as it involves a random selection of a set of vertices,

where the choices are dependent in a way that increases the probability that r-tuples of the selected

vertices will have many common neighbors. An early version of this lemma has first been proven in

[50] and [57] (see also [58]), and many variants and extension have been obtained afterwards. See

[44] for a survey containing lots of applications in Extremal Graph Theory and in Additive Number

Theory.

One of the basic versions of the lemma is the following.

Lemma 3.4 ([11]) Let a, b, n, r be positive integers. Let G = (V,E) be a graph on |V | = n vertices

with average degree d = 2|E|/n. If

dr

nr−1
−
(
n

r

)(
b− 1

n

)r
> a− 1 , (1)

then G contains a subset A0 of at least a vertices so that every r vertices of A0 have at least b common

neighbors.

The proof proceeds by considering a (multi)-set T of r random vertices of G, chosen uniformly with

repetitions. Let A be the set of all vertices of G which are neighbors of all members of T . The crucial

fact is that the expected value of |A| is large, by linearity of expectation and convexity, whereas the

expected number of r-tuples of vertices of A with a small number of common neighbors is small, as it

is not likely that all vertices of T fall into such a small set of common neighbors. The set A0 can thus

be obtained from A by deleting a vertex from each such undesirable r-tuple.
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The lemma above easily implies the following result, that can also be derived from an earlier result

of Füredi [47] proved by a different method, in response to a question of Erdős.

Theorem 3.5 Let H be a bipartite graph with maximum degree r on one side. Then there exists a

constant c = c(H) > 0 such that

ex(n,H) < cn2−
1
r .

The method yields several related results, but does not suffice to settle the following problem, suggested

by Erdős.

Problem 3.6 ([33]) A graph is r-degenerate if every subgraph of it contains a vertex of degree at

most r. Is it true that for every fixed r-degenerate bipartite graph H, ex(n,H) ≤ O(n2−1/r)?

As shown in [11], the method of dependent random choice with some twists does imply that for each

such H on h vertices, ex(n,H) ≤ h1/2rn2−
1
4r .

3.5 Hypergraph coloring

Erdős realized already in the 60s that probabilistic methods are powerful in the study of hypergraph

coloring problems. Several examples appear in [29], [30], [38]. A k-uniform hypergraph is two-colorable

if it has a vertex coloring by two colors so that no edge is monochromatic. In [29], [30] Erdős applies

probabilistic arguments to prove that the minimum possible number of edges in a k-hypergraph that

is not two-colorable is at least 2k−1 and at most O(k22k). The lower bound has been improved several

times, and all the improved proofs apply the probabilistic method. The current record is Ω(
√

k
log k2k),

due to Radhakrishnan and Srinivasan [65]. See also [64] for a weaker Ω(k1/42k) bound, with a beautiful

short (probabilistic) proof.

One of the main motivations for proving the Lovász Local Lemma in [38] has also been the study of

the minimum possible number of edges of a simple k-uniform hypergraph which is not two-colorable.

A recent result of Blais, Weinstein and Yoshida [16] deals with a new intriguing variant of hypergraph

coloring. In the rest of this section we describe this notion and present some new results about it.

A hypergraph F is t-intersecting if the intersection of any two of its edges is of size at least t. A

vertex coloring of F is c-strong if any edge F contains vertices of at least min{|F |, c} colors. Let χ(t, c)

denote the minimum f so that any t-intersecting hypergraph admits a c-strong coloring with at most

f colors, (∞ if there is no such f).

This notion is defined in [16] where the authors observe that χ(t, c) is infinite for all t ≤ c − 2,

χ(c− 1, c) ≥ 2c− 1 and that χ(t, c) ≥ 2c− 2 for all t ≥ c ≥ 2, and prove that χ(c, c) <
√
cec and that

for all t ≥ 2c, χ(t, c) ≤ 2c2.

They raise several questions regarding the determination of this function, and in particular note

that their method does not provide any sub-quadratic (in c) bound for χ(t, c) for any t, and ask

whether or not for each fixed c the limit of χ(t, c) as t tends to infinity is 2c− 2.

The following theorem nearly settles this question.
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Theorem 3.7 For every fixed c ≥ 2 there exists a t0 = t0(c) ( ≤ O(c2) ) so that for all t > t0,

χ(t, c) ≤ 2c− 1.

The proof follows the basic approach of [16], showing that a random coloring with 2c−1 colors provides

a c-strong coloring with positive probability bounded away from zero. We note that the example of

all subsets of cardinality at least (n+ t)/2 of an n-element set, where n� t2, shows that for a random

coloring 2c− 2 colors do not suffice, as with high probability the largest c− 1 color classes will contain

more than (n+ t)/2 elements. A more careful analysis sketched at the end of this section shows that

for random colorings with 2c− 1 colors, the O(c2) estimate for the intersection t is optimal as well.

We need a result about the biased measure of t-intersecting hypergraphs. A sharp version of this

result was first proved in [2], and can be deduced from the main result of [1]. See also [14], [24], [46]

for subsequent related statements. Here we give a much simpler, self-contained proof of a somewhat

weaker estimate that suffices for our purpose.

For a hypergraph F and a real p, 0 ≤ p ≤ 1/2, let µp(F) denote the p-measure of F , that

is, the probability that a random set of vertices of F obtained by selecting each vertex, randomly

and independently, with probability p, forms an edge in F . Thus µp(F) =
∑

F∈F µp(F ), where

µp(F ) = p|F |(1 − p)n−|F |, and n is the number of vertices of F . It is convenient to formulate the

results in terms of escape probabilities of random walks. A p-biased random walk of length n is a

sequence of independent, identically distributed random variables X1, X2, . . . , Xn where each Xi is +1

with probability p and −1 with probability 1− p. Put Si =
∑i

j=1Xj , let W (p, t, i) be the probability

that Si ≥ t and let W (p, t) denote the probability that there exists some i so that Si ≥ t.
Associate each subset F of [n] = {1, 2, . . . , n} with an assignment of values to the variables

X1, X2, . . . , Xn by defining Xi = 1 if i ∈ F and Xi = −1 otherwise. With this assignment, µp(F ) is

exactly the probability of the corresponding walk.

Let Wi denote the set of all walks for which Si ≥ t, and let Fi denote the corresponding family of

subsets. It is easy to see that this family is t-intersecting. Indeed, if two sets in the family correspond

to the walks (X1, X2, . . . Xn) and (Y1, Y2, . . . , Yn), then
∑i

j=1(Xj +Yj) ≥ 2t and as each term Xj +Yj

lies in {−2, 0, 2}, at least t of the terms are 2, providing the required intersection. Therefore, for every

i ≤ n there is a t-intersecting family of subsets of [n] of p-measure at least W (p, t, i). It turns out that

the maximum possible p-measure of such a family is exactly maxi≤nW (p, t, i).

Lemma 3.8 ([2]) For any t-intersecting hypergraph F on n vertices and any p < 1/2, µp(F) ≤
maxi≤nW (p, t, i).

Here we give a simple proof of the following weaker estimate

Lemma 3.9 For any (finite) t-intersecting hypergraph F and any p < 1/2, µp(F) ≤W (p, t).

Proof: We apply shifting, which is a common technique in the area, see, e.g., [45]. Let [n] be the

set of vertices of F . For each 1 ≤ i < j ≤ n define an operator Sij on the edges of F , where for each
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F ∈ F , Sij(F ) = F − {j} ∪ {i} if j ∈ F, i 6∈ F and F − {j} ∪ {i} 6∈ F , and Sij(F ) = F otherwise.

Put Sij(F) = {Sij(F ) : F ∈ F}. Is is easy and well known that if F is t-intersecting so is Sij(F). It

is also clear that Sij(F) has exactly the same p-measure as F . Moreover, if Sij(F) differs from F ,

then the sum of elements in all edges of Sij(F) is smaller than that of the elements in all edges of

F . We can thus keep applying the shift operators Sij to our hypergraph until the process stabilizes,

providing a left-shifted family of subsets, which, with a slight abuse of notation, we also denote by

F . By the comments above this is still t-intersecting and has the same measure as the original family.

The important property of the shifted family is that if it contains an edge F , it also contains every set

obtained from F by shifting elements to the left, that is, by replacing some elements of F by smaller

elements not in F .

We claim that in the shifted family we cannot have a set corresponding to a walk whose partial

sums are all at most t− 1. This is because if we have such a set, we can show that it intersects some

shifted copy of itself by less than t elements, contradiction. Indeed, let F be such a set. Using F ,

define another set G as follows. Consider the elements of F one by one, in order, starting with the

smallest. The first (smallest) t− 1 elements of F stay in G. Each subsequent element of F in its turn

is replaced by the smallest element which is not in F and is also not one of the elements placed already

in G. We claim that in this process, every element of F besides the first t− 1 is replaced by a smaller

element (which is not in F ). Indeed, otherwise the first time in which the process fails to replace a

member of F by a smaller member is some element ft−1+i in F , where the elements of F are listed in

increasing order, so that there are only i− 1 non-elements of F smaller than it. But this means that

the random walk corresponding to F has t− 1 + i times +1 and only i− 1 times −1 up to this point,

meaning its value at this point is t, contradicting the assumption. Therefore G is obtained from F by

left shifts, and as F is shifted, G belongs to F as well. But by construction G intersects F in only

t− 1 elements, contradicting the assumption that F is t-intersecting.

The claim about the measure follows, completing the proof. 2

We need the following standard estimate for Binomial distributions. See, e.g., [13], Theorem A.1.4.

Lemma 3.10 Let Yi, 1 ≤ i ≤ n be independent identically distributed random variables where each Yi

is +1 with probability p and −1 with probability 1− p, and put Y =
∑n

i=1 Yi. Then the probability that

Y − E(Y ) ≥ b is at most e−b
2/2n.

Corollary 3.11 Suppose c ≥ 2, and put p = c−1
2c−1 . Then:

(i) For all t and i, W (p, t, i) ≤ e−t/c. In particular, if t ≥ 2c2 then W (p, t, i) < e−2c.

(ii) For all t ≥ 8c2, W (p, t) < e−2c.

Proof: Part (i) follows by substituting n = i, E(Y ) = − i
2c−1 and b = t+ i

2c−1 in Lemma 3.10. This

gives

W (p, t, i) ≤ e−b2/(2i) ≤ e−4it/[2i(2c−1)] = e−2t/(2c−1) ≤ e−t/c,

as needed. To prove part (ii) note that if for a random walk X1, X2, X3, . . . no partial sum Sit =
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∑
j≤itXj satisfies

Sit ≥ t/2 (2)

then all partial sums Si stay below t. We can thus bound W (p, t) by the sum of probabilities of the

events in (2), which we denote by Ei. By Lemma 3.10 the probability of Ei is at most

e−(
it

2c−1
+ t

2
)2/(2it) ≤ e−

(i+c)2t

8c2i .

The right hand side is at most e−t/(2c) for all i, since (i+ c)2 ≥ 4ic, and it is also at most e−it/(8c
2) for

all i. Therefore, for t ≥ 8c2, the sum over all i ≥ 1 is smaller than

8c2∑
i=1

e−t/(2c) +
∑
i>8c2

e−it/(8c
2) < 8c2e−t/(2c) + e−t (3)

where the last term is an upper estimate for the infinite geometric series
∑

i>8c2 e
−it/(8c2). For t ≥ 8c2

(and c ≥ 2) the quantity in (3) is smaller than e−2c, completing the proof. 2

Proof of Theorem 3.7:

Let F be a t-intersecting hypergraph, and let [n] be its set of vertices. Add to the hypergraph any

subset of [n] that contains a member of F and note that the modified hypergraph is still t-intersecting

and its p-measure µp(F) is precisely the probability that a random subset of [n] obtained by picking

each element independently with probability p contains an edge of the hypergraph. Put p = c−1
2c−1 , and

let ε be smaller than
(
2c−1
c−1
)−1

. Choose t0 so that W (p, t) < ε for all t > t0. Note that by Corollary

3.11, part (ii) t0 ≤ O(c2). Now color randomly by 2c − 1 colors. The probability there is a set that

gets only c− 1 colors is bounded by
(
2c−1
c−1
)
µp(F), implying the desired result. 2

Remarks:

• The proof above together with Lemma 3.8 and Corollary 3.11, part (i) shows that the statement

of Theorem 3.7 holds with t0 = 2c2 (with room to spare). Lemma 3.9 and Corollary 3.11, part

(ii) provide a simple, self-contained proof that works with a somewhat larger value of t0 (which

is still O(c2)).

• The above argument, with an appropriate choice of parameters, supplies a tradeoff between the

number of colors used and the required size of the intersection. In particular it implies, for

example, that χ(2c, c) ≤ O(c).

• As mentioned above, if we apply random colorings, both the term 2c − 1 and the O(c2) upper

estimate for t0 in Theorem 3.7 are tight. The fact that 2c−1 is tight for any fixed t is very simple,

as mentioned above. Here is a sketch of the argument that for 2c− 1 colors the O(c2) estimate

for t is tight. Without making any attempt to optimize the constants, consider the family of all

subsets of cardinality at least n/2 + c2/10000 in an n element set [n], where n = (2c− 1)3/10000

and c is a large integer. Consider a random coloring of [n] by 2c − 1 colors. For a fixed color
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i, the expected number of elements colored i is n/(2c − 1) = (2c − 1)2/10000 and the variance

is n 1
2c−1(1 − 1

2c−1) which is roughly (2c − 1)2/10000. Thus, the standard deviation is roughly

(2c− 1)/100. Expose the color classes in order, two at a time, c− 1 times, leaving the final color

class to the end. It is not difficult to show that for any given history, assuming that at least

some n/2c elements are not yet in the color classes exposed (as is the case with high probability)

when we expose the next pair of color classes the probability that the difference between their

sizes is at least, say, c/200, exceeds 1/2. Thus with high probability we will have at least c/4

pairs with difference at least c/200. If this is the case, then by picking the larger color class

of every pair we will cover at least c/4 × c/200 = c2/800 more elements than by picking the

smaller class in each pair, and as with high probability the last color class is not bigger than

2 · (2c− 1)2/10000 < 8c2/10000 these c− 1 large color classes will contain, with high probability,

a full edge. This shows that t0 has to be at least Ω(c2).

• The study of the random variant of the problem of determining χ(t, c) seems interesting. This

is the problem of determining or estimating the smallest possible f = f(t, c) so that a random

vertex coloring of any t-intersecting hypergraph by f colors is c-strong with probability at least,

say, 0.1.

Note that the two functions f and χ differ. Indeed, the function χ(t, 2) is known for all values

of t, as described in [16]. Specifically, χ(0, 2) = ∞, χ(1, 2) = 3 and χ(t, 2) = 2 for all t ≥ 2. In

contrast, it is easy to see that f(0, 2) = f(1, 2) = ∞. This is because for every fixed number

of colors r, a random r-coloring of the vertices of a star with m > r edges will contain a

monochromatic edge with probability that tends to 1 as m tends to infinity. (The same argument

implies that f(c − 1, c) = ∞ for all c > 2.) The arguments in [16] and here also show that

f(t, 2) = 3 for all t ≥ 2.

The results here and the earlier ones in [16] show that the function f is somewhat better under-

stood than χ. In particular, we have shown here that for every c and all t > 2c2, f(t, c) = 2c−1.

4 Applications in Theoretical Computer Science

The results and questions of Erdős have not been motivated by applications in Theoretical Computer

Science (TCS), and yet the impact of his work on the development of TCS has been substantial. This

short section includes some brief comments on this aspect of his work, focusing on applications of

probabilistic techniques.

The Probabilistic Method plays a crucial role in the development of randomized algorithms. The

quest for explicit constructions advocated time and again by Erdős is one of the early drives for

derandomization - the process of converting randomized algorithms into deterministic ones. A specific

problem he kept repeating over the years is that of finding explicit constructions of Ramsey graphs

- graphs on n vertices in which the largest clique and largest independent set are of size O(log n), as

well as explicit examples providing lower bounds for off-diagonal Ramsey number, like r(3, n) - see
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[32].

The most successful attempts to find good explicit constructions of Ramsey graphs led to im-

proved constructions of dispersers which are useful for derandomization, see [15]. Moreover, these

constructions rely heavily on sum-product theorems initiated in the work of Erdős and Szemerédi [43]

(although these are finite field analogs of the Erdős - Szemerédi results).

The method of conditional expectations, which is one of the very basic techniques in derandom-

ization, was initiated in the paper of Erdős and Selfridge that introduced the study of combinatorial

games [42].

Another useful technique which we only mention in passing is the Erdős-Rado delta-system (sun-

flower) method, that appears in work on circuit complexity and on matrix multiplication. A large

body of work in Computational Geometry is also motivated by the results and questions of Erdős.

Finally, the area of Graph Property Testing (c.f., e.g., [13], Chapter 17), which is closely related

to questions in computational learning and approximation algorithms, has its roots in old questions

and results of Erdős. We do not include here a discussion of the general area, and only mention that

one of the basic questions studied in it deals with the local and global nature of graph coloring. The

specific question here is the ability to distinguish between graphs on n vertices that are k-colorable

and graphs from which one has to delete at least εn2 edges to get a k-colorable graph, by sampling a

random induced subgraph on a small number of vertices. The first papers dealing with this question

are [19] by Erdős and his collaborators and [66]. Better quantitative results appear in [48], where the

systematic study of Graph Property Testing has been initiated, and in [9]. As is the case with so many

other topics, the initial questions and results here can be traced back to the work of Paul Erdős.

Note added in proof: Very recently, Eberhard, Green and Manners have proved in [25] that the

sum-free subset constant discussed in subsection 3.2 is in fact 1/3. The problem of deciding whether

or not every set of n nonzero integres contains a sum-free subset of cardinality at least n/3 + w(n),

where w(n) tends to infinity with n, remains open.
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[36] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean

Ramsey theorems. II. Infinite and finite sets (Colloq., Keszthely, 1973) Vol. I, pp. 529–557. Colloq.

Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
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[54] S. Janson, T.  Luczak and A. Ruciński, Random Graphs, Wiley, New York, 2000.

[55] T. Jensen and B. Toft, Graph Coloring Problems, John Wiley and Sons Inc., New York, 1995.

[56] J. H. Kim, The Ramsey number R(3, t) has order of magnitude t2/ log t, Random Structures and

Algorithms 7 (1995), 173-207.
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