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Abstract

A sender wants to accurately convey information to a receiver who has some, possibly related,
data. We study the expected number of bits the sender must transmit for one and for multiple
instances in two communication scenarios and relate this number to the chromatic and Korner

entropies of a naturally defined graph.

1 Introduction

We study the expected number of bits a sender must transmit to convey information to a receiver
who has some, possibly related, data. We consider single- and multiple-instances of two related
scenarios.

This section describes the two scenarios and the results obtained. We begin with the familiar,
standard source-coding scenario, dubbed restricted inputs because the inputs are restricted to

belong to a given support set.

1.1 Restricted inputs

(X,Y) is a pair of random variables distributed over a countable product set X' x Y according to
a probability distribution p(z,y). A sender Py knows X while a receiver Py knows Y and wants
to learn X without error. What is the expected number L of bits Py must transmit?

We assume: (1) communication is permitted only from Py to Pyj; (2) there are no transmission
errors; (3) Py must be able to tell when Py’s message ends; (4) both communicators use an
agreed-upon protocol designed with knowledge of the underlying distribution p.

Formally, the support set of (X,Y) is the set

S (2,y) : plz,y) > 0}
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of possible (z, y) pairs. Distinct z,2" € X are confusable if there is a y € Y such that (z,y),(2',y) €
S. A (zero-error, one-way, deterministic) protocol for the restricted inputs scenario is a mapping
¢+ X — {0,1}* such that if z and 2’ are confusable then ¢(z) is neither equal to, nor a prefix of

¢(z'"). The expected number of bits transmitted by Py under ¢ is

$) X 3" p(z)|é(z)], (1)

reX

It can be shown that L is always achieved by a deterministic protocol. Therefore, the minimum

expected number of bits that Py must transmit is
L = min{(¢) : ¢ is a restricted-input protocol for (X,Y)}. (2)

Example 1(a) For e € [0,1) let (X,Y) be distributed over {1,...,n} x {1,...,n} according to

1—¢

def = forz =y
pe(z,y) = { P ’
7— forz #£y.

i

When ¢ = 0, X = VY, hence L = 0. When ¢ > 0, any two distinct elements of {1,...,n} are

confusable, hence L > logn, with equality when 7 is a power of 2. |

When Y is independent of X (e.g., when Y is a constant, or inexistent) classical results show
that
HX)<L<HX)+1

where

e 1
(OE 3 welog oy

is the binary (all logarithms are to the base 2) entropy of X. For general (X,Y), the only known

bounds are

HX|Y)<L<HX)+1 (3)

where

HXIV)E S p(y Zp (z]y) 10g

is the conditional binary entropy of X given Y. While the bounds in (3) are tight for some dual

pairs, both are arbitrarily amiss for others.

Example 1(b) For the distribution p. defined in part (a) of this example, H(X) = logn while
H(X|Y) = h(€) + clog(n —1). When ¢ = 0, the lower bound, H(X|Y), is tight and the upper
bound, H(X), is amiss by an arbitrary amount. When ¢ > 0 and n is a power of 2, the upper

bound is tight and the lower bound is amiss by an arbitrary amount. |

We provide bounds on I that are tight up to an additive logarithmic term.



1.2 Unrestricted inputs

Prior to introducing unrestricted inputs, we rephrase the restricted-inputs scenario.

Definition (1) and Equation (2) show that L depends on (X,Y) only via its support set .S and
the marginal distribution p(z) of X — the precise values of the non-zero conditional probabilities
p(y|z) are irrelevant. Therefore L is also the expected number of bits Py must transmit if he knows
X while Py knows a value y (not necessarily a random variable) such that (X,y) € S, and wants
to determine X.

In the unrestricted-inputs scenario, by contrast, Py knows X and Py knows any y € Y. Still
Py is required to correctly determine X only when (X,y) € S. When (X,y) € S, Py may decide
on any value of X. £ is the expected number of bits Py must transmit in this model.

Restricted-inputs protocols guarantee that if (X, y) € S then Py can determine X and tell when
Py’s message ends. If however (X,y) ¢ S, then Py may not only miscalculate Py’s value, but he
may not even be able to tell when Py’s message ends. In unrestricted-inputs protocols, Py can
always tell when Py’s message ends, but is assured of correctly calculating X only if (X,y) € 5.

Protocols for unrestricted inputs must therefore guarantee that the set of possible messages sent
by Py is prefix free. Without loss of generality assume that all A’ values are possible. A (zero-
error, one-way, deterministic) protocol for the unrestricted inputs is a mapping ¢ : X — {0,1}*
such that for every z,2" € X, ¢(z) is not a proper prefix of ¢(z'), and, if 2 and z" are confusable
then ¢(z) # ¢(z').

Again, £ is achieved by a deterministic protocol, hence
L = min{l(¢) : ¢ is an unrestricted-input protocol for (X,Y)}. (4)

It follows that
L<L.

We provide upper- and lower-bounds on £ that are one bit apart.

1.3 Multiple instances

We also study the number of bits required for n independent instances of the two scenarios.

In the restricted inputs scenario, (X1,Y1),...,(X,,Y,) are independent copies of (X,Y). Py
knows X1,...,X, and would like to convey them without error to Py who knows Yi,...,Y,. L, is
the total expected number of bits Py must transmit. Equivalently, L, is the total expected number
of bits Py must transmit when he knows n independent drawings X1,...,X, of X while Py knows
some yi,...,Y, such that (X;,y;) € S for all 7 € {1,...,n} and wants to determine Xq,...,X,,.

In the unrestricted inputs scenario, Xi,,...,X, are independent copies of X. Py knows
Xq,...,X, while Py knows any y1,...,4, € V" and wants to accurately determine X; for all ¢
such that (X;, %) € S. L, is the total expected number of bits Py must transmit. Clearly, for
every (X,Y) pair and every n,

L,<L,.

w



We are mostly interested in the number of bits required for a large number of instances. Let

the amortized complexities

g 1. a1
Lam 4 Jim —L, and Lam e im —L,

n—co n n—oo n
denote the expected per-instance, or amortized number of bits that must be transmitted for an
asymptotically-large number of instances of restricted and unrestricted inputs respectively. By
subadditivity, the limits exist, and are the smallest expected number of bits that must be trans-
mitted per instance.

We determine L., exactly, and show that L,n can be significantly smaller than either L or

Lam. Since the bounds for unrestricted-inputs are simpler to state than those for restricted inputs,

from now on, we describe them first.

1.4 Results

Associated with the dual source (X,Y) is a characteristic graph G, defined by Witsenhausen [17].

Its vertex set is X' and two distinct vertices 2 and 2z’ are connected if they are confusable.

Example 1(c) For the distribution p. defined in part (a) of the example, the characteristic graph
G consists of the vertex set {1,...,n} and X is distributed uniformly over its vertices. When € = 0,

G is empty. When € > 0, G is complete. O

A probabilistic graph consists of a graph and a random variable distributed over its vertices. It
is easy to verify that the probabilistic graph (G, X') determines L. We bound L, L, Lam, and Lam
using various entropies of (G, X ), mentioned here, but formally defined in later sections.

The entropy of a coloring of a probabilistic graph was used by Boppana [3] to separate the
capabilities of parallel-computing models. In Section 2 we define the chromatic entropy H, (G, X)
of a probabilistic graph (G, X') to be the minimum entropy of its colorings. First, we show that for
every (X,Y) pair,

H(G,X) < £ < Hy(G,X)+1. (5)

Both bounds can be easily shown to hold for some random pairs.
For restricted-inputs, messages must be prefix free only over graph edges. Orlitsky [14] showed
that this weaker requirement cannot help reduce the worst-case number of bits. This is not the

case here. We prove that
H(G,X)-log H(G,X)~loge < L < H(G,X)+1. (6)

The upper bound is clearly tight for some random pairs, and we show that the lower bound is

nearly tight as well: for arbitrarily-high values of I, we present a dual source such that
L<H(G,X)-logH(G,X)—loge + 2. (7)

Graph entropy was defined By Koérner [9] in 1973. In recent years it was used to derive: lower

bounds on perfect hashing (Fredman and Komlés [7], Kérner [10] and Kérner and Marton [12]),



lower bounds boolean formulae size (Neumann, Ragde and Wigderson [13] and Radhakrishnan [15]),
algorithms for sorting (Kahn and Kim [8]), and an alternative characterization of perfect graphs
(Csiszar, Korner, Lovdsz, Marton and Simonyi [5]). For an excellent review of graph entropy and
its applications, see Simonyi [16]. To distinguish the graph- and chromatic-entropies of a graph G,
we call G’s graph entropy the Kérner entropy, denoted Hi(G, X).

In Section 3 we show that for every dual source,
L > Hy(G, X). (8)

While we do not know how tight a lower bound the Kérner entropy is for the single instance
case, in Section 4 we show that it is precisely the asymptotic per-instance number of bits for the
unrestricted-inputs scenario.

We show that both £, and L, can be expressed in terms of the chromatic entropy of G¥™
and GA", the nth order OR and AND powers of G (defined therein). We prove that for every
probablistic graph (G, X),

lim lHX(GWL,XW)) = Hy(G, X).

Therefore, for every (X,Y) pair,

/Cam = Hk(GvX)

A ‘single-letter’ formulation for L., remains elusive. However, we show that for arbitrarily large

values of I there are dual sources where

Lam < g + O(E)

It follows that L., can be significantly smaller than both L and Lan,.
Finally, in Section 5, we consider the relations between the various entropies used in the paper.
It is easy to show that H,(G,X) < H(X) for every dual source, and therefore the upper bound

in (6) is at least as tight as that in (3). In Subsection 5.1 we show that
(G, X) 2 H(XT]Y)

for every dual source, hence the lower bound in (8) also improves on (3).

Combining Inequalities (6) and (8), we see that for all dual sources,

Hence we “almost know” that the Kérner entropy of every graph is lower than its chromatic entropy.
In Subsection 5.2 we formalize this statement. Via a proof that sheds some intuitive light on the

definition of graph entropy, we show that for every probabilistic graph (G, X),

Hy (G, X)< H (G, X).



2 Chromatic entropy

We define the chromatic entropy of a probabilistic graph and use it to bound £ and L. All bounds
are tight for some (X,Y) pairs.
If X is a random variable distributed over a countable set X’ and ¢ is a function defined over

X, then ¢(X) is a random variable with entropy

He(X)= 3 ple” (7)) log———
) p(c™(7))
where ¢! is the inverse of ¢ and a set’s probability is the sum of the probabilities of its elements. If
X is the vertex set and cis a coloring of a graph, then ¢™1(7) is a color class, a set of vertices assigned
the same color. ¢ partitions X" into color classes and H(c(X)) is the entropy of the partition. It
was used by Boppana [3] to analyze certain parallel-computing models.

The chromatic entropy of a probabilistic graph (G, X)) is defined as
ltlx(G,X)d:ef min{H (¢(X)): cis a coloring of G'},
the lowest entropy of any coloring of G.

Example 2 The empty graph can be colored with one color hence has chromatic entropy 0.
The complete graph requires a different color for every vertex hence has chromatic entropy H(X).
The pentagon graph with uniform distribution over the vertices requires three colors, one assigned
to a single vertex and each of the other two assigned to two vertices, hence has chromatic entropy
H(.4,.4,.2)~ 1.52. The 5-cycle with distribution py = .3, p1 = p2 = ps = .2, and p3 = .1, attains
its lowest coloring-entropy when the color classes are {0,2}, {1,4}, and {3}. Its chromatic entropy
is therefore H(.5,.4,.1) = 1.36. o

We use two data-compression results. An encoding of a random variable X with support set X
is a 1-1 mapping ¥ : X' — {0,1}*. The expected length of v is )" .y p(x)|1(z)|. The 1-1 encoding
length {1_1(X ) of X is the minimum expected length of any of its encodings. Alon and Orlitsky [1]

and Wyner [18] showed that for every random variable X,
H(X)—log(H(X)+1)—loge < l1_1(X) < H(X), (9)

and that both bounds are achievable. An encoding 1) is prefix-free if no element in its range prefixes
another. The prefiz-free encoding length, (s (X ), of X is the minimum expected length of any of

its prefix-free encodings. A basic data-compression result says that for every random variable X,
H(X)< Il (X)<H(X)+1. (10)
We now bound £ and L in terms of H, (G, X).

Theorem 1  For every dual source,

H(G.X) < £ < Hy(G,X)+ 1.



Proof: Upper bound. Take a coloring of G achieving H, (G, X ). Any prefix free encoding of the
colors corresponds to a protocol for unrestricted-inputs. By (10), there is a prefix-free encoding of
the colors whose expected length is at most H,(G, X )+ 1.

Lower bound. Every protocol for unrestricted-inputs can be viewed as a coloring of G and a
prefix-free encoding of the colors (the identity encoding). The entropy of the colors is at least
H, (G, X), hence, by (10), the protocol’s expected length is at least H,(G, X)) bits. O

For restricted-inputs, messages must be prefix free only over graph edges. As mentioned in
the introduction, this weaker requirement cannot help reduce the worst-case number of bits. At
first glance, this may appear to be the case here too. Let ¢ be a protocol with the lowest possible
entropy — H, (G, X). Two color classes of ¢ are connected if they contain two connected vertices,
one in each class. Every two color classes of ¢ are connected because two unconnected classes can
be combined to reduce the number of colors and the coloring entropy of ¢. Therefore, the strings
assigned to any two color classes cannot prefix each other, and by (10), the expected encoding
length of ¢ is at least H, (G, X).

This argument, though correct, does not prove that the upper bound is tight. It is sometimes
beneficial to use a sub-optimal coloring, or even partition a color class, and then use a non prefix-
free encoding of the colors. We first prove a weaker bound, and then show that it is sometimes

tight.

Theorem 2  For every dual source,
Hx(gaX) - 1Og(HX(g7X) + 1) - 10g€ S E S Hx(gaX) + L.

Proof: The upper bound follows from that of Theorem 1. To prove the lower bound, note that
every protocol for (X,Y') can be viewed as a coloring of G and a 1-1 encoding of the colors (the
identity encoding). The entropy of the colors is at least H, (G, X ) hence, by (9), the protocol’s
expected length is at least H,(G, X)— log(H,(G, X )+ 1) — loge bits. O

Example 1(a) Consider the dual source (X,Y) in example 1(a). When ¢ = 0, the characteristic
graph, G, is empty, hence H,(G, X), £ and L are all 0. When ¢ > 0, G is the complete graph on n
vertices, hence H, (G, X), £ and L are all H(X). ]

Theorem 3  For arbitrarily-high H,(G, X), there is a dual source where
L<H(G X)-logH (G, X)—loge+2+o(l). ]

The proof is by way of an example which is easiest described using a dual source of infinite support.
However, the support can be made finite while retaining the essential aspects of the problem.
Instead of the dual source, we describe its characteristic graph G. As noted before, the two are
equivalent.

The vertices of G are the nodes of an infinite, rooted, complete binary tree. Two distinct vertices

z and 2’ are connected if and only if neither is an ancestor of the other (parent, grandparent, etc.).



The root has 0 probability and each depth-d (> 1) vertex has probability 7)(1_2# where p is a

(tiny) parameter. Figure 1 depicts the first three levels of G. The edges are represented by solid

lines; the dashed lines show the original tree and are drawn solely for clarity.

N
. ~

p(1-p)/4 p(1-p)/4 p(1-p)/4 p(1-p)/4

Figure 1: Top three levels of (G, X)

For a more vivid illustration, let the tree represent the family tree of a family whose members
engage in inheritance disputes. A member never disputes any of his/her ancestors or descendants,
but everyone else is a potential rival. Py knows two family members involved in a dispute (an edge
in the tree) and Py knows one of them, say the one who won the dispute. The node probabilities
represent the likelihood that the corresponding family member will engage in, and win a dispute.
We are interested in the expected number of bits that Py must transmit in order to inform Py of
the winner.

Corollary 1 below shows that
1 1
Hx(gaX): 5+10g5+10g6_2+0(p)7 (11)
while Lemma 3 proves that

L<-=, (12)

S|

establishing Theorem 3.
Figure 2 depicts a partition of G’s vertices into independent sets (only five top levels shown).
In Lemma 2 we prove that this partition, viewed as a coloring, achieves H, (G, X). The proof is

based on a simple property of entropies, stated and proved in Lemma 1.

Lemma 1  Let (a, p1,p2,ps,...) be a probability distribution where p; > py. Then
H(p1 + a,p2,ps,...) < H(pi,pa + a,p3,...).

Proof: By elementary calculations,

H(p17p2 + a, p3, .. ) - H(pl + @, P2, P35 - - )

=(p1+p2+a)<h<l+w)—h<l+w))20- -

2 2(pr+p2+a) 2 2(p+pta)



o Fs Aﬁy Fio Fs Aﬁy
Figure 2: Optimal coloring of G

The depth of a set of tree vertices is the minimum depth of its elements. In G, a vertex of depth
d has probability higher than that of any independent set of depth > d + 1. Using this property,

we prove

Lemma 2  The coloring in Figure 2 achieves H, (G, X).
Proof: We first show that if a coloring of G has a color class containing a contiguous path from
the root to a vertex of depth (d — 1), then there is a coloring of no larger entropy where one color
class contains a contiguous path from the root to a vertex of depth d. Consider a color class 5
containing the vertices vg,...,v5—1 where vy is the root and v; (1 < i < d — 1) is a child of v;_;.
If S contains a depth-d vertex, it must be a child of vy_1 and we are done. Otherwise, all other
vertices in S have depth > d 4+ 1. Take any child v; of v4_1. All the elements in v;’s color class are
its descendants, hence also descendants of vy, ...,v4_1. By moving {vg,...,v4—1} from their current
color class to vg’s color class we obtain a coloring that, by the previous lemma, has smaller entropy.
It follows that there is a minimum-entropy coloring of G where one color class consists of a
contiguous path from the root to a leaf (infinite path if the graph is infinite). By symmetry, the
path is as shown in Figure 2. This path disconnects the tree into several subtrees. The same

argument applies to each. O
We can now prove (11).

Corollary 1  For every p,
1 1
H (G, X)= p —|—1og§-|-loge— 2+ 0(p).

Proof: Take the coloring in Figure 2. It partitions the vertices of G into an independent set of
depth 0 and 297" independent sets of depth d > 1. The probability of a depth-d (d > 1) independent

set is - ' J
Zp(l—p)“1 _ <1—p) -
i=d 2 T+p\ 2 '




Therefore,

2 1+p gi-1 P (1—p)d—1 1+p< 2 )d—l
(G X) T+p +Z I+p\ 2 %y \i-p
1+p p 2 & -1
= lo + lo d—1)(1-p
8t T gl_pd;( )(1—p)
14+p 1—0p 2
= log log
p p(l+p) “1-p
1 14+p 2 1—0p
— __|_10g — 10g1_
p p 1+p p(1+p) (1-p)
1 1
= —+4log—+loge—2+0O(p). m|
P P

A simple protocol achieves (12).

Lemma 3  For every p,
L<

S|

Proof: The vertices of G have a natural binary representation: The root is Aj; its left child is 0
and its right child is 1; the left and right children of 0 are 00 and 01 respectively, etc. Note that
this encoding is not prefix free — the encoding of any vertex prefixes infinitely many others.
Using this encoding, Py conveys the vertex X to Py. Py expects one of only two messages,
and these messages are never a prefix of each other. Therefore he knows when the message ends.

The expected number of bits transmitted is

= 1

S dp(1—p)*t = - 0
d=1 p

Note the simple coloring used by the protocol: every vertex is assigned a different color. The

entropy of this coloring is

H(C) = Zp Clllogw

o0

=Y (@ -

d=1

1
= log—+4+ 1+ plog
P

1—p

1
= log—+1+
p

1 11
= —+log— — —log(l - p) +log(1 - p)
P PP

I
g T

1 1
= —+log—+loge+ O(p).
P P

For small p, this entropy is higher by roughly 2 than the chromatic entropy, however, by using a

non-prefix-free encoding, the protocol saves roughly log ;—9 + log e bits.

10



3 Korner entropy

Let X and Z be random variables distributed over a countable product set X' x Z according to
a joint probability distribution p(z,z). The conditional entropy of Z given X was defined in the

introduction; the mutual information between X and 7 is

I(X;2)Y 1(7)- H(Z|X).
Let I'(G) denote the collection of independent sets of G. Korner [9] defined the graph entropy of a
probabilistic graph (G, X) to be
- def .
Hp(G,X)= 1(X; 7). 13
WG X)= | min TXG2) (13)
To distinguish graph entropy from chromatic entropy, we call it the Kérner entropy of (G, X).
Elaboration is in order. X defines a probability distribution over G’s vertices. For every vertex z
we select a transition probability distribution p(z|z) ranging over the independent sets containing
z: p(zlz) > 0and )~ p(z]z) = 1. This specifies a joint distribution of X and a random variable
Z ranging over the independent sets and always containing X. The Kérner entropy of G is the
smallest possible mutual information between X and Z. Note that 0 < I(X;Z) < H(X) for all
(X,Z), hence 0 < Hi(G,X) < H(X) for all (G, X).

Example 3  TFor the empty graph, the set of all vertices is independent and always contains X,
hence the Koérner entropy is 0. For the complete graph, the only independent sets are singletons,
hence we must have Z = {X} yielding Hy(G,X) = I(X;Z) = H(X). In the pentagon graph,
every independent set contains one or two vertices, hence H(X|Z) < 1, implying that I(Z; X) >
H(X) - 1. If X is distributed uniformly over the vertices, we can let p(z|z) = % for each of the
two-element independent sets containing a vertex z. Then, by symmetry, H(X|Z) = 1, implying
that Hy(G,X)=logh — 1~ 1.32. ]

Theorem 4  For every dual source (X,Y)

Proof: Given an (X,Y)-protocol ¢ with expected length {(¢), we construct a random variable
Z such that X € Z € I'(G) and
1(X;7) < (). (14)
Let T be the (binary) tree whose vertices are all the strings in ¢(X’) and their prefixes. Its root
is the empty string, and the descendants of vertex v are the vertices among »0 and v1. For example,
Figure 3(a) shows the tree Ty when X = {1,...,6} and ¢(1) = A, #(2) = 1, ¢(3) = #(4) = 00,
¢(5) =01, and ¢(6) = 11.
A tree is degenerate if it contains a vertex with a single descendant. If T} is degenerate then

there is an (X, Y)-protocol with shorter expected length. In our example, T} is degenerate because

11



00 01 11 00 01
(a): Ty (b): Ty for modified ¢

Figure 3:

11 is the sole descendant of 1. Indeed, we could have set ¢(6) = 1 to obtain the shorter-expected-
length protocol whose tree is shown in Figure 3(b). The new protocol is valid because if ¢(z) does
not prefix ¢(z’) in the original protocol, then the same holds for the new one. We therefore assume
that Ty is non-degenerate.

Every vertex & of Ty is a finite binary string. Associate with it the set ¢~!(#) for which Py
transmits . Note that ¢~1(%) is never empty when 7 is a leaf, but may be empty for internal

vertices. Figure 4 shows ¢~1(7) for our (modified) sample protocol ({ is the empty set).

{1

0 {2,6}

{3,4} {5}
Figure 4: ¢~1(%) for vertices of modified ¢

For a leaf z of T} let!

& prefixes z

be the set of 2’s for which Py transmits a prefix of Z. In our modified ¢, when 2 = 00, z = {1,3,4}

and when Z =1, z = {1,2,6}. It is easy to see that z must be independent in G for every leaf Z.

!This is a convenient double-use of notation. We use # only for leaves.

12



Let £(Z) be the set of leaves that descend from a vertex Z of 7. Since (as we assume) Ty is

S o-(E-leh

2e(®)

non-degenerate,

Therefore, p(2|7) 4 9=(21-12]) i5 a probability distribution over the leaves # € Uz).

Let Z be distributed according to conditional probability distribution p(Z|z). Namely, p(Z =
z|X = z) = p(2|Z). For example, p({2,6}|1) = 5 and p({5}|1) = ;. Then Z ranges over indepen-
dent sets and always contains X. Furthermore, the mapping z — 2 is a prefix-free encoding of Z.

Therefore,

H(Z)

IN

> p(x)1
= Y2l
= Yre) L alele)l

z3xw

= > p@)# Y plzle)+ D p(=) > plzle)(|2 - )

zZ3x 23z

= S p(@)lF + 3 p(2) Y plx|) log —

=y p(2[z)

_ i(6)+ H(ZIX)
and (14) follows. ]

Example 1(a) Consider the dual source (X,Y) in example 1(a). When ¢ = 0, the characteristic
graph, G, is empty, hence Hp(G,X)= 0= L. When ¢ > 0, G is the complete graph on n vertices,
hence Hi(G,X)= H(X) = L. O

An alternative proof of Theorem 4, suggested by J. Koérner [11], introduces the bipartite entropy
Hy(G, X)) of a probabilistic graph (G, X ) and shows, in Lemmas 5 and 4, that for every dual source,

HL(G,X) < Hy(G,X) < L. (15)

A graph is bipartite if its vertices can be partitioned into two sets V7 and V5 such that no two
vertices in V; are connected and no two vertices in V5 are connected. A vertex in a graph is isolated
if it is not connected to any other vertex. The support probability p(G, X) of a probabilistic graph
(G, X) is the total probability of its non-isolated vertices.

Let G = (V, F). A collection of graphs defined over V' covers G if every edge in E belongs to
at least one graph in the collection. The bipartite entropy of a probabilistic graph (G, X)) is

Hy(G, X)d:ef min{ E p(B, X): Bis a collection of bipartite graphs covering G'}.
BeB

Clearly, for every probabilistic bipartite graph (B, X),

Hy(B, X) = p(B, X)

13



Lemma 4  For every dual source,
Hy(G,X)< L.
Proof: Let ¢ be a protocol achieving £(¢) = L and let I = max{|¢(z)|: 2 € X}. Fori=1,...,1
let B; be the graph whose vertex set is X and where z and 2’ are connected if |¢(z)| and |¢(z)]
are both > 7 and they differ in the 7th bit.
By choice of ¢, p(Bi, X) = 3. 4(x)|>: P() for every i < I. Therefore,

[$()] 7 T
L= p@)le(@)=> px) Y 1= > »plz)=) pB)
z z i=1 =1 w| () [ > =1
Each B; is bipartite and, since ¢ is a valid protocol, By,...,Br cover G. The lemma follows. a

For some probabilistic graphs strict inequality holds. The probabilistic graph shown in Figure 5,
with uniform distribution over the vertices, has Hy(G, X ) = 1% (as cryptically indicated next to

the vertices) and L = 12.

00

01 10

*0 0x*
11

Figure 5: Hy(G,X) < L

To prove the first inequality in (15), we need two basic properties of Kérner entropies. Subad-

ditivity, e.g. Simonyi [16], states that if a collection G’ of graphs covers G then

Hi(G,X)< > He(G',X).
Gleg/

It is easy to verify that for every probabilistic bipartite graph (B, X),
Hi(B,X)<p(B,X).

It follows that

Lemma 5  For every probabilistic graph (G, X),
Hi(G,X) < Hy(G, X).

Proof: Let B be a cover of G by bipartite graphs achieving Hy(G, X). By subadditivity,

Hi(G,X) < Hk( U B,X) <> HR(B,X)< > Hy(B,X)=Hy(G,X). O
BeB BeB BeB
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4 Multiple instances

Conveying one instance of a dual source (X,Y) requires roughly H,(G,X) bits in either of the
two scenarios. How many bits must be transmitted to convey several independent instances? The
answer depends greatly on the scenario assumed.

Let G4,...,G, be graphs with vertex sets Vq,...,V,. Their AND product is the graph A G
i=1

/) are connected

T

if for all i € {1,...,n} such that v; # v, v; is connected to v/ in G;. The n-fold AND product of
a graph G with itself is denoted by G*™. The OR product of G1,...,G, is the graph '\_T'}l G; whose

whose vertex set is V" and where two distinct vertices (vq,...,v,) and (v1,...,v

!
n

some i € {1,...,n} such that v; # v/, v; is connected to v in GG;. The n-fold OR product of G with
itself is denoted by GV™.

vertex set is V" and where two distinct vertices (vq,...,v,) and (v{,...,v},) are connected if for

4.1 Asymptotic per-instance number of bits

Let (X,Y) be a random pair with characteristic graph G. As in Witsenhausen [17], n instances of
the restricted-inputs scenario can be viewed as a single restricted-inputs instance of a larger dual

source with characteristic graph G*™. From Theorem 1,
H (G*", X ™) —log(H (G, X))+ 1) —loge < L, < Hy(G*", X ™)) 4 1. (16)

n instances of the unrestricted-inputs scenario cannot be viewed as a single unrestricted-input
instance of a larger dual source. However, Theorem 1 and arguments in Alon and Orlitsky [2]

(implicit in Feder, Kushilevitz and Naor [6]) imply that
H (67", XM) < L, < Hy (6", X))+ 1. (17)

While we could not express the single-instance expected complexities, £ and L, in terms of

graph entropies, L,y and L,y do carry such a characterization.
Lemma 6  For every dual source,

Lom = lim llETX(gWL,X(”)) and Lam = lim lHX(gAn’X(n))'

n—oo 1 n—0oo 7

Proof: The first equality follows from (17) after normalization by n and taking limits. To prove

the second, observe that by subadditivity

Hx(g/ma X(n)) < on(ga X).

Hence,
H (A", X)) 41 > L, > H(G*", X™) —log(H(G*", X))+ 1) —loge
> H(G*", X™) —logn —log(Hy(G, X ) + 1) - loge,
and this equality too follows from normalization and limits. a

15



4.2 Lon = Hy(G, X)

We prove that the per instance number of bits needed for unrestricted inputs is precisely the Kérner

entropy of the characteristic graph:

Loam = Hi(G, X).

In view of Lemma 6, this will follow from Theorem 5 which shows that

lim lHX(GW,XW) = H,(G, X).

n—oo n
Let X4q,...,X,, and Wy,...,W, be random variables. X — W, the channel from X to W, is
memoryless if Pr(w;|zq1,...,2n, w1,. .., wi—1, Wiy1,...,w,) = Pr(w;|z;). For a proof of the following

well-known result see, e.g., Cover and Thomas [4].
Lemma 7 Let Xq,...,X,, and Wq,...,W, be random variables.

1. If X4,...,X,, are mutually independent, then

n

I(Xh R 7Xn7 W17 ) 7Wn) > EI()(M WZ)

=1
2. If X — W is memoryless, then
I(X1, o Xy Wh, o W) < T(X Wh). O
=1

Korner [9] showed that large-probability vertex subsets of GV™ have chromatic number of roughly

2k(G:X)  We need one part of this result.

Lemma 8 (Korner [9]) For every € > 0, for all sufficiently large n there is a coloring ¢ of G¥"
and a set S C V" such that
Pr(X(We §)>1-¢

and
e(9)] < 27 UHR(GX)Fe) O

The next lemma shows that the Kérner entropy is additive under OR. products.

Lemma 9  Let (G1,X1),...,(Gn, X,,) be probabilistic graphs where the X;’s are mutually inde-

pendent. Define

def

G \ZlGi and X=X,...,.X,.

Then .
Hi(G,X) =Y Hi(Gi, X;).
=1
Proof: <: FYor i € {1,...,n} let W; achieve Hy(G;, X;) independently of all other X;’s and
W;’s. Then
XeW x...xW, eI'(G),
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and, as the X;’s are independent and X — W is memoryless, Lemma 7 implies that

I(Xy, . Xy W, W) = D T( X Wh).

=1

Therefore, by definition,

Hi(G,X) < I(X; Wi x o x W) = Y I(Xiy Wi) = > Hi(Gi, Xi).

>: Let X € W € I'(G) achieve Hp(G,X). Then W = Wy,...,.W, where X; € W, € I'(G;). By

Lemma 7,

I(X; W) = I(Xq, .. Xy Wi, W) 2 D I(X W5) 2 ) Hi(G, X5). o

Theorem 5  For every probabilistic graph (G, X ),

lim lHX(GW,XW)) = Hp(G, X).

n—oo n

Proof: >: Follows from Lemmas 14, to be proven in Subsection 5.2, and 9 as
H (G, X)) > Hy(GV", X)) = nHL(G, X).

<: Given € > 0, Lemma 8 says that for all sufficiently large n there is a coloring ¢ of GY™ and a
set S C V"™ such that
Pr(X(MWes)>1—¢

and
|C_1(S)| < Qn(Hk(G,X)-I—e)‘

Let ® be the indicator function of whether X (®) ¢ §. Then

H(c(X™)) < H(©)+ H(c(X™)0)
< H(O)+ H(e(X™)X™ € §) 4 e Hie(XM) X" ¢ 9)
< 14 n(H(G,X)+ e+ elog|V]).
< follows. a
4.3 On L,

We show that for arbitrarily large values of L, there are dual sources with Ly < L + o( L), namely,

two independent instances require only few more bits than one instance, and therefore,

]

j/am < 5 + O(E)

Moreover, these dual sources satisfy Lo, > L — o(L), hence we also have
_ Lam _
Lam S 9 + O(Eam)-

Recall that an independent set in a graph G is a collection of vertices, no two connected. The

independence number a(G) of a graph is the size of its largest independent set.

17



Lemma 10 If X is uniformly distributed over the v vertices of a graph G, then
v

a(G)

HX(G7X) 2 1og

Proof: Let ¢ be a coloring of G. Every color class has probability of at most ﬂvgl The lemma

then follows from a basic entropy inequality. O

Alon and Orlitsky [2] showed that for arbitrarily-large |X'| there is an |X|-vertex graph G such
that
a(G) < (1+0(1))16log? |X| and x(G*?) < |X|.

Combined with the last lemma and Inequality (16), we obtain

Corollary 2 For arbitrarily large |X| there is a dual source (X,Y), distributed over a product
set X x Y, such that

L >log|X|—3loglog|X| —4 —loge —o(1) and L, < [log|X]]. ]

Subadditivity implies

It is easy to verify that for these graphs
Hi(G, X) 2 log |X] — 2loglog | X| — 4 — o(1),

hence L, is significantly smaller than both L and L.

5 Entropy comparisons

We relate some of the entropies discussed in the paper.

5.1 H(X|Y) < Hy(G, X)

Arguably, the most natural lower bound on L is not Hy(G, X) but H(X|Y). To show that H(G, X)

provides a stronger bound, we prove that for every dual source,
H(X|Y) < Hy(G. X). (1)

A clique in a graph is a collection of vertices, every two connected. Let Q(G) be the collection

of cliques of a graph G. The clique entropy of a probabilistic graph (G, X)) is

Ho(G, X)) max{H(X|Z'): X € 7' € Q(G)}.
Namely, for every vertex z we select conditional probability distribution p(z’|z) ranging over the
cliques containing xz. This specifies a joint distribution of X and a random variable Z’ ranging
over cliques and always containing X. The clique entropy is the maximal conditional entropy of X

given Z'.
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Example 4 For the empty graph, the only cliques are singletons, hence Z’ = {X}, implying
that H,(G,X) = 0. For the complete graph, we can take Z’ to be the set of all vertices, hence
H,(G,X) = H(X). For the pentagon graph with uniform distribution over the vertices, every
clique is either a singleton or an edge. Hence H,(G, X ) < 1. On the other hand, if for every z we
let Z' be uniformly distributed over the two edges containing z, then by symmetry H(X|Z") = 1,
implying that H, (G, X) = 1. O

To prove (18) we show that for every dual source,
H(XY)< H,G,X)< Hi(G, X).
The next lemma proves the first inequality. The second is established by Lemma 13.
Lemma 11  For every dual source,
H(XY)< H,G,X).
Proof: For y € Y define the clique z, = {z : p(z,y) > 0} and let

plz,z)= Y, plz,9).

y/:Zy/:Zy
p(z,zy) > 0 clearly implies that p(z,y) > 0 and therefore that z € z,. Hence, X € Zy € I'(G),

and, since Y determines Zy,
H(G.X)> H(X|Zy) > H(X|Y). 0

The complement of a graph G is the graph G° having the same vertex set, but where two
vertices are connected iff they are not connected in GG. Note that (G°)° = GG and that a clique in G

is an independent set in GG¢. Therefore, clique entropy can be defined in terms of Kérner entropy.
Lemma 12  For every probabilistic graph (G, X ),

H, (G, X)=H(X)- Hi(G°, X).
Proof:

Hy(G°X) = min{[(X;7): X € Z e ['(G°)}

= H(X)-max{H(X|Z): X € Z e T(G°)}

= H(X)-max{H(X|Y): X €Y € QG)}

= H(X)- H,(G,X). O
Lemma 13  For every probabilistic graph (G, X ),

H,(G,X)< Hi(G, X).
Proof: Let K be the complete graph on the vertices of G. By subadditivity of Kérner entropy,
Hi(G, X))+ H, (G, X)> Hp(K,X)= H(X)

and the lemma follows. O
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5.2 Hu(G,X) < H(G,X)

Theorem 2 and Theorem 4 show that for all dual sources,

Hence we “almost know” that the Ko&rner entropy of every graph is lower than its chromatic
entropy. The next lemma formalizes this statement and sheds some light on the intuition behind

graph entropy.

Lemma 14  For every probabilistic graph (G, X ),
Hy(G,X)< H (G, X).

Proof:  Recall that I'(G) is the collection of independent sets of G. We say that a random
variable Z ranges disjointly over I'(G), and write Z ¢ I'(G), if Z attains disjoint values in I'(G),
namely, every value of 7 is in I'(G) and distinct values are disjoint.

If ¢ is a coloring of G then A ¢ 1(¢(X)), the color class of X, ranges disjointly over I'(G)
and always contains X. Conversely, every random variable that ranges disjointly over I'(G) and
always contains X can be viewed as the color class of X in a coloring of G'. In all these cases, X
determines Z, hence H(Z|X )= 0 and therefore

H,(G,X) = min  H(Z)
XeZET(G)
= min  I(X;7)
XeZET(G)

> i & = . O
= xeZel(o) Ix; 2) Hi(@, X)

Interpreting the lemma’s proof, the chromatic entropy of a probabilistic graph is the minimum,
over all colorings, of the information a vertex provides about its color. The K6rner entropy has the
same interpretation, except that every vertex is now assigned a random color.
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