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The existence of EFX allocations is a fundamental open problem in discrete fair division. Given a set of
agents and indivisible goods, the goal is to determine the existence of an allocation where no agent envies
another, following the removal of any single good from the other agent’s bundle. Since the general problem
has been elusive, progress is made on two fronts: (¢) proving existence when the number of agents is small,
and (4¢) proving the existence of relaxations of EFX. In this paper, we improve and simplify the state-of-
the-art results on both fronts with new techniques.

For the case of three agents, the existence of EFX was first shown with additive valuations (Chaudhury
et al. 2020) and then extended to nice-cancelable valuations (Berger et al. 2022). Both results are obtained
through an algorithm that moves in the space of partial EFX allocations, improving a certain potential as
long as there are unallocated goods. However, the update rules to move from one partial EFX allocation to
another are very involved, cumbersome, and fail if any one agent has a general monotone valuation function.
As our first main result, we simplify and improve this result by showing the existence of EFX allocations when
two of the agents have general monotone valuations and one has additive or, more generally, MMS-feasible
valuation (a strict generalization of nice-cancelable valuation functions that subsumes additive, budget-
additive and unit demand valuation functions). In contrast to the approaches in (Chaudhury et al. 2020,
Berger et al. 2022), our new algorithm moves in the space of complete allocations, improving a potential as
long as the allocation is not EFX. This approach is significantly simpler, as it also avoids using the standard

concepts of envy-graph, champion-graph, and half-bundles and may find use in other fair-division problems.
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Secondly, we consider relaxations of EFX allocations, namely, approximate EFX allocations and EFX
allocations with few unallocated goods (charity). Through a promising new method using a problem in
extremal combinatorics called Rainbow Cycle Number (RCN), Chaudhury et al. (2021a) managed to show
the existence of (1 — ¢)-EFX allocation with sub-linear charity, namely O((n/e)%) charity, where n is the
number of agents. This is done by upper bounding the RCN by O(d*) in d-dimension. They conjectured this
number to be O(d) and gave a matching lower bound. We almost settle this conjecture by improving the
upper bound to O(dlogd) and thereby get (almost) optimal charity of O((n/¢) %) that is possible through this
method. Our technique is simpler than the ones used for upper-bounding RCN in (Chaudhury et al. 2021a,
Berendsohn et al. 2022, Jahan et al. 2023), and is based on the probabilistic method. We also derandomize
the approach to construct such an allocation in deterministic polynomial time. Finally, we note that some of

our techniques can be used to prove improved upper bounds on a problem in zero-sum combinatorics (Alon

and Krivelevich 2021, Mészéros and Steiner 2021).

Key words: Discrete Fair Division, EFX Allocations, Rainbow Cycle Number

1. Introduction

Fair division of scarce resources is a fundamental problem in many disciplines, including computer
science, economics, operations research, and social choice theory. In a classical fair division problem,
the goal is to “fairly” allocate a set of goods among a set of agents (Steinhaus 1948). Such prob-
lems find very early historical mentions, for instance, in ancient Greek mythology and the Bible.
Even more so today, many real-life scenarios are paradigmatic of the problems in this domain,
e.g., division of family inheritance (Pratt and Zeckhauser 1990), divorce settlements (Brams and
Taylor 1996), spectrum allocation (Etkin et al. 2005), air traffic management (Vossen 2002), course
allocation (Budish and Cantillon 2010) and many more.*

In this paper, we focus on an important open problem in discrete fair division, where a set M
of m indivisible goods needs to be allocated to a set [n] of n agents. Each agent i is equipped with
a valuation function v;: 2™ — R~ which captures the utility ¢ derives from any bundle that can
be allocated to her. One of the most well studied classes of valuations are additive valuations, i.e.,
vi(8) =>_,c5vi({g}) for all S C M. The goal is to determine a partition X = (Xy, Xo,...,X,,) of
M such that X; is allocated to agent 4, which is fair. Depending on the notion of fairness used,
this setting has several different problems.

Envy-freeness up to any good (EFX) The quintessential notion of fairness is that of envy-freeness.
An allocation X = (X3, X5,...,X,,) is envy-free if every agent prefers her bundle as much as she

*See www.spliddit.org and www.fairoutcomes.com for a more detailed explanation of fair division protocols
used in day-to-day problems.
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prefers the bundle of any other agent, i.e., v;(X;) >v;(X;) for all 4,7’ € [n]. However, an envy-free
allocation does not always exist, e.g., consider dividing a single valuable good among two agents.
In any feasible allocation, the agent with no good will envy the agent that has been allocated the
good. This necessitates the study of relaxed notions of envy-freeness. In this paper, we consider
the relaxation known as envy-freeness up to any good (EFX). An allocation X = (X3, Xs,...,X,,)
is EFX if and only if for all pairs of agents ¢ and ', we have v;(X;) > v;(Xy \ {g}) for all g € X,
i.e., the envy should disappear following the removal of any single good from i"’s bundle. EFX is, in
fact, considered to be the “closest analogue of envy-freeness” in discrete fair division (Caragiannis
et al. 2019). Unfortunately, the existence of EFX allocations is still unresolved despite significant
efforts by several researchers (Moulin 2019, Caragiannis et al. 2016) and is considered one of the
most important open problems in fair division (Procaccia 2020). There have been studies on

e the existence of EFX allocations in restricted settings. In particular, EFX existence has been
studied when there are a small number of agents (Plaut and Roughgarden 2020, Chaudhury et al.
2020) and when agents have specific valuation functions (Halpern et al. 2020).

e The existence of relaxations of EFX allocations has also been investigated, e.g., approximate
EFX allocations (Plaut and Roughgarden 2020, Amanatidis et al. 2020), EFX with bounded char-
ity (Chaudhury et al. 2021b, Berger et al. 2022), approximate EFX with bounded charity (Chaud-
hury et al. 2021a).

Improving the understanding in both settings is a systematic direction toward the big problem.
We first mention the existing results in the above two settings and some of their pitfalls. Thereafter,
we highlight the main results of this paper and show how they address the said pitfalls. In particular,
we focus on the existence of EFX allocations with a small number of agents and the existence of
approximate EFX allocations with bounded charity.

Ezistence of EFX Allocations with Small Number of Agents. Plaut and Roughgarden (2020)
first showed the existence of EFX allocations when there are two agents, using the cut and choose
protocol. The existence of EFX allocations gets notoriously difficult with three or more agents. The
existence of EFX allocations for three agents with additive valuations was shown by Chaudhury
et al. (2020). Thereafter, Berger et al. (2022) showed the existence of EFX allocations with three
agents when agents have nice-cancelable valuation functions — a class that subsumes additive,
budget-additive, unit demand, and multiplicative valuation functions. However, this technique does
not extend, as soon as one of the agents has a general monotone valuation function. Despite its
fundamentality and ongoing efforts, the existence of EFX allocations with three agents under
general valuation functions remains elusive. (Plaut and Roughgarden 2020) remarks, “We suspect
that at least for general valuations, there exist instances where no EFX allocation exists, and it

may be easier to find a counterexample in that setting”. In this paper, we make progress on this
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problem. As our first main result, we show the existence of EFX allocations, when two agents have

general monotone valuation functions.

THEOREM 1. EFX allocations exist with three agents as long as at least one agent has an additive

valuation function (the other two agents have general monotone valuation functions).

In fact, our proof gives a stronger version of Theorem 1: we can show the existence of EFX
allocations when two agents have general monotone valuation functions and one of the agents has
an MMS-feasible valuation function — a valuation class that strictly generalizes nice-cancelable val-
uation functions— definitions and properties are described in Section 2. Thus, we strictly generalize

the result in (Berger et al. 2022).

THEOREM 2. EFX allocations exist with three agents as long as at least one agent has an MMS-

feasible valuation function.

We briefly remark on our technique to prove Theorem 2 and how it crucially differs from the
existing techniques in (Chaudhury et al. 2020, Berger et al. 2022, Mahara 2021). The algorithms in
(Chaudhury et al. 2020, Berger et al. 2022, Mahara 2021) move in the space of partial EFX alloca-
tions (where not all goods are allocated) iteratively improving the vector (v, (X),v2(Xs),v3(X3))
lexicographically, where v;(+) is the valuation function of agent i. However, (Chaudhury et al. 2021a)
exhibit an instance with four agents and a partial EFX allocation X, such that in any complete
EFX allocation X', v1(X}) < v1(X4), i.e., agent 1 (which is the highest priority agent) is better off
in X than in any complete EFX allocation. This necessitates the study of a different approach for
the existence of EFX allocations. Our algorithm moves in the space of complete allocations (instead
of partial allocations), iteratively improving a certain potential as long as the current allocation
1s not EFX. Furthermore, this proof turns out to be simpler and significantly shorter than the
ones in (Chaudhury et al. 2020, Berger et al. 2022), as it does not use the notions of champions,
champion-graphs, half-bundles, and even the envy-graph.

Ezistence of Approzimate EFX with Bounded Charity. Caragiannis et al. (2019) introduced
the notion of EFX with charity. The goal here is to find “good” partial EFX allocations, i.e.,
partial EFX allocations where the set of unallocated goods is not very valuable. In particular,
they show that there always exists a partial EFX allocation X such that for each agent i, we have
v;(X;) >1/2-v;(X]), where X* = (X}, X;,...,X}) is the allocation with maximum Nash welfare.
The Nash welfare of an allocation Y is the geometric mean of agents’ valuations, (Hie[n] vi(Y;))l/".
It is often considered a direct measure of the fairness and efficiency of an allocation. Following the
same line of work, Chaudhury et al. (2021b) showed the existence of a partial EFX allocation X

such that no agent envies the set of unallocated goods and the total number of unallocated goods
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is at most n — 1. Quite recently, Chaudhury et al. (2021a) showed the existence of a (1 —¢)-EFX
allocation with O((n/e)*/) charity for any € > 0, where an allocation X is said to be (1 —¢)-EFX
if and only if v;(X;) > (1 —¢) - v;(Xir \ {g}), Vi,7 and Vg € X;;. While the last result is not a
strict improvement of the result in (Chaudhury et al. 2021b) (since it ensures (1 —¢)-EFX instead
of exact EFX), it is the best relaxation of EFX that we can compute in polynomial time, as
the algorithm in (Chaudhury et al. 2021b) can only be modified to give (1 —¢)-EFX with n —1
charity in polynomial time. Another key aspect of the technique in (Chaudhury et al. 2021a) is the
reduction of the problem of improving the bounds on charity to a purely graph-theoretic problem.
In particular, (Chaudhury et al. 2021a) defines the notion of a rainbow cycle number: Given an
integer d > 0, the rainbow cycle number R(d) is the largest k such that there exists a k-partite
graph G= (VUL U---UVj, F) such that

e cach part has at most d vertices, i.e., |V;| <d, and

e every vertex in G has exactly one incoming edge from every part in GG except the part con-
taining it, and

e there exists no cycle C in G that visits each part at most once.

Let h=!(d) denote the smallest integer £ such that h(¢) =¢- R(¢) > d. Then there always exist an
(1 —¢)-EFX allocation with O(F{m) So, the smaller the upper bound on h(¢), the lower the
number of unallocated goods. (Chaudhury et al. 2021a) shows that R(d) € O(d*) and thus establish
the existence of (1 —¢)-EFX allocation with O((n/)"/*) charity. An upper bound of O(d?2(# 10g‘1)2)
was obtained by Berendsohn et al. (2022), thereby showing the existence of EFX allocations with
O((n/£)%67) charity. In this paper, we close this line of improvements by proving an almost tight
upper bound on d (matching the lower bound up to a log factor). We note that our technique (and
analysis) is simpler than the ones used for upper-bounding rainbow cycle number in (Chaudhury
et al. 2021a, Berendsohn et al. 2022, Jahan et al. 2023). Although the core argument is based
on the probabilistic method, we also derandomize the approach to construct such an allocation in

deterministic polynomial time.
THEOREM 3. Given any integer d > 0, the rainbow cycle number R(d) € O(dlogd).

For any allocation X, let us denote the Nash welfare of X by NW(X). As a consequence of the

improved bound in Theorem 3, we obtain:

THEOREM 4. There exists a deterministic polynomial time algorithm that determines a partial
(1—¢)-EFX allocation X such that no agent envies the set of unallocated goods and the total number
of unallocated goods is O((n/e)Y?)!. Furthermore, NW (X) >1/(2¢'/)- NW (X*) where X* is the

allocation with mazimum Nash welfare.

'® ignores logarithmic factors.
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Rainbow Cycle and Zero-sum Combinatorics. We believe that investigating tighter bounds on
R(d) is interesting in its own right. Recently, Berendsohn et al. (2022) showed intriguing connec-
tions between rainbow cycle number and zero-sum problems in extremal combinatorics. Zero-sum
problems in graphs ask questions of the following flavor: Given an edge/vertex weighted graph,
whether there exists a certain substructure (for example, cliques, cycles, paths, etc.) with a zero-
sum (modulo some integer). In particular, (Berendsohn et al. 2022) shows that the rainbow cycle
number is a natural generalization of the zero-sum problems studied by Alon and Krivelevich (2021)
and Mészaros and Steiner (2021). Both papers (Alon and Krivelevich 2021, Mészaros and Steiner
2021) aim to upper bound the maximum number of vertices of a complete bidirected graph with
integer edge labels avoiding a zero-sum cycle (modulo d). (Berendsohn et al. 2022) shows through
a simple argument that this is upper bounded by the permutation rainbow cycle number R,(d),
which is defined by introducing an additional constraint in the definition of R(d) that for all ¢, 7,
each vertex in V; has exactly one outgoing edge to some vertex in V; (in addition to exactly one
incoming edge from some vertex in V;). In Section 5.2, we show through a simple argument that
R,(d) <2d— 2, thereby also improving the upper bounds of O(dlog(d)) in (Alon and Krivelevich
2021) and 8d — 1 in (Mészéros and Steiner 2021).

LEMMA 1. For d>1, we have R,(d) <2d—2. Therefore, by the Observation made by Berendsohn
et al. (2022), the maximum number of vertices of a complete bidirected graph with integer edge

labels avoiding a zero-sum cycle (modulo d) is at most 2d — 2.

1.1. Further Related Work

Fair division has received significant attention since the seminal work of Steinhaus (1948). Other
than envy-freeness, another fundamental fairness notion is that of proportionality. Recall that,
in an envy-free allocation every agent values her own bundle at least as much as she values the
bundle of any other agent. However, in a proportional allocation, each agent gets a bundle that she
values 1/n times her valuation on the entire set of goods. Since envy-freeness and proportionality
cannot always be guaranteed while dividing indivisible goods, various relaxations have been studied.
Alongside EFX, another popular relaxation of envy-freeness is envy-freeness up to one good (EF1)
where no agent envies another agent following the removal of some good from the other agent’s
bundle. While the existence of EFX allocations is open, EF1 allocations are known to exist for
any number of agents, even when agents have general monotone valuation functions (Lipton et al.
2004). Also, another relaxation of envy-freeness called EF2X was studied in (Akrami et al. 2022),
which shows the existence of EF2X allocations under restricted additive valuations.

While EF1 and EFX are fairness notions that relax envy-freeness, the most popular notions of

fairness that relax proportionality for indivisible goods are mazimin share (MMS), proportionality
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up to one good (PROP1), proportionality up to any good (PROPx), and proportionality up to the
maximin good (PROPm). The MMS was introduced by Budish (2011). While MMS allocations do
not always exist (Kurokawa et al. 2018), there has been extensive work to come up with approximate
MMS allocations (Budish 2011, Bouveret and Lemaitre 2016, Amanatidis et al. 2017, Barman and
Krishnamurthy 2017, Kurokawa et al. 2018, Ghodsi et al. 2018, Garg et al. 2019, Garg and Taki
2020, Akrami et al. 2023). On the other hand, PROPx is stronger than PROPm, which is stronger
than PROP1. While PROPx allocations do not always exist (Moulin 2019), PROPm allocations
are guaranteed to exist (Baklanov et al. 2021). Some works assume ordinal ranking over the goods,
as opposed to cardinal values, e.g., (Aziz et al. 2015, Brams et al. 2017).

Alongside fairness, the efficiency of an allocation is also a desirable property. Two standard
measures of efficiency are Pareto-optimality and Nash welfare. Caragiannis et al. (2016) showed that
any allocation that has the maximum Nash welfare is guaranteed to be Pareto-optimal (efficient)
and EF1 (fair). Barman et al. (2018) gave a pseudo-polynomial algorithm to find an allocation that
is both EF1 and Pareto-optimal, which was recently improved by Murhekar and Garg (2021). Other
works explore relaxations of EFX with high Nash welfare (Caragiannis et al. 2019, Chaudhury
et al. 2021b).

Independent Work. Independently and concurrently to our work, Berendsohn et al. (2022) also
investigated upper bounds on rainbow cycle number. They obtained the same upper bound of
2d—2 for R,(d). Jahan et al. (2023) also independently investigated upper bounds on the rainbow
cycle number, and they showed R(d) € O(dlog(d)).

2. Preliminaries

For any non-negative integer n, let [n] ={1,2,...,n}. An instance of discrete fair division is given
by the tuple ([n],M,V), where [n] is the set of agents, M is the set of indivisible goods, and
V= (vi(+),v2(+),...,v,(-)) where each v; : 2"/ — R denotes the valuation of agent i. Typically, the
valuation functions are assumed to be monotone, i.e., for each agent i, v;(SU{g}) > v;(S) for all
SC M and g ¢ S, and normalized, i.e., for each agent i, v;(0) = 0. A valuation v;(-) is said to be
additive if vi(S)=>_ csvi({g}) for all § C M. For ease of notation, we use g instead of {g}. We
also use S @; T for v;(S) ©v;(T) with @ € {<, >, <, >}.

Given an allocation X = (X, X,,..., X,,), we say that an agent i strongly envies an agent i’ if
and only if X; <; Xy \ {g} for some g € X;y. Thus, an allocation is an EFX allocation if no strong
envy exists between any pair of agents. We now introduce certain definitions and recall certain

concepts that will be useful in the upcoming sections.

DEFINITION 1 (EFX FEASIBILITY). Given a partition X = (X1, Xs,...,X,,) of M, a bundle X
is EFX-feasible to agent 4 if and only if X; >; maxjeinmaz,ex; X; \ g. Therefore, an allocation
X =(X1,X,,...,X,) is EFX if for each agent i, X; is EFX-feasible .
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Chaudhury et al. (2020) introduced the notion of non-degenerate instances where no agent values
two distinct bundles the same. They showed that to prove the existence of EFX allocations in
the additive setting, it suffices to show the existence of EFX allocations for all non-degenerate
instances. We adapt their approach and show that the same claim holds, even when agents have
general monotone valuations.

Non-Degenerate Instances (Chaudhury et al. 2020) We call an instance Z = ([n], M,V) non-
degenerate if and only if no agent values two different sets equally, i.e., Vi € [n] we have v;(S) # v;(T)
for all S #T. We extend the technique in (Chaudhury et al. 2020) and show that it suffices to deal
with non-degenerate instances when there are n agents with general valuation functions, i.e., if
there exists an EFX allocation in all non-degenerate instances, then there exists an EFX allocation
in all instances. We defer the reader to the appendix for detailed proof.

Henceforth, we assume that the given instance is non-degenerate, implying that all goods are
positively valued by all agents.

MMS-feasible Valuations. In this paper, we introduce a new class of valuation functions called
MMS-feasible valuations which are natural extensions of additive valuations in a fair division

setting.

DEFINITION 2. A valuation function v :2M — R, is MMS-feasible if for every subset of goods
S C M and every partitions A= (A;,A,) and B = (By, By) of S, we have

max(v(B;),v(By)) > min(v(A4;),v(As)).

Informally, these are the valuations under which an agent always has a bundle in any 2-partition
of any subset of the goods that she values at least as much as her MMS value, i.e., given an
agent ¢ with an MMS-feasible valuation v(:), in any 2-partition of S C M, say B = (B, B), we
have maz(v(B;),v(B,)) > MMS?(S), where MMS?(S) is the MMS value of agent i on the set S
when there are 2 agents. Also, note that if there are two agents and one of the agents has an
MMS-feasible valuation function, then irrespective of the valuation function of the other agent,
MMS allocations always exist: Consider an instance where agent 1 has an MMS-feasible valuation
function and agent 2 has a general monotone valuation function. Consider agent 2’s optimal MMS
partition of the good set A= (A;, A,). Let agent 1 pick her favorite bundle from A. Then, agent
1 has a bundle that she values at least as much as her MMS value (as she has an MMS-feasible
valuation function), and agent 2 has a bundle that she values at least as much as her MMS value
as A is an MMS optimal partition according to agent 2.

MMS-feasible valuations strictly generalize the nice-cancelable valuation functions introduced

in (Berger et al. 2022). A valuation function v:2M — Ry is nice-cancelable if for every S, 7 C M



Akrami et al.: EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 9

S1{o} {92} {95} {91,902} {91.95} {92:95} {91,92,95}
v 1 2 3 10 4 5 13

Table 1 valuation function v is MMS-feasible but not nice-cancelable.

and g€ M\ (SUT), we have v(SU{g}) >v(T'U{g}) = v(S) > v(T). Nice-cancelable valuations
include budget-additive (v(S) = min(}_, qv(s),¢)), unit demand (v(S) = maz;csv(s)), and multi-
plicative (v(S)=]],cqv(s)) valuations (Berger et al. 2022).

LEMMA 2. FEwvery nice-cancelable function is MMS-feasible.
We first make an observation about a nice-cancelable valuation function.

OBSERVATION 5. If v is a nice-cancelable valuation, then for every S, C M and Z C M\ (SUT),
we have v(SUZ) >v(TUZ)=v(S)>v(T).

Let v be a nice-cancelable function. For a subset of goods S C M, consider any two partitions
A= (A, As) and B = (By, B) of S. Without loss of generality assume v(A; N B;) < v(Ay N By).
Since (A; N By) is disjoint from (A; N B;)U (A, N Bsy), by the contrapositive of Observation 5 applied

to nice-cancelable valuation v, we have,

Therefore,

min(v(4:),v(Az)) < v(4s)
— o((A; N By) U (AN By)) Ay = (A (B U (A N By)
< 0((A3 1 By) U (A1 N By)) Tnequality (1)
— o(By) By = (43N By) U (A1 N By)

<max(v(By),v(B2)).

To prove that MMS-feasible functions strictly generalize nice-cancelable functions, we present

an example of a valuation function that is MMS-feasible but not nice-cancelable.

EXAMPLE 1. Let M ={g1,¢92,93}. The value of v(S) is given in Table 1 for all S C M. First note
that v(g; Uge) >v(g3Ugz) but v(g;) < v(gs). Therefore, v is not nice-cancelable. Now we prove
that v is MMS-feasible. Let S C M and A = (A4, As), B = (B, By) be two partitions of S. Without
loss of generality, assume |A;| < |As|. If A; =0, min(v(A;),v(A2)) =0 <max(v(B;),v(Bz)). Hence,
we assume |A;| > 1 and therefore, we have |S| > 2. Moreover, if A= B, then max(v(B),v(Bs)) =
max(v(A;),v(A2)) > min(v(A;),v(A2)). Thus, we also assume A # B. If S = {g,¢'}, the only
two different possible partitioning of S is A= ({g},{¢'}) and B = (0,{g,¢'}). For all ¢g,¢' € M,
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v({g,9'}) > max(v(g),v(¢")). Therefore, max(v(B;),v(Bs)) > min(v(A4;),v(As)). If S={g1,92,9s},
then |A;| =1 and therefore, min(v(A;),v(A42)) <v(A;) <max,epn(v(g)) =3. Without loss of gen-
erality, let g; € B,. For all T'C M such that g3 € T, we have v(T) > 3. Thus, max(v(By),v(Bs)) >
v(B1) >3 >min(v(A41),v(As)).

The next lemma follows from Lemma 2 and Example 1.

LEMMA 3. The class of MMS-feasible valuation functions is a strict superclass of nice-cancelable

valuation functions.

2.1. Rainbow Cycle Number

Chaudhury et al. (2021a) reduced the problem of finding approximate EFX allocations with
sublinear charity to a problem in extremal graph theory. In particular, they introduced the notion

of a rainbow cycle number.

DEFINITION 3. Given an integer d > 0, the rainbow cycle number R(d) is the largest k£ such that
there exists a k-partite directed graph G = (V,UV,U---UVj, E) such that

e cach part has at most d vertices, i.e., |V;| <d, and

e every vertex has exactly one incoming edge from every part other than the one containing it*,
and

e there exists no cycle C' in G that visits each part at most once.

We also refer to cycles that visit each part at most once as “rainbow” cycles.

They show that any finite upper bound on R(d) implies the existence of approximate EFX
allocations with sublinear charity. Better upper bounds on R(d) gives better bounds on the charity.

In particular, they prove the following theorem.

THEOREM 6. (Chaudhury et al. 2021a) Let G= (V1 UV, U... Vi, E) be a k-partite digraph such
that (i) each part has at most d vertices and (ii) each vertex in G has an incoming edge from
every part other than the one containing it. Furthermore, let k > T(d) > R(d). If there exists a
polynomial time algorithm that can find a cycle visiting each part at most once in G, then there
exists a polynomial time algorithm that determines a partial EFX allocation X such that

e the total number of unallocated goods is in O("/e-h~'(n/e)) where h='(d) is the smallest integer
¢ such that h(¢)=£-T(£) >d.

e NW(X)>1/(2e')- NW(X*), where X* is the allocation with mazimum Nash welfare.

*In the original definition of the rainbow cycle number R(d) in (Chaudhury et al. 2021a), every vertex can have

more than one incoming edge from a part. However, by reducing the number of edges, we can only increase the upper
bound on R(d).
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3. Technical Overview

In this section, we briefly highlight the main technical ideas used to show our results.

3.1. EFX Existence beyond Additivity

We present an algorithmic proof for the existence of EFX allocations when agents have valuations
more general than additive valuations. The main takeaway of our algorithm is that it does not
require the sophisticated concepts introduced by the techniques in (Chaudhury et al. 2021b, 2020)
that rely on improving a potential function while moving in the space of partial EFX allocations.
In fact, our algorithm does not even require the concept of envy-graph which is a very fundamental
concept used by the algorithms in (Chaudhury et al. 2021b, 2020) and also in (Plaut and Rough-
garden 2020, Lipton et al. 2004) to prove the existence of weaker relaxations of envy-freeness (like
EF1 and 1/2-EFX).

The crucial idea in our technique is to move in the space of partitions (of the good set), improving
a certain potential as long as we cannot find an EFX allocation from the current partition, i.e., we
cannot find a complete allocation of the bundles in the partition such that the EFX property is
satisfied. In particular, we always maintain a partition X = (X, X5, X3) such that (i) agent 1 finds
X, and X, EFX-feasible and (ii) at least one of agent 2 and agent 3 finds X3 EFX-feasible. Note
that such allocations always exist: Agent 1 can determine a partition such that all bundles are
EFX-feasible for her (such a partition is possible as agent 1 can run the algorithm in (Plaut and
Roughgarden 2020) to find an EFX allocation assuming all three agents have agent 1’s valuation
function, thereby making all bundles EFX-feasible for her) and we call agent 2’s favorite bundle in
the partition X3 (which is obviously EFX-feasible for her) and the remaining bundles X; and X,
arbitrarily. Then, we have a partition that satisfies the invariant.

Note that if any one of agent 2 or 3 finds one of X; or X, EFX-feasible, then we easily get
an EFX allocation. Indeed, assume without loss of generality that agent 2 finds X35 EFX-feasible.
Now, if

e agent 3 finds X, EFX-feasible, then we have an EFX allocation: agent 1 <— X, agent 2 < X3,
and agent 3 < X,. We can give a symmetric argument when agent 3 finds X; EFX-feasible.

e Similarly, if agent 2 finds X, EFX-feasible, then we can let agent 3 pick her favorite bundle in
the partition (which is obviously EFX-feasible for her) and still give agents 1 and 2 an EFX-feasible
bundle. We can give a symmetric argument when agent 2 finds X; EFX-feasible.

Therefore, we only need to consider the scenario where only X3 is EFX-feasible for agents 2 and
3. Essentially, in this scenario, X3 is “too valuable” to agents 2 and 3, as they do not find any

of the remaining bundles EFX-feasible. A natural attempt would be to remove some good(s) from
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X3 and allocate it to X1 or Xs, i.e., we can increase the valuation of agent 1 for her EFX-feasible
bundle(s) by removing the excess goods allocated to the only EFX-feasible bundle of agents 2 and
3. This brings us to our potential function: ¢(X) = min(v,(X;),v1(X3)). Now, the non-triviality
lies in determining the set of goods to be removed from X3 and then allocating them to X; and
X5 such that we maintain our invariants. Although non-trivial, this turns out to be significantly
simpler than the procedure used in (Chaudhury et al. 2020) and also holds when agents 1 and 2
have general monotone valuation functions and agent 3 has an MMS-feasible valuation function.

The entire procedure is elaborated in Section 4.

3.2. Improved Bounds on Rainbow Cycle Number

Our technique to achieve the improved bound involves the probabilistic method. It is significantly
simpler and yields better guarantees. We briefly sketch our algorithmic proof. Let there be k parts
in G=(V;UV,U...V,, E). Note that each part has at most d vertices and each vertex has at
least one incoming edge from every part. We pick one vertex v; from each part V; uniformly and
independently at random. Now, it suffices to show that with non-zero probability, the induced graph
on the vertices vy, v, ..., vy is cyclic for some k € O(dlogd). Note that if every vertex in Glvy, ..., vg]
has an incoming edge, then G[v; ...v;] is cyclic. So we need to show a non-zero lower bound on the
probability of each vertex having at least one incoming edge or equivalently show an upper bound
on the probability that each vertex has no incoming edge in G[v; ... vy]. To this end, let E,, denote
the event that vertex v; has no incoming edge in Glv;...v;]. Note that P[E, | < (1—1/d)* ' v,
has at least one incoming edge from each part, and therefore, the probability that there is no
incoming edge from v; to v; is at most (1—1/d) for all j. Since all v;’s are independently chosen, the

(k=1) Then, by union

probability that v; has no incoming edge from any part is at most (1 —1/d)
bound, P{Usep Ey,] <375, PIE,] < k(1— 1/d)* =Y. Therefore, the probability that G[v; ...v;] is

cyclic is at least 1 — k(1 —1/d)*~1 which is strictly positive for k € O(dlogd).

4. EFX Existence beyond Additivity

Before we give the new algorithm, we first give the reader a quick recap of the Plaut and Roughgar-
den (PR) algorithm (2020) that determines an EFX allocation when all agents have the same valu-
ation function, v(-) (the only assumption on v(-) is that it is monotone). The algorithm starts with
any arbitrary allocation X (which may not be EFX) and makes minor reallocations to improve the
valuation of the agent who has the lowest value, i.e., it modifies X to X’ such that mmie[n]v(X{ ) >
min;env(X;). We now elaborate on the reallocation procedure: Let ¢ be the agent with the lowest
valuation in X. If X is not EFX, then there exists agents ¢ and j such that v(X;) <v(X; \ {g})

for some g € X;. Since v(X,) < v(X;), we also have v(X,) <v(X; \ {g}). The algorithm removes
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Figure 1 The nodes correspond to agents and an edge from agent ¢ to a bundle X; means that X; is EFX-feasible
for i. In this example, X; and X, are EFX-feasible for agent 1, and X3 is EFX-feasible for agent 3.

Therefore, the invariants hold.

the good ¢ from j’s bundle and allocates it to ¢. Observe that v(X}) > v(X,) for all k # ¢ as we
assume non-degeneracy. Also, we have v(X,U{g}) and v(X; \ {g}) greater than v(X,). Therefore,
the valuation of every new bundle is strictly larger than the valuation of X,. Thus, the valuation
of the agent with the lowest valuation improves. This implies that the reallocation procedure will

never revisit a particular allocation, and as a result, this process will eventually converge to an

EFX allocation Y with v(Y;) > v(X,) for all i € [n]. Formally,

LEMMA 4 (Plaut and Roughgarden (2020)). Let X = (X;,X2,X3) be an arbitrary 3-
partition. Running the PR algorithm with any monotone valuation v results in an EFX-partition

X' = (X!, X}, X}) with
min(v(X;),v(X2),v(X3)) <min(v(X]),v(X3),v(X3)).

We have equality only if the input is already EFX for v.

In contrast to the algorithms in (Chaudhury et al. 2020, 2021b, Berger et al. 2022, Plaut and
Roughgarden 2020), our algorithm moves in the space of complete EFX allocations, iteratively
maintaining some invariants. As long as our allocation is not EFX, we make some reallocations
to the existing allocation and improve a certain potential. We give the proof here assuming only
monotonicity for the valuation functions of agents 1 and 2 and assuming MMS-feasibility for the
valuation of agent 3, i.e., v;(-) and v,(-) are general monotone valuation functions and wvs(-) is
MMS-feasible. We now elaborate on our algorithm. We maintain a partition (X, Xs, X3) of the
good set such that

e X; and X, are EFX-feasible for agent 1.

e X, is EFX-feasible for at least one of agents 2 and 3.

See Figure 1 for better intuition.

One can show the existence of allocations satisfying the above invariants by running the PR

algorithm and initializing: Agent 1 runs the PR algorithm with v = v; to determine a partition

(X1, X5, X3) such that all the three bundles are EFX-feasible for her. Then, agent 3 picks her
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favorite bundle out of the three, say X3. Clearly, X3 is EFX-feasible for agent 3, and X; and X,
are EFX-feasible for agent 1. Thus X satisfies the invariants.

We define our potential function as ¢(X) = min(v;(X1),v1(X2)). We now elaborate on how
to modify X and improve the potential when we cannot determine an EFX allocation from the
partition X, i.e., we cannot determine an allocation of the bundles in X to the agents that satisfy

the EFX property.

4.1. Reallocation When We Cannot Get an EFX Allocation from X

Let X = (X, X5, X3) be a partition satisfying the invariants. Without loss of generality, let us
assume that agent 2 finds X3 EFX-feasible. Observe that if any one of agents 2 or 3 finds bundles
X, or Xy EFX-feasible, then we are done: If agent 3 finds one of X; or X, EFX-feasible, then we
can allocate agent 3’s EFX-feasible bundle to her, X3 to agent 2 and the remaining bundle of X,
and X, to agent 1 and get an EFX allocation. Similarly, if agent 2 finds X; or X, EFX-feasible,
we ask agent 3 to pick her favorite bundle out of X;, X,, and X3;. Now, note that no matter
which bundle agent 3 picks, there is always a way to allocate agents 1 and 2 their EFX-feasible
bundles as agent 1 finds X; and X, EFX-feasible and agent 2 finds X3 and at least one of X; or
X, EFX-feasible. If agent 3 picks X, allocate X, to agent 1 and X3 to agent 2. If agent 3 picks
X,, allocate X; to agent 1 and X3 to agent 2. Finally, if she picks X3, allocate the bundle among
X, and X,, which is EFX-feasible for agent 2 to agent 2 and the remaining bundle to agent 1.
Therefore, from here on we assume that neither agent 2 nor agent 3 finds X; or X, EFX-feasible.
Let g; be the good in X3 such that X3\ g; >; X3\ h for all h € X3, i.e.,, X3\ ¢; is the most valued

proper subset of X3 for agent i.
OBSERVATION 7. For i € {2,3}, we have X3\ ¢, >, maz;(X;, X5).

We prove for i =2. The proof for ¢ =3 is identical. Let us assume otherwise and say without
loss of generality X; >3 X3\ ¢g2. Then, the only reason why X is not EFX-feasible for agent 2 is if
X1 <3 X5\ g for some g € X,. But, in that case, we have Xy >3 X; >, X3\ go. Therefore, we have
Xy >, mazezymaznex, Xe \ h, implying that X, is EFX-feasible, which is a contradiction.

With loss of generality assume that X; <; X5, implying that ¢(X) = v, (X;). We now distinguish
two cases depending on how valuable the bundle X; U g; is to agent i for ¢ € {2,3} and give the
appropriate reallocations in both cases. In particular, we first look into the case where X3\ g; is

still more valuable to agent ¢ than X; Ug; for at least one i € {2,3}.
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Figure 2 Assuming that X3\ g2 >2 X1 U gz, the edge between agent 2 and X3\ g2 exists. Also, the edge between
agent 1 and X; U g2 exists.

Case: X3\ g2 >2 X1Ugs or X3\ gs >3 X1Ugs, i.e., X3\ g; is the favorite bundle for agent ¢
in the partition X1 U g;, Xo and X3\ g; for at least one © € {2,3}. We provide the reallocation
rules assuming that X3\ g2 >2 X; Ugs. The rules for the case X3\ g3 >3 X; Ugs is symmetric. Now,
consider the partition (X; U gs, Xa, X3\ g2). See Figure 3.

By Observation 7, X3\ g >2 X, and by our current case X3\ go >o X; Ugs, implying that X3\ g-
is an EFX-feasible bundle for agent 2. Let X| be a minimal subset of X; U g, with respect to set
inclusion that agent 1 values more than X, i.e., agent 1 values X; more than any proper subset
of X and X| >; X;. Let X; =X, and X} = (X3\ ¢2) U((X1Ug2)\ X7). We define the partition
X' = (X}, X5, X}). Observe that ¢(X') > ¢(X) as X}, = Xy > X; (by assumption) and X >; X
(by definition). Also, note that X} is EFX-feasible for agent 2 as it is the most valuable bundle in
X' for agent 2. Now, if X and X are EFX-feasible for agent 1, all invariants are maintained, and
we are done. So now we look into the case when at least one of X| and X} is not EFX-feasible for
agent 1 in X',

We first make an observation on agent 1’s valuation on the bundles X| and XJ.
OBSERVATION 8. We have X| >; X, \ ¢ for all g€ X} and X} >; X|\ h for all h € X].

Note that X >; X; by definition of X| and X; >; X, \ g for all g € X, as X; was EFX-feasible
for agent 1 in X. Since X} = X5, we have X| >; X} \ g for all g € X).

Similarly, X, >; X; by assumption. Furthermore X; >; X7\ & for all h € X by the definition of
X1. Since X} = X5, we have X} >; X\ h for all h € X].

By Observation 8, if X| and X, are not EFX-feasible for agent 1 in X', then X!\ g >4
mini (X7, X)) for some g € X}. However, in that case, we run the PR algorithm on the partition X’
with agent 1’s valuation. Let Y = (Y7, Y5, Y3) be the final partition at the end of the PR algorithm.
We have,

min(v1 (Y1), v1(Y2),v1(Y3)) > min(vy (X7),v1(X3),v1(X3)) (by Lemma 4)
= min(vy(X7),v1(X3)) (as v1(X3) > min(vy (X7),v1(X3)))
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Figure 3 Assuming that X3\ g2 <2 X1 Ugz and X3\ g3 <3 X1 U g3, the edge between agent i and X1 U g; exists
in addition to the edge between agent 1 and X3 U g;.

= ¢(X')
> d(X).

We then let agent 2 pick her favorite bundle out of Y7,Y5, and Y. Let us assume without loss
of generality that she chooses Y3. Then, allocation Y satisfies the invariants and we have ¢(Y) =
min(v1(Y1),v1(Y2)) > min(v1(Y1),v1(Y2),v1(Y3)) > ¢(X). Thus, we are done.

Remark: Note that we have not used the MMS-feasibility of v3(:) yet. All the arguments, in
this case, hold when all three valuation functions are general monotone. We use MMS-feasibility
crucially in the upcoming case.

Case: X3\ g2 <2 X1Ugs and X3\ g3 <3 X1 Ugs, i.e., X1 Ug; is the favourite bundle in the
partition X1 U g;, X2 and X3\ g; for all ¢ € {2,3}. From Observation 7, we have X3\ g; >; X»
for i € {2,3}. Therefore, we have,

X2 <2X3\92 <2X1 UQQ and X2 <3X3\gg <3X1 Ugg

By MMS-feasibility of valuation function vs(-), we conclude that X, <3 maz3(Z,Z") where (Z,7")
is any valid 2-partition of the good set X; U X3, as MMS-feasibility implies that max3(Z,2Z") >
minz(X; Ugs, X3\ g3) >3 Xo. We run the PR algorithm on the 2-partition (X; U gs, X3\ g2) with
agent 2’s valuation (vy(-)). Note that this time we run the PR algorithm with n =2 instead of
the usual n =3 in the prior cases. Let (Y5,Y3) be the output of the PR algorithm. We let agent
3 choose her favorite among Y> and Y3;. Assume without loss of generality she chooses Y;. Now,

consider the allocation X':
agent 1: X, agent2: Y, agent3d: Y;.

We now analyze the strong envy in the allocation. To this end, we first observe that agents 2

and 3 do not strongly envy anyone.

OBSERVATION 9. Yj; is EFX-feasible for agent 2 and Y3 is EFX-feasible for agent 3 in X".
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Since (Y2,Y3) is the output of the PR algorithm run on (X; U g2, X3 \ g2) with agent 2’s
valuation function, (i) Y3 >, Y3\ h for all h € Y3, and (ii) Yo > ming(X; Ugs, X3\ g2) >2 Xo, where
the first inequality follows from Lemma 4 and the second inequality follows from the fact that
X1Ugy >3 X3\ g2 >2 Xo. Therefore Y; is EFX-feasible for agent 2.

Now, we look into agent 3. Note that Y3 = maz3(Ys,Y3) as agent 3 picks her favourite among Y5
and Ys. Therefore, Y3 >3 Y, where the strict inequality follows due to non-degeneracy. Furthermore,
due to the MMS-feasibility of v3(-) and the fact that (Ys,Y3) is a valid 2-partition of the good
set X7 U X3, we have Y3 = max3(Y2,Y3) >3 X,. Therefore, Y3 >3 maz3(Yz2, X3) and thus Y3 is an
EFX-feasible bundle for agent 3.

Therefore, the only possible strong envy is from agent 1. We now enlist the possible strong envy
that may arise from agent 1 and show corresponding reallocations.

e Agent 1 does not strongly envy Y; and Y3: Then we are done as X' is an EFX allocation.

e Agent 1 strongly envies both Y, and Yj;: In this case, we have Y, >; X, and Y; >; X,. We
run the PR algorithm on the partition (X,,Y5,Y3) with agent 1’s valuation function (v;(-)) and
let agent 2 pick her favorite bundle from the final partition X" returned by the PR algorithm.
Then, we have a partition that satisfies the invariants and ¢(X") > ¢(X) as min, (X7, X5, X3) >4
ming (X, Y2, Ys) = Xy > X = ¢(X), where the first inequality follows from Lemma 4.

e Agent 1 strongly envies one of Y; and Y3: Let us assume without loss of generality that agent
1 strongly envies Y. Let Y, be the minimal subset of Y, with respect to set inclusion that agent
1 values more than X,. Then, consider the partition X" = (X, Xy, X!) where X/ = X,, Xy =Y,
and X7 = Y3U (Y3 \Y,). First note that X/ is EFX-feasible for agent 3 as X} = Y5 was EF X-feasible
in allocation X’ and now the bundle X" remains the same, the bundle X/ has been compressed
further in X”, and X} C X¥. Also note that ¢(X") = min (v, (X}), v (XY)) = min(vi(Xs),v1(Y3)) =
v1(X2) > (X1) = ¢(X). If X7 and X} are EFX-feasible for agent 1, then partition X" satisfies the
invariants and ¢(X") > ¢(X) and we are done. So now consider the case when at least one of X}’
and X/ is not EFX-feasible for agent 1. Note that X >; XJ\ h for all h € X} and XJ >; X{ by the
fact that X7 = X, and by the definition of X% =Y ,. Thus, if one of X/ or X/ is not EFX-feasible
for agent 1, then we must have X5\ ' >; min, (X7, X}) for some b’ € XJ. In this case, we run the
PR algorithm on the partition (X, XY, X)) with agent 1’s valuation function v;(-) and let agent 2
pick her favorite bundle from the final partition Z returned by the PR algorithm. Then Z satisfies

the invariants and

¢(2) = min(vi(Z1),v1(Z2),v1(Z3))

(
n(v1(X7), 01 (X5), 01 (X5))

mi
mi

v
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So we are done.

This brings us to the main result of this section.

THEOREM 2. EFX allocations exist with three agents as long as at least one agent has an MMS-

feasible valuation function.

5. Bounds on Rainbow Cycle Number

In this section, we improve the upper bounds on the rainbow cycle number introduced in (Chaud-
hury et al. 2021a), thereby implying the existence of approximate EFX allocations with O((n/e)'/?)
charity. Chaudhury et al. (2021a) gave an upper bound of R(d) € O(d*) and they showed it results
in the existence of a (1 —¢)-EFX allocation with O((n/e)"?) charity. In the same paper, (Chaud-
hury et al. 2021a) shows a lower bound of d on R(d). In this section, we show improved bounds on
R(d). In particular, we first show in Section 5.1 that R(d) € O(dlogd) (making the upper bound
almost tight), thereby implying the existence of (1 —¢)-EFX allocations with O((n/e)'/?) charity.
Secondly, in Section 5.2, we show an upper bound of 2d — 2 assuming that every vertex v € V; has
exactly one incoming edge from any other part V; # V; and exactly one outgoing edge to some
vertex in V;. We call this number R,(d). We remark that the lower bound of d in (Chaudhury et al.
2021a) also holds for R,(d). The upper bound of 2d — 2 immediately improves the upper bound
on the zero-sum extremal problem studied in (Alon and Krivelevich 2021, Mészaros and Steiner

2021).

5.1. Almost Tight Upper Bound on R(d)

Recall that R(d) is the largest k£ such that there exists a k-partite digraph G with k classes of
vertices V; so that each part V; has at most d vertices, for all distinct 7,j each vertex in V; has
an incoming edge from some vertex in Vj, and there exists no (directed) rainbow cycle, namely,
a cycle in G that contains at most one vertex of each V. In this section, we prove the following

improved bound which is tight up to the logarithmic factor.

THEOREM 10. If
E(1-1/a) ' <1 (2)

then R(d) < k. Therefore, R(d) < (14 o(1))dlogd.

Suppose k(1 —1/a)*~! < 1. Let S be a random set of k vertices of G obtained by picking a
single vertex v; in each V;, randomly and uniformly among all vertices of V;, where all choices are
independent. For each vertex v, let E, be the event that S contains v and contains no other vertex
u so that uv is a directed edge. We claim that if v € V; then the probability of F, is at most

1

|VYZ’ (1 - l/d)k_l'
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Indeed, the probability that v € S is 1/|V;|. Conditioning on that, since for every j # i there is
some u; € V; so that u;v is a directed edge, and the probability that u; is in S is 1/|V;| >1/d, the
probability that v has no in-neighbor in V; is at most 1 —1/d. As the choices are independent, the
claim follows. By the union bound, the probability that there is a vertex v so that the event E,

occurs is at most .
1
o Wil = )=t = k(1 - 1/ < 1
i=1 @

Therefore, with positive probability, every vertex in the induced subgraph of G on S has an in-
neighbor. Hence there is such an S and in this induced subgraph, there is a cycle, which contains

at most one vertex from each V;. Thus R(d) < k, completing the proof.

Theorems 6 and Theorem 10 then imply Theorem 4.
Remark. The proof above can be derandomized using the method of conditional expectations

(cf., e.g., Alon and Spencer (1992), Chapter 16), giving the following.

PROPOSITION 1. Let G be a k-partite digraph with classes of vertices V;, each having at most d
vertices. Suppose that for all distinct i,j each vertex in V; has an incoming edge from some vertex
in V; and vice versa, and suppose that (2) holds. Then a rainbow cycle in G can be found by a

deterministic polynomaal time algorithm.

We apply the method of conditional expectations to produce a set S = {s1, S, ..., sx } of vertices
of GG, where s; € V;, so that every indegree in the induced subgraph of G on S is positive. This
is done by choosing the vertices s; one by one in order, maintaining a potential function ¢ whose
value is the conditional expectation of the number of events F, that hold, given the choices of the
vertices s; made so far.

In the beginning, there are no choices made, and the value of ¢ is the sum
k

2 '”'ﬁ(l —1/d) T = k(1= 1/d) T <1

Assuming s1,$»,...,5;,_1 have already been chosen, and the above conditional expectation is still
smaller than 1, choose s; € V; as the vertex that minimizes the updated value of the conditional
expectation. As the expectation is the average over all possible choices of s;, this minimum stays
below 1. The computation of the required conditional expectations for each of the possible |V;| < d
choices of s; € V; can be done efficiently. At the end of the process, the value of the potential
function is exactly the number of events F, that hold, and since this number is below 1, none of
them holds. This supplies the required set S. Starting in any vertex of S and moving repeatedly
to an in-neighbor of it in S until we reach a vertex we have already visited supplies the desired

rainbow cycle.
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5.2. A Linear Upper Bound on R,(d)

In this section, we assume graph G satisfies all the properties in Definition 3 and also for all
different parts V; and V;, each vertex in V; has exactly one outgoing edge to a vertex in V;. We call
these graphs permutation graphs since the set of edges from any part to any other part defines a

permutation.

DEFINITION 4. Given an integer d > 0, the permutation rainbow cycle number R,(d) is the largest
k such that there exists a k-partite directed graph G = (V;UV,U---UV,, F) such that

e cach part has exactly d vertices, i.e., |V;| =d, and

e every vertex has exactly one incoming edge from every part other than the one containing it,
and

e every vertex has exactly one outgoing edge to every part other than the one containing it, and

e there exists no cycle C' in G that visits each part at most once.
THEOREM 11. For all integers d>1, R,(d) <2d—1.

In the rest of this section, we prove Theorem 11. The proof is by induction.

Basis: For the base case, consider d = 2. For the sake of contradiction assume R(2) > 3 and let
Vi=A{ai,ax}, Voa={b1,b2} and V3 ={c1,c2} be three different parts. Without loss of generality, we
can assume there is an edge from a; to b; and one from b; to ¢;. Assuming there is no cycle in
this graph, a directed edge from c¢; to a; cannot exist, and therefore, a directed edge from ¢, to
a; exists. Thus, no edge from a; to ¢, exists, implying an edge from a; to ¢;. Also, since there is
an edge from b; to ¢;, there must be an edge from ¢; to b, (since there can be none to b;). Now if
there is an edge from b; to a;, the cycle (a;,b;) exists, and if there is an edge from by to a;, the
cycle (ay,c1,be) exists which is a contradiction. Therefore, R(2) < 3.

Moreover, we prove that R,(1) = 1. Towards a contradiction assume R,(1) > 2 and there are two
different parts V; = {a} and V5 = {b}. Then, there exists an edge from a to b and one from b to a,
forming a cycle.

Induction step: For d > 2, we assume for all 1 < d’ <d, R,(d") <2d'—1 and prove R,(d) <2d—1.

In particular, since R,(1) =1, for all d’ < d we have
R,(d) <2d —1. (3)
First, we define i-restricted paths, which are the paths that use each part at most once, and except

for the last vertex, all vertices are in the first 7 parts.

DEFINITION 5. We call path P =v; — v9 — --- — v; an i-restricted path if

o vl,...,vt_leleVgU'“UVi, a'nd
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Figure 4 W' has an outgoing edge to U

e P visits each part at most once.

Note that for all j > i, every i-restricted path is also a j-restricted path. Now we prove the following

claim.

CrLAaM 1. If k>2d—1, for every vertex v, there is a way of reindexing the parts such that v € V;

and for alli € [d], there are i nodes in Va;_1 which are reachable from v via (2i — 2)-restricted paths.

The proof of the claim is also by induction. For the base case, let i =1. If v € U, set V; = U, and
the claim follows. For the induction step, we assume Vi, V;, ..., V1 are already defined and there
is a (2 — 2)-restricted path from v to vy, va,...,v; € Vo, 1. Consider any part U ¢ {Vi, Vo, ..., Vo1 }.
For all j € [i], let v; — u; be the outgoing edge from v; to U. Since each node in Va;_; has exactly
one outgoing edge to U, and each node in U has exactly one incoming edge from Va; 1, w1, us, ..., u;
are distinct. Therefore, at least ¢ nodes in U are reachable from v via (2i — 1)-restricted paths. Let
U’ C U be the vertices that are reachable from v via (2i — 1)-restricted paths and let U = U\ U".
If |[U'|>i+1, we set Vo =W for some W ¢ {V},Va,...,Va,_1,U} and set Va1 = U and the claim
follows. Otherwise, for all U ¢ {V;,V4,...,Va;_1}, we have |U’'| =i and |U| =d — 4. If there exist
UW ¢ {Vi,Vs,...,Va_1} such that w € W’ has an outgoing edge to u € U, then we set Vo; = W
and Va;,; = U. Note that all nodes in U’ are reachable from v using (2i — 1)-restricted paths, and u
is reachable via a (2i)-restricted path. Therefore, in total i + 1 vertices in U = V5,1 are reachable
from v via (2i)-restricted paths. See Figure 4 for an illustration.

Let V(G)=ViUVoU - UV UU UUU -+ - UUg_2i41. The only remaining case is that for all
j€[k—2i+1], |U;|=d—iand for all j,¢ € [k —2i+1], there is no edge from U/ to U,. This means
that all the d — i incoming edges of U, come from Uj. Hence all the d —i outgoing edges of Uj go
toU,. T herefore, the induced subgraph on U,uU,U--- UUk_QiJrl, forms a permutation graph. See
Figure 5. By Inequality (3), we know R,(d —i) <2d —2i—1 and hence, k —2i+1<2d —2i — 1.
This contradicts the assumption of the claim, which requires k > 2d — 1. Therefore, this case cannot

occur.
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Figure 5 k' >k—2i—1 and for all j,£ € [k'], there exists no edge between U} and U,.

Back to the assumption step, we want to prove R,(d) < 2d — 1. Towards a contradiction, assume
R,(d) > 2d—1 and consider a graph G with |R,(d)| parts satisfying properties of Definition 4. Now
pick an arbitrary vertex v. By setting i =d in Claim 1, there exists a reindexing of the parts such
that all d nodes in part V,4_; are reachable from v using (2d — 2)-restricted paths. Let u € Vo4,
be the vertex with an outgoing edge to v. Then a (2d — 2)-restricted path from v to u followed by

the edge u — v forms a rainbow cycle. Hence, R,(d) <2d — 1.

Appendix A:

Non-Degenerate Instances (Chaudhury et al. 2020). We call an instance Z = ([n], M,V) non-
degenerate if and only if no agent values two different sets equally, i.e., Vi € [n] we have v;(S) # v;(T)
for all S# T. We extend the technique in (Chaudhury et al. 2020) and show that it suffices to deal
with non-degenerate instances when there are n agents with general valuation functions, i.e., if
there exists an EFX allocation in all non-degenerate instances, then there exists an EFX allocation
in all instances.

Let M ={g1,92,.-.,9m}. We perturb any instance Z to Z(¢) = ([n], M,V(¢)), where for every

v; €V we define v, € V(¢), as

Vi(S)=vi(S)+e- Y 2 VSCM

g;€8
LEMMA 5. Let 6 = min;ep, ming 7; v,(s)20; (1) [0i(S) —v;(T)| and let € >0 be such that € - 2™+ < 4.
Then
1. For any agent i and S, T C M such that v;(S) > v;(T), we have v.(S) > vi(T).
2. I(e) is a non-degenerate instance. Furthermore, if X = (X1, Xo, X3) is an EFX allocation for
Z(e) then X is also an EFX allocation for T.
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For the first statement of the lemma, observe that

Vi(S) = vi(T) =vi(S) —vi(T) +e( > 27— > 2)

g;€S\T g;€T\S
>0—¢ Z 27
g;€T\S

>6—¢e- (27T —1)

>0 .

For the second statement of the lemma, consider any two sets S,T" C M such that S #T. Now,
for any i € [n], if v;(S) # v;(T), we have v}(S) # v/(T) by the first statement of the lemma. If
v;(S) = v;(T), we have v(S) —vi(T) = E(ZngS\T 20 — ZgjeT\S 27)#£0 (as S #T). Therefore, Z(c)
is non-degenerate.

For the final claim, let us assume that X is an EFX allocation in Z(¢) and not an EFX allocation
in Z. Then there exist ¢, j, and g € X; such that v;(X;\ g) > v;(X;). In that case, we have v}(X;\ g) >
vi(X;) by the first statement of the lemma, implying that X is not an EFX allocation in Z(¢) as

well, which is a contradiction.
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