
Efficient Splitting of Necklaces1

Noga Alon !Ï �2

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA3

Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel4

Andrei Graur !5

Department of Management Science and Engineering, Stanford University, Stanford, CA 94305,6

USA7

Abstract8

We provide efficient approximation algorithms for the Necklace Splitting problem. The input consists9

of a sequence of beads of n types and an integer k. The objective is to split the necklace, with a10

small number of cuts made between consecutive beads, and distribute the resulting intervals into k11

collections so that the discrepancy between the shares of any two collections, according to each type,12

is at most 1. We also consider an approximate version where each collection should contain at least13

a (1 − ε)/k and at most a (1 + ε)/k fraction of the beads of each type. It is known that there is14

always a solution making at most n(k − 1) cuts, and this number of cuts is optimal in general. The15

proof is topological and provides no efficient procedure for finding these cuts. It is also known that16

for k = 2, and some fixed positive ε, finding a solution with n cuts is PPAD-hard.17

We describe an efficient algorithm that produces an ε-approximate solution for k = 2 making18

n(2+log(1/ε)) cuts. This is an exponential improvement of a (1/ε)O(n) bound of Bhatt and Leighton19

from the 80s. We also present an online algorithm for the problem (in its natural online model), in20

which the number of cuts made to produce discrepancy at most 1 on each type is Õ(m2/3n), where21

m is the maximum number of beads of any type. Lastly, we establish a lower bound showing that22

for the online setup this is tight up to logarithmic factors. Similar results are obtained for k > 2.23

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis24

Keywords and phrases necklace splitting, necklace halving, approximation algorithms, online al-25

gorithms, discrepancy26

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2327

Category Track A: Algorithms, Complexity and Games28

Related Version Full Version: https://arxiv.org/abs/2006.1661329

Funding Noga Alon: Research supported in part by NSF grant DMS-1855464, BSF grant 201826730

and the Simons Foundation.31

© Noga Alon and Andrei-Alexandru Graur;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nalon@math.princeton.edu
http://www.myhomepage.edu
https://orcid.org/0000-0002-1825-0097
mailto:agraur@stanford.edu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://arxiv.org/abs/2006.16613
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Efficient Splitting of Necklaces

1 Introduction32

1.1 The problems33

The Necklace Splitting problem deals with a fair partition of a necklace with beads of n34

colors among k agents. The objective is to cut the necklace into intervals and distribute35

them to the agents in an equitable way. Before adding more on the background, we give the36

formal definition of the problem.37

▶ Definition 1. (Necklace Splitting) An instance of Necklace Splitting for n colors and k38

agents consists of a set of beads ordered along a line, where each bead is colored by a color39

i ∈ [n] = {1, 2, . . . , n}. The goal is to split the necklace, via at most n(k − 1) cuts made40

between consecutive beads, into intervals and distribute them to the k agents so that for each41

color i, every agent gets either ⌈mi

k ⌉ or ⌊mi

k ⌋ beads of color i, where mi is the number of42

beads of color i.43

Note that this definition is slightly broader than the one given in [1], where it is assumed44

that mi is divisible by k for all i ∈ [n]. However, as shown in [5], these two forms of the45

Necklace Splitting problem are equivalent. We call the special case k = 2 of two agents the46

Necklace Halving problem. A related problem is the ε-Consensus Splitting problem. Its47

formal definition is the following:48

▶ Definition 2. (ε-Consensus Splitting) An instance In,k of ε-Consensus Splitting with49

n measures and k agents consists of n non-atomic probability measures on the interval [0, 1],50

which we denote by µi, for i ∈ [n] = {1, 2, , . . . , n}. The goal is to split the interval, via at51

most n(k − 1) cuts, into subintervals and distribute them to the k agents so that for every52

two agents a, b ∈ [k] and every measure i ∈ [n], we have |µi(Ua) −µi(Ub)| ≤ 2ε
k , where Ua, Ub53

are the unions of all intervals a, b receive, respectively.54

The ε-Consensus Splitting problem can be viewed as a continuous variant of the Necklace55

Splitting problem. Furthermore, as will be shown in the proofs of our results, every instance56

of Necklace Splitting can be converted into an instance of ε-Consensus Splitting. We also57

consider the ε-approximate version of Necklace Splitting, where the goal is to split58

the necklace so that the difference between the shares of any two agents, according to each59

type i, is at most 2εmi/k.60

61

The existence of a solution for the Necklace Splitting problem using at most n(k − 1)62

cuts, a bound which is tight in general, was proved, using topological arguments, first for63

k = 2 agents in [20] (see also [6] for a short proof and [21] for an earlier continuous version),64

and then for the general case of k agents in [1]. A more recent proof of this existence result65

appears in [22]. However, the proofs are non-constructive. The Necklace Halving problem66

is first discussed in [11]. The problem of finding an efficient algorithmic proof of Necklace67

Splitting is mentioned in [2].68

69

Recently, there have been several results regarding the hardness of the Necklace Halving70

problem. These are discussed in the next subsection. These suggest pursuing the challenge71

of finding efficient approximation algorithms, as well as that of proving non-conditional72

hardness in restricted models.73

N. Alon and A. Graur 23:3

1.2 Hardness and Approximation74

PPA and PPAD are two complexity classes introduced in the seminal paper of Papadimitriou,75

[23]. Both of these are contained in the class TFNP, which is the complexity class of76

total search problems, consisting of all problems in NP where a solution exists for every77

instance. A problem is PPA-complete if and only if it is polynomially equivalent to the78

canonical problem LEAF, described in [23]. Similarly, a problem is PPAD-complete if and79

only if it is polynomially equivalent to the problem END-OF-THE-LINE. A problem is80

PPA-hard or PPAD-hard if the respective canonical problem is polynomially reducible to81

it. A number of important problems, such as several versions of Nash Equilibrium [15] and82

Market Equilibrium [14], have been proved to be PPAD-complete. It is known that PPAD ⊆83

PPA. Hence, PPA-hardness implies PPAD-hardness. Filos-Ratsikas and Goldberg showed84

that the Necklace Halving problem, as well as the ε-Consensus Halving problem, is PPA-hard85

[17], see also [18], [16]. Additionally, in [19] it is shown that for a fixed constant δ > 0, and ε86

inversely polynomial in n, obtaining a solution to the ε-Consensus Halving with fewer than87

n+ n1−δ is PPA-hard. Our main objective here is to find efficient approximation algorithms88

for the problems. Although not directly related to our results, it is worth mentioning that89

in [12] it is proved that for k = 2 agents it is NP-hard to minimize the number of cuts for90

instances where the optimal number is less than n, even with 2 beads of each type.91

1.3 Our contribution92

We consider approximation algorithms for two versions of the problem, namely the online and93

the offline versions. We allow the algorithms to make more than n cuts, and expect either a94

proper solution or an ε-approximate one. A proper solution is a finite set of cuts and a distri-95

bution of the resulting intervals to the k agents so that the absolute discrepancy is at most96

1. The absolute discrepancy here and in what follows is the maximum discrepancy, over all97

types, between the shares of beads of this type allocated to any two agents. An ε-approximate98

solution is a relaxation in which the discrepancy in any type is at most a fraction 2ε/k of the99

number of beads of this type. The objective is to minimize the number of cuts the algorithm100

makes. This problem for the ε-approximate version has been considered earlier in [10] and [13].101

102

In addition to approximation, we also consider hardness in the online model, discussed in103

the next subsection. In the online model, the hardness is measured by the minimum number104

of cuts needed to produce a proper solution. Lower bounds on the number of cuts needed in105

this model provide a barrier for what online algorithms can achieve.106

107

Some of our ideas for finding deterministic approximation algorithms are inspired by108

papers in Discrepancy Minimization, such as [4], [8], [7] and [9]. In [4], the terminology109

refers to the Balancer as the entity with the designated task of minimizing the absolute110

discrepancy between agents. We adopt the same terminology here. Thus, the Balancer has111

the role of an algorithm that makes cuts and assigns the resulting intervals to agents in order112

to achieve a proper solution for Necklace Splitting.113

114

Our main algorithmic results are summarized in the theorems below. The upper and115

lower bounds for the number of cuts obtained for the online model appear in the table at the116

end of this subsection. Throughout the paper, for Necklace Halving, we use the notation117

m = maxi∈[n] mi where mi is the number of beads of color i, and n is the number of types118

(=colors).119

CVIT 2016

23:4 Efficient Splitting of Necklaces

▶ Theorem 1. There exists an efficient, deterministic, offline algorithm that provides a120

proper solution to the Necklace Halving problem, making at most n(logm+O(1)) cuts.121

Here and in what follows an efficient algorithm means an algorithm whose running time122

is polynomial in the length of the input necklace.123

In [10] and [13] the authors describe offline algorithms for the ε-approximate version of124

Necklace Halving, making O((1
ε)Θ(n)) cuts. Our techniques here provide an algorithm that125

requires only n(log(1/ε) +O(1)) cuts for the problem, yielding an exponential improvement126

for the number of cuts.127

▶ Theorem 2. There exists an efficient, deterministic, online algorithm that provides a128

proper solution to the Necklace Halving problem, making at most O(m2/3 · n(logn)1/3) cuts.129

The algorithmic results in the online model, and the nearly matching lower bounds we130

establish appear in the table below. Note that the algorithms are optimal up to constant131

factors for any fixed constant n ≥ 3. In the lower bounds for Online Necklace Halving, we132

always assume that mi = m for all i ∈ [n].133

Problem n = 2 colors n ≥ 3, n = O(1)
colors n colors (general case)

Upper bound O(m2/3) O(m2/3) O(m2/3 · n(log n)1/3)
Lower bound Ω(

√
m) Ω(m2/3) Ω(n · m2/3)

134

1.4 Computational model and online version135

The offline computational model considered here is natural. The input for Necklace Splitting,136

for an instance with k agents and n colors, consists of a series of indices, each one taking a137

value in [n], which represents the color of the respective bead. The runtime is, as usual, the138

number of basic operations the algorithm makes to provide a solution.139

140

Next, we describe the online model. The parameters k, n and mi for i ∈ [n] are given in141

advance. We refer to time t, 0 ≤ t ≤
∑
i∈[n] mi − 1 as the state after the first t beads were142

revealed and decisions about cutting before any of these have already been made. The beads143

are revealed one by one in the following way: for integral t, 0 ≤ t ≤
∑
i∈[n] mi − 1, at time t144

the Balancer receives the color of bead number t+ 1 and is given the opportunity to make a145

cut between beads t and t+ 1, where this decision is irreversible. If a cut is made, and J is146

the newly created interval, the Balancer also has to choose immediately the agent that gets147

J , before advancing to time t+ 1.148

1.5 Techniques149

The proofs in the paper combine combinatorial and probabilistic ideas with linear algebra and150

geometric tools. Theorem 1 is proved by converting the instance of Necklace Halving into a151

continuous instance, which can be considered an instance of ε-Consensus Halving, where the152

[0, 1] interval is colored by n colors. We reason about finding a solution to this ε-Consensus153

Halving instance, for a suitable ε, and then adapt the algorithm to obtain a valid solution154

for the discrete Necklace Halving instance. The algorithm for the continuous instance is155

based on Carathéodory’s Theorem for cones, and involves linear algebra manipulations. To156

obtain a solution for the discrete instance from the solution to the continuous instance, we157

describe how to shift cuts at the end to ensure they are not made in the interior of (intervals158

corresponding to) beads.159

N. Alon and A. Graur 23:5

The online algorithm discussed in Theorem 2 is inspired by known techniques used in160

online algorithms for discrepancy minimization. The idea here is to cut the necklace into161

pieces, each having a sufficiently small number of beads of each color. The problem then162

becomes an online discrepancy problem, where one can use a derandomization of a natural163

randomized algorithm that proceeds by using an appropriate potential function motivated by164

the method of conditional expectations. Obtaining discrepancy ≤ 1 at the end of the necklace165

traversal requires a modification to the potential function technique, that handles beads of166

certain colors in a more careful manner once the remaining beads of these colors become167

scarce. The lower bound showing that the online algorithm is optimal up to logarithmic168

factors is proved in two steps. The first one is an argument showing that if anytime during169

the process the discrepancy between the shares allocated so far to the two agents according170

to one of the colors is relatively large, while according to another color both shares are 0,171

then a large number of cuts is required to ensure an appropriate solution at the end. In172

the second step, it is proved that in order to keep the discrepancy according to each color173

sufficiently small during the process, a large number of cuts is needed. This is shown by174

introducing and analyzing appropriate potential functions, where the challenge here is to175

define functions that enable the adversary to ensure they will keep growing for any choice of176

a place to cut, and any allocation of the resulting interval, provided that the interval created177

is not too short. One of the lemmas in the proof here is based on the fact that a certain178

matrix is totally unimodular. The full details appear in the following sections.179

1.6 Structure180

The structure of the rest of the paper is as follows: in Section 2 we present the approximation181

algorithm for the offline version of the problem. Section 3 contains the algorithm for the182

online version. Section 4 contains the lower bounds for the online model. The final Section183

5 contains several extensions and open problems. To simplify the presentation we omit all184

floor and ceiling signs throughout the paper whenever these are not crucial. All logarithms185

are in base 2, unless otherwise specified.186

2 An offline algorithm187

Proof of Theorem 1:188

Proof. Given a necklace with mi beads of color i for 1 ≤ i ≤ n, where m = maxmi, construct189

an instance of ε-Consensus Halving as follows. Replace each bead of color i by an interval of190

i-measure 1/mi and j-measure 0 for all j ̸= i. These intervals are placed next to each other191

according to the order in the necklace, and their lengths are chosen so that altogether they192

cover [0, 1]. We first give a marking procedure that splits the continuous necklace so that the193

absolute discrepancy is at most ε, with ε = 1
2m . Then, we show how to modify the solution194

from the continuous instance to the discrete necklace so that the cuts are made between195

consecutive beads and we obtain a proper solution.196

Given n non-atomic measures µi on the interval [0, 1] we describe an efficient algorithm197

that cuts the interval in at most n(2 + ⌈log2
1
ε⌉) places and splits the resulting intervals198

into two collections C0, C1 so that µi(Cj) ∈ [1
2 − ε

2 ,
1
2 + ε

2] for all i ∈ [n], 0 ≤ j ≤ 1. Note,199

first, that if the collection C1 has the right amount according to each of the measures µi, so200

does the collection C0. For each interval I ⊂ [0, 1] denote µ(I) = µ1(I) + . . .+ µn(I). Thus201

µ([0, 1]) = n. Using 2n− 1 cuts split [0, 1] into 2n intervals I1, I2, . . . , I2n so that µ(Ir) = 1/2202

CVIT 2016

23:6 Efficient Splitting of Necklaces

for all r. Note that it is easy to find these cuts efficiently, since each measure µi is uniform203

on its support.204

For each interval Ir let vr denote the n-dimensional vector (µ1(Ir), µ2(Ir), . . . , µn(Ir)).205

By a simple linear algebra argument, which is a standard fact about the properties of206

basic solutions for Linear Programming problems, one can write the vector (1/2, 1/2, . . . , 1/2)207

as a linear combination of the vectors vr with coefficients in [0, 1], where at most n of them208

are not in {0, 1}. This follows from Carathédory’s Theorem for cones. For completeness, we209

include the proof, which also shows that one can find coefficients as above efficiently. Start210

with all coefficients being 1/2. Call a coefficient which is not in {0, 1} floating and one in211

{0, 1} fixed. Thus at the beginning all 2n coefficients are floating. As long as there are more212

than n floating coefficients, find a nontrivial linear dependence among the corresponding213

vectors and subtract a scalar multiple of it which keeps all floating coefficients in the closed214

interval [0, 1] shifting at least one of them to the boundary {0, 1}, thus fixing it.215

This process clearly ends with at most n floating coefficients. The intervals with fixed216

coefficients with value 1 are now assigned to the collection C1 and those with coefficient217

0 to C0. The rest of the intervals remain. Split each of the remaining intervals into two218

intervals, each with µ-value 1/4. We get a collection J1, J2, . . . , Jm of m ≤ 2n intervals, each219

of them has the coefficient it inherits from its original interval. Each such interval defines220

an n-vector as before, and the sum of these vectors with the corresponding coefficients (in221

(0, 1)) is exactly what the collection C1 should still get to have its total vector of measures222

being (1/2, . . . , 1/2).223

As before, we can shift the coefficients until at most n of them are floating, assign the224

intervals with {0, 1} coefficients to the collections C0, C1 and keep at most n intervals with225

floating coefficients. Split each of those into two intervals of µ-value 1/8 each and proceed as226

before, until we get at most n intervals with floating coefficients, where the µ-value of each227

of them is at most ε/2. This happens after at most ⌈log2(1/ε)⌉ rounds. In the first one, we228

have made 2n− 1 cuts and in each additional round at most n cuts. Thus the total number229

of cuts is at most n(2 + ⌈log2(1/ε)⌉) − 1.230

From now on we add no additional cuts, and show how to allocate the remaining intervals231

to C0, C1. Let I denote the collection of intervals with floating coefficients. Then |I| ≤ n232

and µ(I) ≤ ε/2 for each I ∈ I. This means that233

n∑
i=1

∑
I∈I

µi(I) ≤ nε/2234

It follows that there is at least one measure µi so that235 ∑
I∈I

µi(I) ≤ ε/2.236

We can think of the remaining floating coefficients as the fraction of each corresponding237

interval that agent 1 owns. Observe that for any assignment of the intervals I ∈ I to the two238

collections C0, C1, the total µi measure of C1 (and hence also of C0) lies in [1/2−ε/2, 1/2+ε/2],239

as this measure with the floating coefficients is exactly 1/2 and any allocation of the intervals240

with the floating coefficients changes this value by at most ε/2. We can thus ignore this241

measure, for ease of notation assume it is measure number n, and replace each measure242

vector of the members in I by a vector of length n − 1 corresponding to the other n − 1243

measures. If |I| > n − 1 (that is, if |I| = n), then it is now possible to shift the floating244

coefficients as before until at least one of them reaches the boundary, fix it assigning its245

interval to C1 or C0 as needed, and omit the corresponding interval from I ensuring its size246

is at most n− 1. This means that for the modified I the sum247

N. Alon and A. Graur 23:7

n−1∑
i=1

∑
I∈I

µi(I) ≤ (n− 1)ε/2.248

Hence there is again a measure i, 1 ≤ i ≤ n− 1 so that249 ∑
I∈I

µi(I) ≤ ε/2.250

Again, we may assume that i = n− 1, observe that measure n− 1 will stay in its desired251

range for any future allocation of the remaining intervals, and replace the measure vectors252

by ones of length n− 2. This process ends with an allocation of all intervals to C1 and C0,253

ensuring that at the end µi(Cj) ∈ [1/2 − ε/2, 1/2 + ε/2] for all 1 ≤ i ≤ n, 0 ≤ j ≤ 1. These254

are the desired collections. It is clear that the procedure for generating them is efficient,255

requiring only basic linear algebra operations.256

The intervals separated by the marks are partitioned by the algorithm into two collections257

forming a solution of the continuous problem. Note that the continuous solution would give258

discrepancy at most maxi∈[n] mi · ε ≤ 1/2 in terms of beads if we were allowed to cut at the259

marked points. The only subtle point is that some of the marks may be in the interior of260

small intervals corresponding to beads, and we wish to cut only between beads.261

Call a mark between two consecutive beads fixed and call the other marks floating. We262

first show how to shift each of the floating marks so that the absolute discrepancy does not263

increase beyond 1/2 and all but at most one mark for each color are made between two264

consecutive beads. To do so, if there exists a floating mark between two intervals assigned to265

the same agent eliminate it and merge the two intervals. If there is no such mark and there266

are at least two floating marks in the interior of intervals corresponding to color i, we shift267

both of them by the same amount in the appropriate way until at least one of them becomes268

fixed. If during this simultaneous shift one of the two marks arrives in a spot occupied by269

a different mark, we stop the shift and discard one of the duplicate marks. Note that the270

quantities the two agents receive do not change.271

This procedure reduces the number of floating marks until there is at most one floating272

mark for each color. If there is such a floating mark, round it to the closest boundary between273

beads noting that this can increase the absolute discrepancy by at most 1. Therefore, once all274

marks are fixed, the absolute discrepancy is ≤ 3/2. Since all the cuts are between consecutive275

beads, this discrepancy has to be an integer, and thus it is at most 1, as desired. The number276

of cuts made is ≤ n(2 + ⌈log2
1
ε⌉) = n(3 + ⌈log2 m⌉) = n(logm+O(1)).277

◀278

Remarks:279

The argument can be extended to splitting into k nearly fair collections of intervals. See280

section 5 for more details.281

The ε-approximate Necklace Halving problem can be solved with n(log(1
ε) +O(1)) cuts282

by using the above algorithm for the continuous instance with the required value of ε.283

The proof can be adapted to obtain a solution with n(log(1
ε) + O(1)) cuts to the ε-284

Consensus Halving problem, with the appropriate natural assumptions about the way285

the measures are presented.286

In [19] the authors give an efficient algorithm for solving a special case of the ε-Consensus287

Halving problem that works for probability measures each of which is uniform on a single288

interval. The algorithm provides a solution making at most n cuts for this special case.289

CVIT 2016

23:8 Efficient Splitting of Necklaces

3 An online algorithm290

Proof of Theorem 2:291

Proof. We describe an efficient online algorithm that achieves absolute discrepancy at most292

1. The algorithm makes O(m2/3n(logn)1/3) cuts. It is worth mentioning that the main293

part of the algorithm is a derandomization of a simple randomized algorithm which cuts the294

necklace into pieces each of which has a sufficiently small number of beads of each color and295

then assigns them randomly and uniformly to the two agents.296

Note first that if, say, logn > m/1000, the result is trivial, as less than nm cuts suffice297

to split the necklace into single beads, hence we may and will assume that m ≥ 1000 logn.298

Throughout the algorithm we call the beads that have not yet been revealed the remaining299

beads. This definition makes sense as in the online model the beads of the necklace are300

revealed one by one. We provide a cutting rule and a distribution rule. During the algorithm,301

we call a color i critical if the number of remaining beads of this color is smaller than302

20 mi

m1/3 (logn)1/3, otherwise it is normal. When encountering a bead of a critical color i while303

traversing the necklace, the algorithm makes a cut before and after it, allocating that bead304

to the agent with a smaller number of beads of this type, where ties are broken arbitrarily.305

We call such cuts that are made right before or after beads of a critical color forced.306

In addition to the rule about forced cuts, we provide a rule determining when to stop307

traversing the necklace and make a cut when no beads of a critical color are seen. Define308

g = 100
8m2/3(logn)1/3 , and for every i ∈ [n], gi = mig = 100mi

8m2/3(logn)1/3 . Whenever after the309

last cut made after bead number x we reach a bead number y so that [x, y] (the interval310

containing beads x + 1, x + 2, ..., y) contains at most gi beads of color i for every i that311

is normal at that time and exactly gj beads of some normal color j, we make a cut. As312

explained above, the exception to this rule is when we encounter a bead of a color i that is313

critical before the portion following the last cut has enough beads of some normal color. If314

gi ≤ 1 for some color i, then we cut before and after each bead of color i, essentially treating315

color i as critical from the beginning.316

To decide about the allocation of the intervals created we define, for each color i ∈ [n], a317

potential function ϕi(t), and a function ψi(t) that is an upper bound of ϕi and is computable318

efficiently. The variable t here will denote, throughout the algorithm, the index of the last319

cut made.320

The functions ϕi, ψi are defined by considering an appropriate probabilistic process. For321

each i ∈ [n], let Xi be the random variable whose value is the difference between the number322

of beads of color i belonging to agent 1 and that belonging to agent 2 if after each cut the323

interval created is assigned to a uniform random agent. Let εk be 1 if the k’th interval is324

assigned to agent 1 and −1 otherwise. Therefore Xi =
∑p
j=1 εjaj , where p− 1 is the total325

number of cuts made and aj the number of beads of color i on interval Ij , the j’th created326

interval. The distribution defining Xi is the one where each εj is 1 or −1 randomly, uniformly327

and independently. The function ϕi(t) is defined as follows328

ϕi(t) = E

[
eλXi/mi + e−λXi/mi

2 |ε1, ε2, ..., εt

]
329

This is a conditional expectation, where the conditioning is on the allocation of the first330

t intervals represented by ε1, . . . , εt, and where λ = 4m1/3(logn)2/3

10 . (This choice of λ will331

become clear later). The purpose of the division by mi is to normalize the exponent of332

the potential functions to ensure maintaining a relatively small discrepancy for all colors i333

N. Alon and A. Graur 23:9

simultaneously. Since Xi =
∑
j εjaj , where aj is the number of beads on the j’th interval of334

color i, we have that335

ϕi(t) = E

eλ∑
j
εjaj/mi + e

−λ
∑

j
εjaj/mi

2 |ε1, ε2, ..., εt

336

The function ψi(t) is defined in a way ensuring it upper bounds the function ϕi(t). It is337

convenient to split each ϕi(t) into338

1
2E

[
e
λ

∑
j
εjaj/mi |ε1, .., εt

]
+ 1

2E

[
e

−λ
∑

j
εjaj/mi |ε1, .., εt

]
.339

For simplicity, denote the first term ϕ′
i and the second term ϕ′′

i . Therefore340

ϕ′
i(t) = 1

2E

[
e
λ

∑
j
εjaj/mi |ε1, .., εt

]
= 1

2e
λ

∑t

j=1
εjaj/mi ·

∏
j≥t+1

(e
λaj/mi + e−λaj/mi

2)341

342

= 1
2e

λ
∑t

j=1
εjaj/mi ·

∏
j≥t+1

cosh(λaj/mi)343

A similar expression exists for ϕ′′
i . Define st =

∑t
j=1 aj/mi and ut =

∑t
j=1 εjaj/mi. By344

the discussion above345

ϕi(t) = eλut + e−λut

2
∏
j≥t+1

cosh(λaj/mi).346

Using the well-known inequality that cosh(x) ≤ ex
2/2, it follows that347

ϕi(t) ≤ eλut + e−λut

2 e
λ2

∑
j≥t+1

(aj/mi)2/2
.348

By the way the cuts are produced aj ≤ gi for all j, and hence349 ∑
j=t+1

(aj/mi)2 ≤ max
j≥t+1

(|aj/mi|) · (
∑
j≥t+1

aj/mi) ≤ g · (
∑
j≥t+1

aj/mi) = g(1 − st).350

Therefore351

ϕi(t) ≤ eλut + e−λut

2 eλ
2g(1−st)/2.352

Define ψi(t) to be the above upper bound for ϕi(t), that is353

ψi(t) = eλut + e−λut

2 eλ
2g(1−st)/2.354

Note that ψi(t) can be easily computed efficiently at time t, since st and ut (as well as g355

and λ) are known at this point.356

Having defined the potential functions ϕi and their upper bounds ψi, we are now ready to357

describe the allocation rule following cuts that create intervals with no beads of any critical358

color. (The rule for allocating intervals consisting of a single bead of a critical color has already359

been described). Initialize ϕ(0) =
∑
i∈[n] ϕi(0), ψ(0) =

∑
i∈[n] ψi(0), where by convention360

ψi(0) = egλ
2/2. After each cut t during the process, we define ϕ(t) =

∑
i normal ϕi(t) and361

CVIT 2016

23:10 Efficient Splitting of Necklaces

ψ(t) =
∑
i normal ψi(t). In other words, once a color i becomes critical, the terms ϕi and ψi362

are dropped from the respective expressions.363

Having allocated the first t intervals, at cut t+ 1, we choose εt+1, which corresponds to a364

choice of the agent who gets the interval, in order to minimize ψ(t+ 1). To show that this365

algorithm produces a proper solution, where the absolute discrepancy at the end is at most366

1, we prove the following two claims:367

▷ Claim 1. The upper bound ψ(t) is (weakly) decreasing in the variable t.368

▷ Claim 2. For each i, after each cut made before the color becomes critical, the discrepancy369

in color i is at most 10 mi

m1/3 (logn)1/3 (in absolute value).370

Claim 2 implies that after the first cut that causes color i to become critical, the discrep-371

ancy on i is at most 10 mi

m1/3 (logn)1/3 + gi < 20 mi

m1/3 (logn)1/3 − gi. Hence, it follows from372

the way the algorithm deals with subsequent beads of color i, that the process will end with373

a balanced partition of the beads of each color i between the agents, allocating to each of374

them either ⌊mi/2⌋ or ⌈mi/2⌉ of these beads. As this argument works for every color, the375

algorithm produces a proper solution. Next, we prove the claims.376

377

Proof of Claim 1:378

Proof. Note that whenever some color i becomes critical, the term ψi that we drop from379

ψ is positive. Hence, it is enough to prove that ψ(t) ≥ ψ(t+1|εt+1=1)+ψ(t+1|εt+1=−1)
2 , where380

ψ(t+ 1|εt+1 = χ) denotes the value of ψ(t+ 1) if we choose εt+1 = χ ∈ {−1, 1}. It suffices381

to show that for every i, ψi(t) ≥ 1
2 [ψi(t+ 1|εt+1 = 1] + 1

2 [ψi(t+ 1|εt+1 = −1].382

We proceed with the proof of this inequality. To do so, note that383

ψi(t+ 1|εt+1 = 1) = eλ(ut+at+1/mi) + e−λ(ut+at+1/mi)

2 eλ
2g(1−st−at+1/mi)/2,384

and385

ψi(t+ 1|εt+1 = −1) = eλ(ut−at+1/mi) + e−λ(ut−at+1/mi)

2 eλ
2g(1−st−at+1/mi)/2.386

Therefore387

ψi(t+ 1|εt+1 = 1) + ψi(t+ 1|εt+1 = −1)
2 =388

389

eλut + e−λut

2 · e
λat+1/mi + e−λat+1/mi

2 eλ
2g(1−st−at+1/mi)/2

390

391

≤ eλut + e−λut

2 · eλ
2g(at+1/mi)/2eλ

2g(1−st−at+1/mi)/2 = eλut + e−λut

2 · eλ
2g(1−st)/2 = ψi(t),392

as needed.393

◀394

Proof of Claim 2:395

Proof. Let t be a cut made while color i is normal. To prove that the discrepancy396

on color i in absolute value is at most 10 mi

m1/3 (logn)1/3, it suffices to prove ψi(t) ≤397

1
2e
λ·10(log n

m)1/3
eλ

2g(1−st) = 1
2e

2 logneλ
2g(1−st). By Claim 1, ψ(t) ≤ ψ(0) = negλ

2/2. Hence, it398

is enough to prove that negλ2/2 ≤ 1
2e

2 logneλ
2g(1−st). This is equivalent to λ2gst/2 + log 2 ≤399

4 logn. Since st ≤ 1, we get λ2gst/2 + log 2 ≤ logn+ log 2 ≤ 2 logn, as needed.400

◀401

N. Alon and A. Graur 23:11

Lastly, we prove that the total number of cuts is O(n(logn)1/3 ·m2/3). The number of402

forced cuts cannot exceed 2n · 20 mi

m1/3 (logn)1/3 = O(m2/3n(logn)1/3). To bound the number403

of non-forced cuts, note that whenever we make such a cut, there is a color j such that the404

number of beads of this color on the interval created is exactly gj . We call the cut j-tight for405

that respective color. It is easy to see that for every color i there are most O(m2/3(logn)1/3)406

i-tight cuts. Hence, the total number of non-forced cuts is at most O(m2/3n(logn)1/3). This407

completes the proof.408

◀409

4 Lower bounds410

In this section we present the lower bounds for Necklace Halving in the online model.411

4.1 A preliminary bound412

We provide a Ω(
√
m) lower bound for the number of cuts required in any online algorithm413

when the number of colors is n = 2 and there are m beads of each color. We need the414

following simple lemma, which is a special case of a more general elegant result of Tijdeman415

[24]. Since this special case is much simpler, we include its proof, for completeness.416

▶ Lemma 1. For every real γ ∈ [0, 1] there is an infinite binary sequence a1, a2, a3, . . . so417

that in every prefix of it a1, a2, . . . , aj the number of elements ai which are 1 deviates from418

γj by less than 1.419

Proof. By compactness it suffices to prove the existence of such a sequence of any finite420

length r. Consider the following system of linear inequalities in the variables x1, x2, . . . , xr:421

0 ≤ xi ≤ 1 for all 1 ≤ i ≤ r, and for every j ≤ r, ⌊γj⌋ ≤
∑j
i=1 xi ≤ ⌈γj⌉. This system has422

a real solution xi = γ for every i and the matrix of coefficients of the constraints is totally423

unimodular. Hence there is an integral solution xi = ai ∈ {0, 1} providing the required424

sequence. ◀425

We use the following notation. During the algorithm let t denote the number of beads426

revealed so far. If a cut is made at this point, let xt be the difference between the number of427

beads of color 1 allocated to agent 1 and the number of beads of color 1 allocated to agent 2.428

Define yt similarly for beads of color 2. Let αt, βt denote the number of remaining beads of429

colors 1 and 2, respectively.430

▶ Lemma 2. Let ∆ be a positive integer. Suppose that a cut is made at point t and |xt| = ∆431

and assume that no bead of color 2 appeared so far. Then there exists an adversarial input432

that forces the Balancer to make at least ∆/4 = Ω(∆) cuts.433

Proof. Without loss of generality assume that xt = ∆ > 0. Note that by assumption βt = m434

and αt < m. Put γ = m
αt+m and note that γ > 1/2. By Lemma 1 it is possible to choose an435

ordering of the remaining αt +m beads of the necklace so that in every prefix of it of any436

length j, the number of beads of color 2 deviates from γj by less than 1. Since our online437

model allows the Balancer to see the next bead before the decision to make a cut preceding438

it we may have to change the first bead in this ordering, this still ensures that in any interval439

of length ℓ in the remainder of the necklace, the number of beads of color 2 deviates from γℓ440

by at most 2.441

Suppose the Balancer cuts the remainder of the necklace and allocates the resulting442

intervals R1, ..., Ru to agent 1 and T1, ..., Tv to agent 2 to obtain a balanced allocation. For443

CVIT 2016

23:12 Efficient Splitting of Necklaces

each one of these intervals I let ℓ(I) denote its length. By assumption at time t agent 1 has444

exactly ∆ more beads than agent 2. Since at the end each agent has half of the beads (for445

simplicity we assume that m is even),
∑v
i=1 ℓ(Ti) −

∑u
j=1 ℓ(Rj) = ∆.446

By construction, the total number of beads of color 2 in all intervals Ti deviates from447

γ
∑v
i=1 ℓ(Ti) by at most 2v. Similarly, the total number of beads of color 2 in all intervals Rj448

deviates from γ
∑u
j=1 ℓ(Rj) by at most 2u. As these two numbers should be equal it follows449

that450

γ∆ = γ(
v∑
i=1

ℓ(Ti) −
u∑
j=1

ℓ(Rj)) ≤ 2u+ 2v451

This implies that 2(u+ v) ≥ γ∆ > ∆/2 and as the number of cuts is at least u+ v the452

desired result follows.453

◀454

The last lemma easily implies the following.455

▶ Theorem 3. There exists an adversarial input that forces any deterministic algorithm for456

Online Necklace Halving with n = 2 colors to make Ω(
√
m) cuts in order to obtain a proper457

solution.458

Proof. Put ∆ =
√
m and proceed by revealing only beads of color 1. By Lemma 2, if after459

a cut at some t, |xt| >
√
m, the desired result follows. Otherwise it is clear the number of460

beads between any two consecutive cuts is less than 2
√
m, implying that the total number of461

cuts made by the Balancer is Ω(
√
m).462

◀463

4.2 A nearly tight bound464

▶ Theorem 4. An adversary can force any deterministic algorithm for Online Necklace465

Halving with n = 3 colors and m beads of each color to make Ω(m2/3) cuts.466

Proof. As in the previous subsection, let xt denote the discrepancy between the number of467

beads of color 1 allocated to agent 1 and that allocated to agent 2 after cut t, and let yt468

denote the corresponding discrepancy for color 2, where color 3 will be kept as a potential469

threat. We proceed by revealing only beads of the first two colors. By Lemma 2 with470

∆ = m2/3 the Balancer needs to maintain |xt|, |yt| ≤ m2/3, since otherwise the adversary can471

force Ω(m2/3) cuts, using beads of the third color. Hence, we assume that during the process472

of revealing the initial m+ 4m2/3 beads of the necklace xt, yt stay in the above range after473

each cut.474

Define a potential function475

M(x, y) = x2 + y2 + 5m2/3(x− y)476

After a cut with vt = (xt, yt) = (x, y) define γ = 10m2/3−4y
20m2/3+4(x−y) . Note that 0 < γ < 1, as477

|x|, |y| ≤ m2/3. By Lemma 1 it is possible to order the remaining part of the first m+ 4m2/3
478

beads of the necklace so that in each prefix of any length j of this remaining part the number479

of beads of color 1 deviates from γj by less than 1 and the number of beads of color 2 deviates480

by less than 1 from (1 − γ)j. As the first bead of this remaining part has been observed481

already by the Balancer we may need to change one bead in this ordering, getting a deviation482

of less than 2 in each prefix. This means that if the next cut will be made after some j483

N. Alon and A. Graur 23:13

additional beads, the vector p = (p1, p2) of additional beads of colors 1 and 2, respectively,484

can be written as a sum of the vector p′ = (γj, (1 − γ)j) and an error vector δ = (δ1, δ2) of485

ℓ∞-norm smaller than 2. We get that486

M(vt + p′) −M(v) = p′2
1 + p′2

2 + 2xp′
1 + 2yp′

2 + 5m2/3p′
1 − 5m2/3p′

2 =487

488

= p′2
1 + p′2

2 + 1
2[p′

1 · (10m2/3 + 4x) − p′
2 · (10m2/3 − 4y)] = p′2

1 + p′2
2 ≥ 1

2j
2

489

and similarly,490

M(v−p′)−M(v) = p′2
1 +p′2

2 + 1
2[−p′

1 · (10m2/3 +4x)+p′
2 · (10m2/3 −4y)] = p′2

1 +p′2
2 ≥ 1

2j
2

491

A simple computation using the fact that |x|, |y| ≤ m2/3 and that a similar bound holds492

after adding or subtracting the vector p′ shows that adding or subtracting the vector δ can493

decrease the value of M by less than 15m2/3. Therefore, we get494

M(vt ± p) −M(vt) ≥ j2/2 − 15m2/3
495

which implies M(vt+1) −M(vt) ≥ j2/2 − 15m2/3, with a cut of j beads.496

Suppose that we have r cuts among the first m+ 4m2/3 beads of the necklace, and the497

lengths of the resulting intervals are j1, j2, . . . , jr. Since throughout the process |xt|, |yt| ≤498

m2/3, it follows that M(xt, yt) ≤ 12m2/3. On the other hand by the above discussion the499

value of M at the end is at least
∑r
i=1

j2
i

2 − 15m2/3r. Since
∑r
i=1 ji ≥ m (as we cannot have500

4m2/3 consecutive beads with no cut among them), it follows, by Cauchy-Schwartz, that501 ∑
j2
i ≥ m2

r . This implies that502

1
2
m2

r
− 15rm2/3 ≤ 12m4/3

503

showing that r = Ω(m2/3), as needed.504

◀505

Remark: For n > 3 colors with m beads of each color one can consider a necklace506

consisting of ⌊n/3⌋ segments with at least 3 colors in each of them. The above argument507

shows that it is possible to force Ω(m2/3) cuts in each segment, implying an Ω(nm2/3) lower508

bound. Thus, for n colors, the gap between our lower and upper bounds for the number of509

cuts required is only a factor of Θ((logn)1/3).510

5 Extensions and open problems511

We conclude with some generalizations of the algorithms presented and the lower bounds512

obtained, and with comments on some of the questions that remain open.513

5.1 Generalizations514

In this section, we present our online and offline results for the general case of k agents.515

▶ Theorem 5. There exists an efficient, deterministic, offline algorithm that provides a516

proper solution to the Necklace Splitting problem, making at most n(k − 1)⌈4 + log2(3km)⌉517

cuts.518

CVIT 2016

23:14 Efficient Splitting of Necklaces

Proof. As in the proof of Theorem 1, we first convert the Necklace Splitting instance into a519

continuous instance J , and obtain a solution with absolute discrepancy at most ε
2k = 1

2km ,520

possibly making some floating cuts. Then, to obtain a proper solution for the discrete521

instance, we shift the floating cuts by solving a network flow problem.522

To obtain the solution to the continuous instance J , we recursively apply a modified523

version of the algorithm that makes cuts on the continuous necklace from Theorem 1. Define524

ε′ = ε/3k = 1
3km , and divide the k players into two disjoint groups A,B, with ⌊k/2⌋525

agents and ⌈k/2⌉ agents respectively. Think of A,B as two agents and split the continuous526

necklace among them. By following the algorithm in the proof of Theorem 1, one can make527

≤ n(2+⌈log2
1
ε′ ⌉) cuts and split the interval so that A gets ⌊k/2⌋

k ±ε′/2 of each measure i. We528

can do so by starting with all floating coefficients equal to ⌊k/2⌋
k instead of 1

2 and by following529

the proof of Theorem 1. Repeat the same procedure for the groups A and B recursively,530

splitting the share of A among its |A| members and doing the same for B. In the end, the531

error can be bounded by ε′ + 2
3ε

′ + 2
3 · 4

7ε
′ + ... < 3ε′. If we denote by T (k) the number of532

cuts made to obtain absolute discrepancy ≤ ε′ for a continuous instance with n types and k533

agents, then T (2) = n[log2
1
ε′ + 2], and T (k) = T (⌊k/2⌋) + T (⌈k/2⌉) + n[log2

1
ε′ + 2] , which534

gives that the number of cuts made for this split is T (k) = n(k − 1)⌈2 + log2(3km)⌉).535

Hence, we have obtained a proper solution for the continuous instance J , making n(k −536

1)⌈2 + log2(3km)⌉) cuts, yet we have to handle floating cuts. We categorize each floating537

cut by the color of the interval in whose interior it lies. For each color i, we handle the538

corresponding floating cuts. First, note that if k > mi, we can shift each floating cut on539

color i to one of the ends of the i-interval in such a way that no agent gets more than one540

bead of color i and this will provide discrepancy at most 1 on color i without creating any541

additional cuts. Hence, we may assume mi ≥ k.542

We use a network flow algorithm to decide, for each bead of color i that does not fully543

belong to one agent, to whom it should be allocated. Define a directed graph Gi, with544

vertices s, the source, t, the sink, Vi, representing the set of beads of color i, and H, the set545

of vertices representing the agents. Let E be the set of edges with546

E = {(s, v), v ∈ Vi} ∪ {(h, t), h ∈ H} ∪ {(v, h), agent h owns a share of bead v}547

All edges {(s, v), v ∈ Vi} have capacity 1 and lower bound 1. Each edge (v, h) has capacity548

1 and lower bound 0. Finally, for each edge (h, t), set the capacity to be ⌈xh⌉ and the lower549

bound to be ⌊xh⌋, where xh is the quantity of type i allocated to agent h in the solution to550

the continuous instance. Now, if we assign each edge (v, h) a value equal to the share of bead551

v allocated to agent h in the continuous solution and each edge (h, t) the value xh, this is a552

legal flow. Hence, there exists an integral legal flow in the network, and it is well known that553

one can find such a flow efficiently. Note that an integral flow corresponds to a distribution554

of the beads of color i where no additional cut is made and the absolute discrepancy is at555

most 1 if k ∤ ai and at most 2 if k|ai. Thus, the integral flow determines which agent gets556

each of the contested beads of color i, corresponding to a shift of each floating cut to one of557

the ends of the bead it crosses.558

If k|ai, the continuous solution could give some agent a a share of xa = ai/k − ε1 and559

some agent b a share xb = ai/k+ ε2, for small positive values ε1, ε2. In this case, the integral560

network flow solution could give agent a ai/k − 1 beads and agent b ai/k + 1 beads of color561

i. As ai/k is an integer, the number of agents receiving ai/k + 1 beads is the same as the562

number of agents receiving ai/k − 1. Hence, we can make at most 2k cuts after the shift is563

done to obtain discrepancy 0. We perform the shifting procedure for every color i, and obtain564

a proper solution with at most nk + n(k − 1)⌈2 + log2(3km)⌉ < n(k − 1)⌈4 + log2(3km)⌉, as565

N. Alon and A. Graur 23:15

needed. This completes the proof. The network flow argument follows the approach in [5].566

◀567

▶ Theorem 6. There exists an efficient, deterministic, online algorithm that provides a568

proper solution for the Necklace Splitting problem, making at most Õ(nk1/3 ·m2/3) cuts.569

Proof. Note that the result is trivial for k > m. For k ≤ m, we again use the idea of defining570

a potential function ϕ and a function ψ that is an upper bound for ϕ and is computable571

efficiently. Instead of having one pair of functions ϕi, ψi for each color i, we now have572 (
k
2
)

such functions, one for each pair of agents. For each color i and agents p ̸= q, define573

ϕp,qi = E
[
eλXp,q,i/mi +e−λXp,q,i/mi

2

]
, where Xp,q,i is the random variable of the difference574

between the number of beads of color i given to agent p and that of agent q. The relevant575

random distribution here assigns every newly created interval to one of the k agents with equal576

probability which is 1/k. The quantity g = g(n, k,m) is defined here as g = 1
m2/3k(log(nk))1/3 ,577

and each gi, the maximum number of beads of color i allowed between two consecutive cuts578

as gi = mig. We say color i is critical when the number of remaining beads of this color is579

at most 20k1/3m2/3.580

The function ψp,qi is defined by581

ψp,qi (t) = eλx
p,q
t,i + e−λxp,q

t,i

2 · e2λ2g(1−st)/k
582

where st is, as before, the proportion of beads of color i allocated already, and xp,qt,i is the583

discrepancy between p and q on color i after cut t divided by mi.584

The main difference required here is the replacement of the inequality cosh(λa) ≤ eλ
2a2/2

585

by the following inequality which holds whenever, say, λa ≤ 1:586

k − 2
k

eλ·0 + 1
k
eλa + 1

k
e−λa = 1 + 2

k
(cosh(λa) − 1)587

588

≤ 1 + 2
k

(eλ
2a2/2 − 1) ≤ 1 + 2

k

2λ2a2

2 = 1 + 2λ2a2

k
≤ e2λ2a2/k.589

Each ϕp,qi is bounded using the fact that each of the intervals created has at most gi = mig590

beads of color i for every i. By the inequality applied with a ≤ g and λ = (k/m)1/3

4g (ensuring591

that indeed λa ≤ (k/m)1/3

4 < 1/2), it follows that if every interval generated is allocated to an592

agent in order to minimize ψ =
∑
p,q∈[k], p ̸=q, i∈[n] ψ

p,q
i , then the function ψ never increases593

during the algorithm. As594

ψ(0) < nk2e2λ2g/k = nk2eε
2/8gk <

eλε/k

2595

the computation shows that at the end the absolute discrepancy is ≤ ε/k. We omit the596

details.597

◀598

Next, we present two simple special cases where we obtain proper solutions efficiently599

with the optimal number of cuts, n(k − 1). In the first case, the number of beads of each600

color is equal to k, the number of agents. In the second case, we set the number of colors to601

be n = 2.602

CVIT 2016

23:16 Efficient Splitting of Necklaces

▶ Proposition 1. There exists an efficient algorithm that solves any instance of Necklace603

Splitting for n colors and k agents where there are exactly k beads of each color, making at604

most n(k − 1) cuts.605

Proof. Traverse the necklace once bead by bead and cut between any pair of consecutive606

beads unless the second one is the first appearance of a bead of color i for some i ∈ [n]. After607

each cut made, if S is the set of colors present in the newly created interval J , we allocate J608

to an agent that has not received up to that point any beads of any color in S. To show609

that after each cut such an agent exists, first note that by the description above, no agent610

receives two beads of the same color. If J contains only one bead and its color is i, there611

must exist an agent who has not received any bead of color i up to that point, as there are612

as many agents as beads of color i. If J has p ≥ 2 beads, of colors c1, ..., cp ∈ [n] appearing613

in this order, we can still give it to an agent that has not received any bead of color c1, since614

each of the other beads in J has a color that has not appeared before.615

It thus follows that with this allocation rule each agent gets exactly 1 bead of each color.616

To prove the upper bound on the number of cuts, note that for each i ∈ [n], we never cut617

right before the first bead of color i that appears on the necklace. Hence, there are exactly618

n− 1 beads (besides the very first one) with no cut right before them. Since there are kn− 1619

points between consecutive beads the algorithm makes exactly kn− 1 − (n− 1) = n(k − 1)620

cuts. ◀621

▶ Proposition 2. There exists an efficient algorithm that solves any instance of Necklace622

Splitting for n = 2 colors and k agents, making at most 2(k − 1) cuts.623

Proof. We first consider the case when k divides both m1,m2, where mi is the number of624

beads of color i. Given a necklace with m1 beads of color 1 and m2 beads of color 2 consider625

it as a circular necklace. By the discrete intermediate value theorem there is a circular arc626

of (m1 + m2)/k beads containing exactly m1/k beads of color 1 (and hence also exactly627

m2/k beads of color 2). Cut in the ends of this circular arc, assign it to the first agent, and628

continue inductively. Clearly, every agent gets the same number of beads of each color.629

To extend the proof for general m1,m2, write m1 = kp+ r and m2 = kq+ s. We look for630

a circular arc of ⌈m1
k ⌉ + ⌈m2

k ⌉ beads containing exactly ⌈m1
k ⌉ beads of color 1 (and hence631

also exactly ⌈m2
k ⌉ beads of color 2). If r ̸= 0, the agent to whom we distribute the arc gets632

p+ 1 beads of color 1. Similarly, if s ̸= 0, the agent gets q + 1 beads of color 2. Hence, by633

inductively finding a suitable arc and cutting it from the necklace, at the end of the process,634

the first r agents will get p+ 1 beads of color 1 and the rest p. Similarly, the first s agents635

will get q + 1 beads of color 2 and the rest q. ◀636

5.2 Connections to ε-Consensus Splitting637

Our results easily extend to the ε-Consensus Splitting problem with non-atomic probability638

measures whose density functions are piecewise linear. This is stated in the next two theorems639

whose detailed proofs are provided in the full version, [3].640

▶ Theorem 7. There exists an efficient, deterministic, offline algorithm that provides a641

solution to the ε-Consensus Splitting problem, making at most n(k − 1)⌈4 + log2(3km)⌉ cuts,642

provided that the density functions of the probability measures are piecewise linear.643

▶ Theorem 8. There exists an efficient, deterministic, online algorithm that provides a644

solution for the ε-Consensus Splitting problem, making at most O(kn log(nk)
ε2) cuts, provided645

that the density functions of the probability measures are piecewise linear.646

N. Alon and A. Graur 23:17

Note that for k = 2 agents, the number of cuts resulting from the algorithm corresponding647

to Theorem 8 is O(n logn
ε2). The proof of Theorem 2 relies on using this algorithm for k = 2648

agents with ε = Θ((logn
m)1/3).649

5.3 Open questions650

Theorem 1 provides a proper solution to the offline version for k = 2 agents by making a651

number of cuts that depends logarithmically on m, the maximum number of beads of a color.652

It would be interesting to see if this dependency can be improved asymptotically.653

Another open question arises in the context of the Online Necklace Halving problem for654

n = 2 colors, where the lower bound for the number of cuts is only Ω(
√
m), whereas the655

upper bound for the number of cuts produced by our algorithm is O(m2/3). Lastly, for the656

general case of n colors for the online version of Necklace Halving there is a Θ((logn)1/3)657

gap between the lower bound and the algorithm we provided. It will be interesting to close658

these gaps.659

References660

1 Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.661

2 Noga Alon. Non-constructive proofs in Combinatorics. Proceedings of the International662

Congress of Mathematicians (ICM), 63:1421–1429, 1990.663

3 Noga Alon and Andrei Graur. Efficient Splitting of Measures and Necklaces. arXiv:2006.16613,664

2020.665

4 Noga Alon, Michael Krivelevich, Joel H. Spencer, and Tibor Szabó. Discrepancy Games. The666

Electronic Journal of Combinatorics, 12(1), 2005.667

5 Noga Alon, Dana Moshkovitz, and Muli Safra. Algorithmic construction of sets for k-restrictions.668

ACM Transactions on Algorithms, 2:153–177, 2006.669

6 Noga Alon and Douglas B West. The Borsuk-Ulam Theorem and Bisection of Necklaces.670

Proceedings of the American Mathematical Society, 98(4):623–628, 1986.671

7 Nikhil Bansal. Constructive Algorithms for Discrepancy Minimization. Proc. 51st Symposium672

on Foundations of Computer Science (IEEE), pages 3–10, 2010.673

8 Nikhil Bansal and Joel H. Spencer. Deterministic Discrepancy Minimization. Algorithmica,674

67:451–471, 2013.675

9 Nikhil Bansal and Joel H. Spencer. On-line Balancing of Random Inputs. Random Structures676

and Algorithms, 57(4):879–891, 2020.677

10 Sandeep N. Bhatt and Frank T. Leighton. A Framework For Solving VLSI Graph Layout678

Problems. Journal of Computer and System Sciences, 28(2):300–343, 1984.679

11 Sandeep N. Bhatt and Charles E. Leiserson. How to assemble tree machines. Proceedings of680

the 14th Symposium on the Theory of Computing, San Francisco, pages 99–104, 1981.681

12 Paul Simon Bonsma, Thomas Epping, and Winfried Hochstättler. Complexity results on682

restricted instances of a paint shop problem for words. Discrete Appl. Math, 154(9):1335–1343,683

2006.684

13 Steven J. Brams and Alan D. Taylor. Fair division: From cake-cutting to dispute resolution.685

Cambridge University Press, 1996.686

14 Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. The complexity of687

equilibria: Hardness results for economies via a correspondence with games. Theoretical688

Computer Science, 408:188–198, 2008.689

15 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The Complexity690

of Computing a Nash Equilibrium. Theoretical Computer Science, 39(1):195–259, 2009.691

16 Aris Filos-Ratsikas, Soren Kristoffer Stiil Frederiksen, Paul W. Goldberg, and Jie Zhang.692

Hardness Results for Consensus Halving. 43rd International Symposium on Mathematical693

Foundations of Computer Science (MFCS), pages 24:1–24:16, 2018.694

CVIT 2016

23:18 Efficient Splitting of Necklaces

17 Aris Filos-Ratsikas and Paul W. Goldberg. Consensus Halving is PPA-Complete. Proceedings695

of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages 51–64, 2018.696

18 Aris Filos-Ratsikas and Paul W. Goldberg. The Complexity of Splitting Necklaces and697

Bisecting Ham Sandwiches. Proceedings of the 51st Annual ACM Symposium on Theory of698

Computing (STOC), pages 638–649, 2019.699

19 Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis. Con-700

sensus Halving: Does it Ever Get Easier? arXiv:2002.11437, 2020.701

20 Charles H. Goldberg and Douglas B. West. Bisection of circle colorings. SIAM J. Algebraic702

Discrete Methods, 6:93–106, 1985.703

21 Charles R. Hobby and John R. Rice. A moment problem in L1 approximation. Proceedings of704

the American Mathematical Society, 16(4):665–670, 1965.705

22 Frédéric Meunier. Simplotopal maps and necklace splitting. Discrete Mathematics, 323:14–26,706

2014.707

23 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient708

proofs of existence. Journal of Computer and System Sciences, 48:498–532, 1994.709

24 Robert Tijdeman. On a distribution problem in finite and countable sets. journal of combinat-710

orial theory. Journal of Combinatorial Theory, Series A, 15(2):129–137, 1973.711

	1 Introduction
	1.1 The problems
	1.2 Hardness and Approximation
	1.3 Our contribution
	1.4 Computational model and online version
	1.5 Techniques
	1.6 Structure

	2 An offline algorithm
	3 An online algorithm
	4 Lower bounds
	4.1 A preliminary bound
	4.2 A nearly tight bound

	5 Extensions and open problems
	5.1 Generalizations
	5.2 Connections to -Consensus Splitting
	5.3 Open questions

