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Abstract

For a graph property P, the edit distance of a graph G from P, denoted EP(G), is the
minimum number of edge modifications (additions or deletions) one needs to apply to G in
order to turn it into a graph satisfying P. What is the furthest graph on n vertices from P and
what is the largest possible edit distance from P? Denote this maximal distance by ed(n,P).
This question is motivated by algorithmic edge-modification problems, in which one wishes to
find or approximate the value of EP(G) given an input graph G.

A monotone graph property is closed under removal of edges and vertices. Trivially, for
any monotone property, the largest edit distance is attained by a complete graph. We show
that this is a simple instance of a much broader phenomenon. A hereditary graph property is
closed under removal of vertices. We prove that for any hereditary graph property P, a random
graph with an edge density that depends on P essentially achieves the maximal distance from P,
that is: ed(n,P) = EP(G(n, p(P))) + o(n2) with high probability. The proofs combine several
tools, including strengthened versions of the Szemerédi Regularity Lemma, properties of random
graphs and probabilistic arguments.

1 Introduction

1.1 Definitions and motivation

A graph property is a set of graphs closed under isomorphism. A graph property is hereditary
if it is closed under removal of vertices (and not necessarily under removal of edges). Equivalently,
such properties are closed under taking induced subgraphs.

Given two graphs on n vertices, G1 and G2, the edit distance between G1 and G2 is the
minimum number of edge additions and/or deletions that are needed in order to turn G1 into a
graph isomorphic to G2. We denote this quantity by ∆(G1, G2).
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For a given graph property P, let Pn denote the set of graphs on n vertices which satisfy P.
We want to investigate how far a graph G is from satisfying P, and thus define the edit distance of
a graph G from P by EP(G) = min{∆(G,G′) | G′ ∈ P |V (G)|}. In words, EP(G) is the minimum
edit distance of G to a graph satisfying P.

In this paper we address the following extremal question: Given a hereditary graph property
P, what is the graph on n vertices with the largest edit distance from P? That is, the graph to
which one has to apply the largest number of edge modifications in order to obtain a member of
P. Denote the maximal possible distance by ed(n,P).

Although this extremal question seems natural on its own, it is mainly motivated by problems
in theoretical computer science. In the edge-modification problem of the property P, one wants
to determine EP(G) given an input graph G. Clearly, the computational complexity of such an
optimization problem strongly depends on the graph property in hand. Narrowing our discussion
to hereditary properties is one of the mildest and yet natural restrictions. These properties play
an important role in various areas of research in graph theory as well as in theoretical and applied
computer science. Due to the simple nature of these properties they also arise in Chemistry, Biol-
ogy, Social Science as well as in many other areas. Some of these properties are the well studied
graph properties of being Perfect, Chordal, Interval, Comparability, Permutation and more. In
fact, almost all interesting graph properties are hereditary. The recent results of [4] on the approx-
imability of edge-modification problems for monotone graph properties indicate that the extremal
aspects of edge-modification problems for hereditary properties should be helpful in obtaining tools
for establishing the hardness of such problems.

1.2 The new results

The main result of this paper, Theorem 1.2, is that for any hereditary graph property P, the
maximal distance from P is essentially achieved by a random graph G(n, p) with an edge density
that depends on P.

The proof of the main result follows a method used by Alon and Shapira in [3], which is based
on a strengthened version of the Szemerédi Regularity Lemma (proved in [2]). Using this method,
we prove the following theorem:

Theorem 1.1. Let P be an arbitrary hereditary graph property, and ε > 0. Then there is n1.1(P, ε)
such that for any n ≥ n1.1(P, ε) there is p = p1.1(P, ε, n) satisfying with high probability

ed(n,P) ≤ EP(G(n, p)) + εn2. (1)

Note that the value of p in (1) depends on n. Thus, some additional effort is needed in order to
deduce that there is a single value of p that suits all n.

Theorem 1.2. Let P be an arbitrary hereditary graph property. Then there exists p = p1.2(P) ∈
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[0, 1], such that with high probability

ed(n,P) = EP(G(n, p)) + o(n2) . (2)

To be completely formal, Theorem 1.2 should be read as follows: for a hereditary property P, there
is p = p1.2(P) such that for any ε > 0, a graph G ∼ G(n, p) satisfies ed(n,P) ≤ EP(G) + εn2 with
probability that tends to 1 as n tends to infinity.

In the rest of the paper we write p(P) for p1.2(P). Note that Theorem 1.2 implicitly asserts
the existence of p(P), but it supplies neither a general tool for determining its value nor a general
way to compute the maximum possible edit distance. It seems to be a challenging task to express
the extremal probability p(P) as a “natural” function of P. Yet this is possible for several large
families of hereditary properties, see Section 5 for more details.

1.3 Related work

The study of extremal edge modification problems for monotone graph properties was initiated
by Turán [26]. In this case one only deletes edges, since a monotone property is closed under
removal of edges. Thus, trivially, the furthest graph from such properties is a complete graph.
The contribution of Theorem 1.2 is extending this fact to arbitrary hereditary properties, where in
general the role of the complete graph is played by some random graph G(n, p).

As for the edit distance itself, Turán’s Theorem and its various extensions (most notably by
Erdős and Stone [18], and by Erdős and Simonovits [16]) show that for any monotone graph property
M, defined by the (possibly infinite) set of its forbidden weak subgraphs FM 1: ed(n,M) =
(1
r − o(1))

(
n
2

)
where r = min{χ(F )− 1 | F ∈ FM}.

For a fixed graph H, denote by P∗H the hereditary property that contains all graphs excluding
an induced copy of H. Axenovich, Kézdy and Martin recently showed in [8] that ed(n,P∗H) is
bounded by a function of H as follows. They define a graph parameter χB(H) 2 and show that
if χB(H) = k + 1 then ( 1

2k − o(1))
(
n
2

)
< ed(n,P∗H) ≤ 1

k

(
n
2

)
. The lower bound is obtained by the

random graph G(n, 1/2). Therefore, whenever the lower bound is asymptotically tight, it follows
that in our notation p(P∗H) = 1

2 . The gap left in the general bound is settled in [8] for some
families of graphs. In particular, for self-complementary graphs (i.e. H = H) it is shown there that
ed(n,P∗H) = ( 1

2k − o(1))
(
n
2

)
, and hence p(P∗H) = 1

2 .

The problem we address and the techniques we use relate and extend work in different paths of
research on hereditary graph properties. In particular:

Growth of hereditary graph properties: The edit distance of a hereditary property is closely
1That is, a graph G belongs to M iff it excludes subgraphs isomorphic to any of the members of FM.
2χB(H) is the least integer k + 1 such that for any pair (r, s) satisfying r + s = k + 1, the vertices of H can be

partitioned into r+s sets, r of which inducing an empty graph in H and s inducing a complete graph. This parameter

was first defined by Prömel and Steger in [22], where it was called τ(H).
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related to the so called speed of the property, which is measured by the function |Pn|. Schein-
erman and Zito [24] showed that |Pn| belongs to one of few possible classes of functions.
Several other papers sharpen these results, concentrating on, e.g., sparse hereditary prop-
erties (Balogh, Bollobás and Weinreich [9], [10]), dense hereditary properties (Bollobás and
Thomason [11], [12] and Alekseev [1]) and properties of the type P∗H (Prömel and Steger [21],
[22], [23]).

Testing hereditary graph properties: Roughly speaking, a graph property P is testable if there
is a probabilistic algorithm that samples a (small) portion of a (large) graph and decides
whether the graph satisfies P. The algorithm is expected to distinguish graphs that satisfy P
from those that are far from it in the edit distance. Alon, Fischer, Krivelevich and Szegedy
proved in [2] that for any fixed graph H, the property P∗H is testable. In [3], Alon and Shapira
extended this result, showing it applies to all hereditary graph properties. The technique used
in [3] lays in the core of the proof of Theorem 1.1.

The recent study of convergent graph sequences and their limit objects by Borgs et al. (see
e.g. [14] and [15]) provides an alternative approach for proving various results in Extremal
Graph Theory. In [20], Lovász and Szegedy show how these methods can be applied to reprove
Theorem 1.2 as well as results on the testability of hereditary properties.

Coloring random graphs with hereditary properties: In [13], Bollobás and Thomason esti-
mated the coloring number of random graphs by graphs satisfying some hereditary property.
As they noticed, finding the probability that a random graph G(n, p) satisfies some hereditary
property is much more difficult when p 6= 1

2 . Their approach is also based on the regularity
lemma together with tools from the theory of Random Graphs, and is strongly related to
some of our methods here.

1.4 Organization

The rest of the paper is organized as follows. In Section 2 we review the definitions and state the
regularity lemmas which will be used in the rest of the paper. In Section 3 we prove Theorem 1.1
and in Section 4 we prove Theorem 1.2. Section 5 contains some concluding remarks and future
work.

2 Regularity lemma background

In this section we discuss some of the basic applications of regular partitions and state the regularity
lemmas that we use in the proof of Theorem 1.1. See [19] for a comprehensive survey on the
regularity lemma.

For a set of vertices A ⊆ V , we denote by E(A) the set of edges of the graph induced by A

in G. We also denote by e(A) the size of E(A). Similarly, for every two nonempty disjoint vertex
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sets A and B of a graph G, E(A,B) stands for the set of edges of G connecting vertices in A

and B, and e(A,B) is the size of E(A,B) . The edge density of the pair (A,B) is defined as
d(A,B) = e(A,B)/|A||B|. When several graphs on the same set of vertices are involved, we write
dG(A,B) to specify the graph to which we refer.

Definition 2.1. A pair (A,B) is γ-regular, if for any two subsets A′ ⊆ A and B′ ⊆ B, satisfying
|A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality |d(A′, B′)− d(A,B)| ≤ γ holds.

Lemma 2.2 below helps us find induced copies of some fixed graph F , whenever a family of
vertex sets are pairwise regular “enough” and their densities correspond to the edge-set of F .
Several versions of this lemma were previously proved in papers using the regularity lemma (see,
e.g., [3], [12], [19]).

Lemma 2.2. For every real 0 < η < 1 and integer f ≥ 1 there exists γ = γ2.2(η, f) with the
following property. Suppose that F is a graph on f vertices v1, . . . , vf , and that U1, . . . , Uf is an
f -tuple of disjoint nonempty vertex sets of a graph G such that for every 1 ≤ i < j ≤ f the pair
(Ui, Uj) is γ-regular. Moreover, suppose that whenever (vi, vj) ∈ E(F ) we have d(Ui, Uj) ≥ η, and
whenever (vi, vj) 6∈ E(F ) we have d(Ui, Uj) ≤ 1 − η. Then, some f -tuple u1 ∈ U1, . . . , uf ∈ Uf

spans an induced copy of F , where each ui plays the role of vi.

In fact, the statement of Lemma 2.2 could be strengthened to show that many induced copies
of F exist in G. However, for our purposes a single induced copy suffices.

Remark 2.3. Observe, that the function γ2.2(η, f) may and will be assumed to be monotone non-
increasing in f . Also, for ease of future definitions we set γ2.2(η, 0) = 1 for any 0 < η < 1.

Note, that in terms of regularity, Lemma 2.2 requires all the pairs (Ui, Uj) to be γ-regular.
However, and this will be very important later in the paper, the requirements in terms of density
are not very restrictive. In particular, if η ≤ d(Ui, Uj) ≤ 1 − η then we do not care if (i, j) is an
edge of F .

A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi|
and |Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular each Vi has one of two
possible sizes). The Regularity Lemma of Szemerédi can be formulated as follows.

Lemma 2.4 ([25]). For every m and ε > 0 there exists a number T = T2.4(m, ε) with the following
property: Any graph G on n ≥ T vertices, has an equipartition A = {Vi | 1 ≤ i ≤ k} of V (G) with
m ≤ k ≤ T , for which all pairs (Vi, Vj), but at most ε

(
k
2

)
of them, are ε-regular.

The function T2.4(m, ε) may and is assumed to be monotone non-decreasing in m and monotone
non-increasing in ε. Another lemma, which will be very useful in this paper is Lemma 2.5 below.
Some versions of this lemma appear in various papers applying the regularity lemma (see e.g. the
appendix of [3]).
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Lemma 2.5. For every ` and γ there exists δ = δ2.5(`, γ) such that for every graph G with n ≥ δ−1

vertices there exist disjoint vertex sets W1, . . . ,W` satisfying:

1. |Wi| ≥ δn.

2. All
(
`
2

)
pairs are γ-regular.

3. Either all pairs are with densities at least 1
2 , or all pairs are with densities less than 1

2 .

Remark 2.6. Observe, that the function δ2.5(`, γ) may and will be assumed to be monotone non-
increasing in ` and monotone non-decreasing in γ. For ease of future applications we will assume
that for all ` and γ we have δ2.5(`, γ) ≤ 1/2.

Our main tool in the proofs, in addition to Lemmas 2.2 and 2.5 is Lemma 2.7 below, proved
in [2]. This lemma can be considered as a strengthened variant of the standard regularity lemma.
This variant has two advantages. The first advantage is obtaining a regular partition in which all
pairs are regular, where - roughly speaking - we compromise on the densities of the edge sets and
consider only an induced subgraph of our graph which represents well the whole graph. The second
advantage of this version is that one can define ε as a function of the size of the partition, rather
than having to use a fixed ε as in Lemma 2.4. We denote such functions by E throughout the paper.

Lemma 2.7. ([2]) For every integer m and every monotone non-increasing function E : N 7→ (0, 1)
there is S = S2.7(m, E) which satisfies the following. For any graph G on n ≥ S vertices, there
exists an equipartition A = {Vi | 1 ≤ i ≤ k} of V (G) and an induced subgraph U of G, with an
equipartition B = {Ui | 1 ≤ i ≤ k} of the vertices of U , that satisfy:

1. m ≤ k ≤ S.

2. Ui ⊆ Vi for all i ≥ 1, and |Ui| ≥ n/S.

3. In the equipartition B, all pairs are E(k)-regular.

4. All but at most E(0)
(
k
2

)
of the pairs 1 ≤ i < j ≤ k are such that |d(Vi, Vj)− d(Ui, Uj)| < E(0).

Remark 2.8. For technical reasons (see the proof in [2]), Lemma 2.7 requires that for any r > 0
the function E(r) will satisfy E(r) ≤ min{E(0)/4, 1/4r2}. However, we can always assume w.l.o.g.
that E satisfies this condition because if it does not, then we can apply Lemma 2.7 with E ′ which is
defined as E ′(r) = min{E(r), E(0)/4, 1/4r2}. We will thus disregard this technicality.

The main power of Lemma 2.7 is that for any function E it allows us to find k sets of vertices
U1, . . . , Uk, each of size Ω(n), such that all pairs (Ui, Uj) are E(k)-regular. Note, that in Lemma
2.4 we first fix the regularity measure γ, and then get via the lemma k sets of vertices, where k can
be very large in terms of γ.
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3 Proof of Theorem 1.1

3.1 Preliminaries

We first need the following lemma stating that in a random graph, with high probability, the edge
density inside and between any two sets of vertices is close to the density of the graph. The proof
is a standard application of Chernoff’s inequality.

Lemma 3.1. Assume 0 ≤ p ≤ 1, and let t : N → N satisfy t(n) = ω(n1.5). Then with high
probability, G = G(n, p) satisfies

1. For any set A ⊆ V (G): | e(A)− p
(|A|

2

)
| ≤ t(n).

2. For any pair of disjoint sets A,B ⊆ V (G): | e(A,B)− p|A||B| | ≤ t(n).

Proof. Let A be some set of vertices in G = G(n, p). By Chernoff’s inequality (see e.g. pp. 266 in
[5])

Pr

[
| e(A)− p

(
|A|
2

)
| > t(n)

]
< 2 exp

{
−2(t(n))2(|A|

2

) }
< 2 exp

{
−4(t(n))2

n2

}
= e−ω(n) .

Similarly, for any disjoint sets A,B

Pr [ | e(A,B)− p|A||B| | > t(n)] < 2 exp
{
−2(t(n))2

|A||B|

}
< 2 exp

{
−2(t(n))2

n2

}
= e−ω(n) .

The probability that this does not happen for any such set A nor for any pair of sets (A,B) is
therefore at least 1− 4ne−ω(n), which tends to 1 as n grows.

�

We will also need the following simple fact about regular pairs, which shows that by taking two
subsets of a regular pair, the subsets are also assured to be somewhat regular.

Claim 3.2. If (A,B) is a γ-regular pair, and A′ ⊆ A and B′ ⊆ B satisfy |A′| ≥ ξ|A| and |B′| ≥ ξ|B|
for some ξ ≥ γ, then (A′, B′) is a max{2γ, γ/ξ}-regular pair.

Proof. As (A,B) is a γ-regular pair, for every pair of subsets of A′ ⊆ A with |A′| ≥ ξ|A| ≥ γ|A|
and B′ ⊆ B with |B′| ≥ ξ|B| ≥ γ|B| we have |d(A′, B′) − d(A,B)| ≤ γ. Note, that if A′ and B′

are as above, then for every pair of subsets A′′ ⊆ A′ and B′′ ⊆ B′ satisfying |A′′| ≥ γ
ξ |A
′| and

|B′′| ≥ γ
ξ |B

′| also satisfy |A′′| ≥ γ|A| and |B′′| ≥ γ|B|. Therefore, by the γ-regularity of (A,B)
we have |d(A′′, B′′) − d(A,B)| ≤ γ. We thus conclude that |d(A′′, B′′) − d(A′, B′)| ≤ 2γ. Hence,
(A′, B′) is max{2γ, γ/ξ}-regular. �
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3.2 Definitions and an overview of the proof

The proof of Theorem 1.1 is somewhat technical and requires several definitions. We therefore
outline in this subsection an overview of the proof, while stating the main definitions and skipping
most of the details and calculations. The detailed proof, based on the following discussion, is given
in Subsection 3.3.

We first note that any hereditary graph property can be defined by the set of its forbidden
induced subgraphs as follows:

Definition 3.3. For a graph property P, define the set of forbidden induced subgraphs for P,
denoted FP to be the set of graphs which are minimal with respect to not satisfying property P. In
other words, a graph F belongs to FP if it does not satisfy P, but any graph obtained from F by
removing a vertex, satisfies P.

Clearly, a graph G belongs to the hereditary property P if and only if it does not contain an induced
copy of any graph in F = FP . It will be more convenient to use this equivalent definition of P
along the proof.

Let P, ε and n be given, and define the following graphs:

1. G∗ is the furthest graph on n vertices from P, i.e. ed(n,P) = EP(G∗). Assume its edge
density is p = |E(G∗)|/

(
n
2

)
. We shall prove the theorem for this p.

2. We pick G = G(n, p), and assume it satisfies the assertions of Lemma 3.1 (with t(n) = n1.6).

3. G′ ∈ P is the closest graph to G in P, hence ∆(G,G′) = EP(G).

We thus need to show that the edit distance of G from G′ is not much smaller than the edit distance
of G∗ from P.

We apply the strengthened regularity lemma, Lemma 2.7, to G′, obtaining a partition of its
vertices into k clusters. On each cluster, we apply Lemma 2.5 3. As in many applications of the
regularity lemma, we then obtain a graph G′′, which is a “clean” version of G′. In G′′, each of
the k clusters spans a homogeneous set (either a complete or an empty graph), and the bipartite
graph between any pair of clusters is either empty, complete or “regular enough” with a “moderate”
density (i.e., bounded away from 0 and 1). It is crucial that, as we shall prove, when cleaning G′

we modify at most ε
2n

2 edges, i.e. ∆(G′, G′′) ≤ ε
2n

2.

We then use the following object to model the clean graph G′′.

Definition 3.4. A colored regularity graph K is a complete graph whose vertices are colored
black or white, and whose edges are colored black, white or grey.

3In fact, we apply it to each of the subsets Ui of the equipartition B returned by Lemma 2.7.
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Note that neither the vertex nor the edge coloring is assumed to be legal in the standard sense.
We denote the sets of black, white and grey edges of K by EB(K),EW (K) and EG(K) respectively.
Similarly, we write V B(K) and VW (K) for K’s black and white vertices. The definition of colored
regularity graphs should be considered with respect to G′′, as we shall define a colored regularity
graph K on k vertices as follows: any vertex in K represents a cluster in G′′, and the coloring of
K represents the edge density inside or between these clusters (black for dense, white for sparse).
This seemingly rough model of G′′ proves to be quite useful by the following.

Definition 3.5. For a colored regularity graph K (where k = |V (K)|), the graph property PK,n

consists of all graphs J on n vertices for which there is an equipartition A = {Ai | 1 ≤ i ≤ k} of
the vertices of J satisfying the following conditions. For any 1 ≤ i ≤ k, if i ∈ VW (K) then Ai

spans an empty graph in J , otherwise i ∈ V B(K) and Ai spans a complete graph in J . For any
1 ≤ i < j ≤ k:

• If (i, j) ∈ EB(K) then (Ai, Aj) span a complete bipartite graph in J .

• If (i, j) ∈ EW (K) then (Ai, Aj) span an empty bipartite graph in J .

• If (i, j) ∈ EG(K) then there is no restriction on E(Ai, Aj).

If all the above holds, we say that the equipartition A witnesses the membership of J in PK,n.

PK,n may be viewed as a set of graphs that share the same approximation by the colored regularity
graph K. Clearly, G′′ belongs to PK,n. Also note that PK,n is not hereditary. We will justify
this definition by showing that PK,n ⊂ P. For this purpose, we now make the connection between
forbidden induced subgraphs and colored regularity graphs:

Definition 3.6. A colored-homomorphism from a (simple) graph F to a colored regularity graph
K is a mapping ϕ : V (F ) 7→ V (K), which satisfies the following:

1. If (u, v) ∈ E(F ) then either ϕ(u) = ϕ(v) = t and t is colored black, or ϕ(u) 6= ϕ(v) and
(ϕ(u), ϕ(v)) is colored black or grey.

2. If (u, v) 6∈ E(F ) then either ϕ(u) = ϕ(v) = t and t is colored white, or ϕ(u) 6= ϕ(v) and
(ϕ(u), ϕ(v)) is colored white or grey.

Practicing the above definitions, we note the important fact that if some graph belongs to PK,n,
and that graph contains an induced copy of F ′, then by mapping each vertex in the copy of F ′

to its cluster, we get that F ′ 7→c K, that is, there is a colored homomorphism from F ′ to K.
Furthermore, the above definition should be considered with Lemma 2.2 in mind. With the right
choice of parameters, the existence of such a member in PK,n with an induced subgraph F ′ that
belongs to F will let us apply Lemma 2.2 to some of the clusters found by Lemma 2.5 in G′, and
conclude that in fact G′ contains an induced copy of some graph in F . This leads to a contradiction
since G′ ∈ P, showing that indeed PK,n ⊂ P.
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The difficulty in the above argument lies in the “right choice of parameters”. One of the
limitations of Lemma 2.2 is that the number of vertices in the embedded graph should not be too
large. In other words, the regularity measure required for Lemma 2.2 depends on the size f of F ′.
This seems to be impossible, since F might be infinite. For that purpose we make our last two
definitions, which follow the main idea behind the use of Lemma 2.7 in [3].

Definition 3.7. For any (possibly infinite) family of graphs F , and any integer k, let Fk be the
following set of colored regularity graphs: A colored regularity graph K belongs to Fk if it has at
most k vertices and there is at least one F ∈ F such that F 7→c K.

In the proof of Theorem 1.1, the set Fk, defined above, will represent a subset of the colored
regularity graphs of size at most k. Namely, those K for which there is at least one F ∈ F such that
F 7→c K. However, as noted before, our aim is to obtain some upper bound on the size f of the
forbidden graph F for Lemma 2.2. To this end, we define the following function, which constitutes
the dependence on P in the proof of Theorem 1.1.

Definition 3.8. For any family of graphs F and integer k for which Fk 6= ∅, let

ΨF(k) := max
K∈Fk

min
{F∈F :F 7→cK}

|V (F )|. (3)

Define ΨF (k) = 0 if Fk = ∅. Therefore, ΨF (k) is monotone non-decreasing in k.

In words, any member K of Fk is guaranteed to have a forbidden induced graph F ∈ F of size at
most ΨF (k) such that F 7→c K. We will use Ψ when defining the function E for Lemma 2.7. It
will assure that Lemma 2.5 will provide enough subsets in order to apply Lemma 2.2, since ΨF (k)
upper bounds the size of F . This way, we will indeed obtain the above mentioned contradiction.

After showing that PK,n ⊂ P, a random partition of the vertices of G∗ into clusters that
correspond to the vertices of K will show that EPK,n(G∗) ≤ EPK,n(G) + ε

2n
2. The left hand side is

at least EP(G∗), while the right hand side is at most

∆(G,G′) + ∆(G′, G′′) +
ε

2
n2 = EP(G) + ∆(G′, G′′) +

ε

2
n2 ≤

≤ EP(G) +
ε

2
n2 +

ε

2
n2 = EP(G) + εn2 ,

thus completing the proof.

3.3 The detailed proof of Theorem 1.1

Step 1: Applying the regularity lemmas to G′

We write F for FP , the set of forbidden induced subgraphs for P, and denote Fk and ΨF (k) as in
Definitions 3.7 and 3.8 above.

Define the following functions of r:

α(r) = δ2.5(ΨF (r), γ2.2(ε/10, ΨF (r))), (4)
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β(r) = α(r) · γ2.2(ε/10, ΨF (r)), (5)

and

E(r) =

{
ε/10, r = 0
min{β(r), ε/10}, r ≥ 1

. (6)

Set m = 10/ε and S(ε) = S2.7(10/ε, E), hence S(ε) is a function of ε and P only. We also set

n1.1(P, ε) = (2/ε)5/2S(ε)5 (7)

and assume n > n1.1(P, ε).

Consider G∗ - the furthest graph on n vertices from P. Assume its edge density is p. We shall
prove the theorem for this p. Pick G = G(n, p), and denote the closest graph to G in P by G′ ∈ P.
Assume that G satisfies the conditions of Lemma 3.1 for t(n) = n1.6, which indeed happens with
high probability.

We apply Lemma 2.7 to G′ with E and m as above. Lemma 2.7 provides a partition of V (G′) =
V (G) into 10

ε ≤ k ≤ S(ε) clusters V1, . . . , Vk (given by item (1) in Lemma 2.7). By item (2) of
Lemma 2.7, for 1 ≤ i ≤ k we have sets Ui ⊆ Vi each of size at least n/S(ε). Also, by item (3) of
Lemma 2.7, every pair (Ui, Uj) is β(k)-regular (recall that E(k) ≤ β(k) ).

We now know the value of k, and apply Lemma 2.5 k times on the subgraphs induced in G′

by each Ui, with ` = ΨF (k) and γ = γ2.2(ε/10, ΨF (k)) in order to obtain the appropriate sets
Wi,1, . . . ,Wi,ΨF (k) ⊂ Ui, all of size at least α(k)|Ui|. The following observation will be useful for
the rest of the proof:

Claim 3.9. All the pairs (Wi,i′ ,Wj,j′) are γ2.2(ε/10,ΨF (k))-regular. Also, if i 6= j then we have
|dG′(Wi,i′ ,Wj,j′)− dG′(Ui, Uj)| ≤ ε/10.

Proof: Consider first pairs that belong to the same set Ui. In this case, the fact that any pair
(Wi,i′ ,Wi,j′) is γ2.2(ε/10,ΨF (k))-regular follows immediately from our choice of these sets, as we
applied Lemma 2.5 on each set Ui with γ = γ2.2(ε/10, ΨF (k)). Consider now pairs that belong
to different sets Ui, Uj . As was mentioned above, any pair (Ui, Uj) is β(k)-regular. Since each set
Wi,j satisfies |Wi,j | ≥ α(k)|Ui|, we get from Claim 3.2 and the definition of β(k) that any pair
(Wi,i′ ,Wj,j′) is at least max{2β(k), β(k)/α(k)} ≤ γ2.2(ε/10,ΨF (k))-regular (here we use the fact
that α(k) ≤ 1/2, which is guaranteed by Comment 2.6). Finally, as each of the sets Wi,j satisfies
|Wi,j | ≥ α(k)|Ui| ≥ β(k)|Ui| ≥ E(k)|Ui| we get from the fact that each pair (Ui, Uj) is E(k)-regular
that |dG′(Wi,i′ ,Wj,j′)− dG′(Ui, Uj)| ≤ E(k) ≤ ε/10, thus completing the proof.

�

Step 2: Obtaining G′′

We obtain from G′ a new graph G′′ (the “clean” version of G′) by modifying the following edges,
in the following order:

11



1. For 1 ≤ i < j ≤ k such that |dG′(Vi, Vj) − dG′(Ui, Uj)| > ε
10 , for all v ∈ Vi and v′ ∈ Vj the

pair (v, v′) becomes an edge if dG′(Ui, Uj) ≥ 1
2 , and becomes a non-edge if dG′(Ui, Uj) < 1

2 .
By item (4) of Lemma 2.7 there are no more than E(0)

(
k
2

)
= ε

10

(
k
2

)
such 1 ≤ i < j ≤ k, hence

we modify less than ε
10

(
k
2

)
(nk )2 < ε

10n
2 edges.

2. For 1 ≤ i < j ≤ k such that dG′(Ui, Uj) < 2
10ε, all edges between Vi and Vj are removed. For

all 1 ≤ i < j ≤ k such that dG′(Ui, Uj) > 1 − 2
10ε, all non-edges between Vi and Vj become

edges. In this stage, if dG′(Ui, Uj) < 2
10ε, then by the modifications made in the first stage,

we have dG′(Vi, Vj) < 3
10ε. Similarly, if dG′(Ui, Uj) > 1− 2

10ε then dG′(Vi, Vj) > 1− 3
10ε. Thus,

in this stage we make at most
(
k
2

)
3
10ε

n2

k2 <
3
10εn

2 changes.

3. If for a fixed i all densities of pairs from Wi,1, . . . ,Wi,ΨF (k) are less than 1
2 , all edges within

Vi are removed. Otherwise, by the choice of Wi,1, . . . ,Wi,ΨF (k) through Lemma 2.5, all the
above densities are at least 1

2 , in which case all non-edges within Vi become edges. In this
stage we apply at most k

(
n/k

2

)
< n2

k changes. By our choice of m for Lemma 2.7, we have
k > m = 10

ε and hence we applied at most ε
10n

2 changes at this stage.

Summing the above, we conclude that altogether the number of edge modifications satisfies:

Claim 3.10. ∆(G′, G′′) < ε
2n

2

We also explicitly note the following relations between the edge densities of sets in G′ and G′′.
These are straightforward results of the above construction, together with the properties of Ui and
Vi guaranteed by Lemma 2.7 and Claim 3.9.

Claim 3.11. The following hold in G′ and G′′:

1. For any 1 ≤ i ≤ k, and any 1 ≤ i′ < j′ ≤ ΨF (k), either dG′′(Wi,i′ ,Wi,j′) = 1 and
dG′(Wi,i′ ,Wi,j′) ≥ 1

2 or dG′′(Wi,i′ ,Wi,j′) = 0 and dG′(Wi,i′ ,Wi,j′) ≤ 1
2 .

2. For any 1 ≤ i < j ≤ k, and 1 ≤ i′, j′ ≤ ΨF (k), exactly one of the following holds:

(a) dG′′(Vi, Vj) = 1 and dG′(Wi,i′ ,Wj,j′) ≥ ε
10 .

(b) dG′′(Vi, Vj) = 0 and dG′(Wi,i′ ,Wj,j′) ≤ 1− ε
10 .

(c) ε
10 ≤ dG′′(Vi, Vj) ≤ 1− ε

10 and ε
10 ≤ dG′(Wi,i′ ,Wj,j′) ≤ 1− ε

10 .

Step 3: The colored regularity graph K, and PK,n

We define a colored regularity graph K on the vertices {1, . . . , k} which models the structure of G′′

as follows. We color i ∈ V (K) white if Vi is edgeless in G′′. Otherwise, Vi spans a complete graph
in G′′ and we color i ∈ V (K) black. If dG′′(Vi, Vj) = 0 we color (i, j) white, if dG′′(Vi, Vj) = 1 we
color (i, j) black, otherwise (i.e. ε

10 ≤ dG′′(Vi, Vj) ≤ 1− ε
10) we color (i, j) grey.

Consider the property PK,n as in Definition 3.5, where G′′ ∈ PK,n.

12



Claim 3.12. PK,n ⊂ P

Proof. Let J be a graph in PK,n. Assume, towards a contradiction, that J contains an induced
copy of a forbidden graph F ′ ∈ F . We shall show that in this case G′ must also contain a graph
from F , which contradicts our assumption that G′ ∈ P.

Fix some equipartition witnessing J ∈ PK,n. Consider mapping each vertex v in the induced
copy of F ′ in J to i ∈ {1, 2, . . . , k} such that v belongs to the ith cluster in the equipartition. By
the definition of PK,n, this mapping shows that F ′ 7→c K and hence K ∈ Fk. The definition of
ΨF (k) guarantees that there is some F ∈ F such that f = |V (F )| ≤ ΨF (k) and F 7→c K. Denote
the vertex set of F by {1, 2, . . . , f}, and let ϕ : V (F ) 7→ V (K) be the colored homomorphism from
F to K. We will now consider the sets Wϕ(1),1, . . . ,Wϕ(f),f and show that by applying Lemma 2.2
on those sets we obtain an induced copy of F in G′. By our construction of K, and the definition
of colored homomorphism, we conclude from Claim 3.11 that

• If (i, j) ∈ E(F ) then dG′(Wϕ(i),i,Wϕ(j),j) ≥ ε
10 .

• If (i, j) 6∈ E(F ) then dG′(Wϕ(i),i,Wϕ(j),j) ≤ 1− ε
10 .

Moreover, by Claim 3.9 any pair of these sets is at least γ2.2( ε
10 ,ΨF (k))-regular in G′. Thus, by

Lemma 2.2 indeed G′ contains an induced copy of F , which completes the proof of the claim.

�

Step 4: The edit distance of G∗ from PK,n

Claim 3.13. With high probability, EPK,n(G∗) ≤ EPK,n(G) + ε
2n

2.

Proof. Consider a uniformly random equipartition of the vertices of G∗ into k sets. The expected
number of edge modifications one needs to apply to G∗ so that this partition would witness mem-
bership in PK,n is

D = (1− p)
(n
k

2

)
|V B(K)|+ p

(n
k

2

)
|VW (K)|+ (1− p)

(n
k

)2
|EB(K)|+ p

(n
k

)2
|EW (K)| .

It is therefore witnessed by some equipartition that EPK,n(G∗) ≤ D.

Yet, by Lemma 3.1, for any equipartition of G into k sets, the number of edge modifications
needed for it to witness membership in PK,n is at least D− t(n)k2. By our assumption on n in (7),
we have t(n)k2 ≤ n1.6n2/5 ε

2 = ε
2n

2, and indeed w.h.p. D ≤ EPK,n(G) + ε
2n

2.

�

Hence, with high probability:

ed(n,P) = EP(G∗) ≤ EPK,n(G∗) ≤ EPK,n(G) +
ε

2
n2

≤ ∆(G,G′) + ∆(G′, G′′) +
ε

2
n2

≤ EP(G) + εn2 .
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�

Remark 3.14. Note that along the proof of Theorem 1.1 the only dependence on G is in the proof
of Claim 3.13. Therefore, any pseudo-random graph with edge density p that satisfies the conditions
of Lemma 3.1 for some t(n) = o(n2), can play the role of G(n, p).

4 Proof of Theorem 1.2

It would be more convenient to express the intermediate results along the proof of Theorem 1.2
in terms of the expected edit distance of the random graph from P. We will later show that the
edit distance of the random graph is concentrated near its expected value, hence this relaxation is
possible. We thus define for any graph property P, n > 0 and p ∈ [0, 1],

en,p(P) =
E[EP(G(n, p))](

n
2

) .

In words, this is the expected fraction of the edges that need to be modified in G(n, p) in order to
obtain a graph in P. When the context is clear, we write en,p for en,p(P).

Let us first rephrase Theorem 1.1 as follows. Clearly, we may assume that the function n1.1(P, ε)
is monotone non-increasing in ε. Moreover, since the value of EP(G) is always bounded between 0
and

(
n
2

)
, Theorem 1.1 also implies the following for the expected value of EP(G(n, p)).

Corollary 4.1. Let P be an arbitrary graph property, and ε > 0. Then any n ≥ n1.1(P, ε) and
p = p1.1(P, ε/2, n) as above, also satisfy

ed(n,P) ≤ E
[
EP

(
G(n, p)

)]
+ εn2 = en,p(P)

(
n

2

)
+ εn2 .

The main difficulty arising when one tries to base a proof of Theorem 1.2 on Theorem 1.1 is
finding a single value of p which suits any ε and any (large enough) n. We overcome this difficulty by
showing that the expected edit distance of random graphs from a hereditary property is continuous
in the following senses:

1. The exact size of the graph n has a limited influence on the edit distance, i.e. if n1 and n2

are close, then en1,p and en2,p are close.

2. A small change in p causes a small change in the edit distance, i.e. if p1 and p2 are close,
then en,p1 and en,p2 are close.

The first ingredient of the continuity results from the following lemma.

Lemma 4.2. For any pair of integers m < n, a hereditary property P and p ∈ [0, 1]:

em,p(P) ≤ en,p(P) .
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Proof. We pick a random graph Gm in G(m, p) by first obtaining Gn from G(n, p), and then
choosing a random subset of m of its vertices with uniform distribution. We can now edit Gm as
follows: consider changing Gn into a graph satisfying P, and apply to Gm the modifications which
fall into the subgraph that Gm induces. Since P is hereditary, the modified m-vertex graph is also
a member of P. The expected number of modifications applied to edges of Gm this way is(

m
2

)(
n
2

) E
[
EP(Gn)

]
=
(
m

2

)
en,p(P) .

Hence the expected fraction of modifications needed in order to turn Gm into a graph in P is at
most en,p(P).

�

Thus, for an arbitrary hereditary property, {e1,p, e2,p, . . . } form a bounded monotone non-
decreasing sequence.

Corollary 4.3. For any hereditary property P and p ∈ [0, 1], the limit limn→∞ en,p(P) exists.

We denote this limit by ep(P) := limn→∞ en,p(P).

We now address the second component of the continuity.

Lemma 4.4. Let P be an arbitrary hereditary property, and p1, p2 ∈ [0, 1], then for any integer n:

|en,p1(P)− en,p2(P)| ≤ |p1 − p2| .

Proof. W.l.o.g., assume en,p1 < en,p2 . For a graph G = G(n, p2), we apply the following two steps
in order to modify its edges turning it into a graph satisfying P:

1. If p1 ≤ p2, we decrease the edge density of G by randomly, independently, removing every
edge with probability p2−p1

p2
. If p1 > p2, we increase the edge density of G by adding any

non-edge of G with probability p1−p2
1−p2 . In both cases we obtain the graph distribution of

G(n, p1).

2. We now turn it into a graph in P in the most economical way.

The expected total number of edge modifications is (|p2−p1|+en,p1)
(
n
2

)
. Thus en,p2 ≤ |p2−p1|+en,p1 .

�

Taking limits, this implies the following.

Corollary 4.5. For any hereditary property P and p1, p2 ∈ [0, 1]

|ep1(P)− ep2(P)| ≤ |p1 − p2| .

For the proof of Theorem 1.2, we integrate the two ingredients of the continuity of en,p as
follows.
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Lemma 4.6. Let P be an arbitrary hereditary property, and η > 0. Then there is n4.6(P, η) such
that for any n > n4.6(P, η) and any p ∈ [0, 1]: |ep(P)− en,p(P)| < η.

Proof. Let M = b4/ηc, and define q1, . . . , qM ∈ [0, 1] by qi = i(η4 ). By Corollary 4.3, there are
integers `1, . . . , `M such that for every 1 ≤ i ≤ M : any ` > `i satisfies |e`,qi − eqi | <

η
2 . Define

n4.6(P, η) := max{`i | 1 ≤ i ≤M}.

Suppose n > n4.6(P, η), and p ∈ [0, 1]. Then there is some 1 ≤ i ≤ M such that |p − qi| ≤ η
4 .

Thus, by Lemma 4.4 and Corollary 4.5:

|ep − en,p| ≤ |ep − eqi |+ |eqi − en,qi |+ |en,qi − en,p| <
η

4
+
η

2
+
η

4
≤ η .

�

We will now formulate the last tool for the proof of Theorem 1.2, which is the concentration of
the edit distance. Note that for any graph property P, the function G 7→ EP(G) satisfies the edge
Lipschitz condition, i.e. whenever G and G′ differ in at most one edge, then |EP(G)−EP(G′)| ≤ 1.
The following well known result enables the use of martingales for such graph theoretic functions.
We define the edge exposure martingale of the random graph G(n, p) as in [5] (Chapter 7). Roughly,
let m =

(
n
2

)
, and for some labelling of the m potential edges, define a martingale X0, . . . , Xm where

Xi is the expected value of EP(G) conditioned on the adjacency relation of the first i pairs.

Theorem 4.7. (Theorem 7.2.3 in [5]) When a graph parameter satisfies the edge Lipshitz
condition, the corresponding edge exposure martingale satisfies |Xi+1 −Xi| ≤ 1.

Therefore, as explained for example in [5], it follows from Azuma’s inequality, applied to the edge
exposure martingale of the random graph G(n, p), that the following holds.

Lemma 4.8. Let P be a hereditary property and p ∈ [0, 1]. Then for any n, and λ ≥ 0:

Pr
[
| E[EP(G(n, p))]− EP(G(n, p)) | > λ

√(
n
2

) ]
≤ 2e−

λ2

2 .

Proof of Theorem 1.2 :

For i = 1, 2, . . . define εi := inf{2δ | n1.1(P, δ) ≤ i}. Since n1.1(P, δ) is monotone non-increasing in
δ, it follows that {εi} is also monotone non-increasing and converges to 0. For any integer i, we
apply Theorem 1.1 with P, εi2 , i ≥ n1.1(P, εi2 ) and obtain pi = p1.1(P, εi2 , i). The bounded sequence
p1, p2, . . . has a convergent subsequence pi1 , pi2 , . . . with a limit p := limk→∞ pik . We shall prove
that this p satisfies the condition of Theorem 1.2.

Given an arbitrarily small ε > 0 , consider a large enough ik such that: (i) |pik − p| ≤ ε
5 , (ii)

εik ≤ ε
10 , (iii) ik ≥ n4.6(P, ε5). For n ≥ ik it now follows from the application of Lemma 1.1 and

Corollary 4.1 that:

ed(n,P) ≤
(
n

2

)
en,pn(P) + εnn

2 ≤
(
n

2

)
en,pn(P) +

ε

5
n2 .
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By Lemma 4.6 |epn − eik,pn | < ε
5 , and by Lemma 4.2 eik,pn ≤ en,pn ≤ epn . Therefore, |eik,pn −

en,pn | < ε
5 and

ed(n,P) ≤
(
n

2

)
eik,pn(P) +

2ε
5
n2 .

Yet Corollary 4.1 also implies
(
ik
2

)
eik,pn(P) ≤ ed(ik,P) ≤

(
ik
2

)
eik,pik (P) + εiki

2
k and hence |eik,pn −

eik,pik | ≤
ε
5 and

ed(n,P) ≤
(
n

2

)
eik,pik (P) + εikn

2 +
2ε
5
n2 ≤

(
n

2

)
eik,pik (P) +

3ε
5
n2 .

Now, by Lemma 4.4 for p and pik we get

ed(n,P) ≤
(
n

2

)
eik,p(P) + |pik − p|

(
n

2

)
+

3ε
5
n2 ≤

(
n

2

)
eik,p(P) +

4ε
5
n2 ≤

(
n

2

)
en,p(P) +

4ε
5
n2 .

Moreover, by Lemma 4.8, the probability that EP(G(n, p)) is ε
5n

2-far from its expected value

is at most 2e−
ε2n2

25 which tends to 0 as n grows. Hence indeed, with probability tending to 1,
ed(n,P) ≤ EP(G(n, p)) + εn2.

�

5 Concluding remarks and future work

• Consequent upon the broad family of graph properties to which Theorem 1.2 refers, one may
suspect that it holds for any “natural” graph property. The following example may hint that
this is not the case. Consider the graph property P of being degree regular. In other words,
a graph satisfies P if all its vertex degrees are equal. Clearly, P is not hereditary. Moreover,
it is not difficult to verify that in this case, for any 0 ≤ p ≤ 1, the edit distance of G(n, p)
from satisfying P is o(n2). On the other hand, a graph which consists of a disjoint union of a
clique on n

2 vertices and an independent set of n
2 vertices has edit distance

(
n/2
2

)
≈ 1

8n
2 from

P. Thus, for this natural example a random graph is not the furthest from P.

• The natural question arising from Theorem 1.2 is whether one can determine the value of the
extremal probability p(P) for some (or all !) hereditary properties. In a subsequent work [6],
we determine p(P) for several interesting families of hereditary properties:

Sparse hereditary properties: If there are at most 2o(n
2) graphs on n vertices satisfying

P, then the edit distance ed(n,P) is either (1− o(1))
(
n
2

)
or (1

2 − o(1))
(
n
2

)
, the extremal

probability p(P) is either 0,1
2 or 1, and there is a simple criterion to decide which of

these is the correct value.

Complement invariant properties: We say that a property P is complement invariant if
for any graph G, G ∈ P if and only if G ∈ P. For example, perfect graphs form such a
property. We show that p(P) for these properties equals 1

2 , extending the result of [8]
for P∗H where H = H.
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(r,s)-colorability: For a pair of integers (r, s), the property Pr,s consists of all graphs whose
vertices can be partitioned into r + s sets, r of them spanning empty graphs and s

spanning complete graphs. We define explicit functions d(r, s) and c(r, s) and prove that
p(Pr,s) = d(r, s) and ed(n,Pr,s) = (c(r, s)− o(1))

(
n
2

)
.

Induced H-freeness: We prove that for the claw K1,3, p(P∗K1,3
) = 1

3 and ed(n,P∗K1,3
) =

(1
3 −o(1))

(
n
2

)
, thus showing that for some H, p(P∗H) 6= 1

2 . We achieve similar asymptotic
results for other small graphs, and sharpen the estimation of ed(n,P∗C4

) and ed(n,P∗P4
).

• Other Turán type problems on hereditary properties also arise naturally, extending well known
analogous results for monotone properties. In particular:

– Which are the graphs in P that are the closest to G(n, p(P))? (this question is much
easier when p(P) = 1

2)

– What is the exact furthest graph from P?

– Consider a monotone property which contains all graphs excluding a (weak) copy of a
fixed graph H. Some extremal features were proved for the case of H having a color
critical edge (e.g. [7], [17]). What is the analogue of these special graphs when forbidding
an induced copy H?

Related questions for the properties P∗H , were addressed by Prömel and Steger in [22]. Their
results might hint on possible answers.

• In [4], Alon, Shapira and Sudakov describe, for every monotone property M and ε > 0,
a polynomial time algorithm for approximating the edit distance of a given input graph
on n vertices from M. The algorithm obtains an additive approximation within εn2 of the
correct edit distance. A slightly different version of their algorithm provides an approximation
algorithm for edge-modification problems in the broader setting of hereditary properties.
The authors of [4] also characterize the properties for which the above mentioned algorithm
achieves essentially the best possible approximation, that is, the monotone properties M for
which it is NP -hard to approximate EM(G) to within an additive error of n2−ε, for any ε > 0.
In a future work, we (partially) extend these results to hereditary properties, relying in part
on the ideas of the present paper.
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[22] H.J. Prömel and A. Steger, Excluding induced subgraphs II: extremal graphs, Discrete Applied
Mathematics, 44 (1993), 283-294.
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