Homomorphisms of Edge-coloured Graphs and Coxeter Groups
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Abstract

Let Gy = (V4, E1) and G = (Va, E3) be two edge-coloured graphs (without multiple edges or
loops). A homomorphism is a mapping ¢ : V3 — V4 for which, for every pair of adjacent vertices
u and v of Gy, ¢(u) and ¢(v) are adjacent in G5 and the colour of the edge ¢(u)p(v) is the same
as that of the edge uv.

We prove a number of results asserting the existence of a graph G, edge-coloured from a
set C, into which every member from a given class of graphs, also edge-coloured from C, maps
homomorphically.

We apply one of these results to prove that every hyperbolic reflection group, having rotations
of orders from the set M = {mq,ma,...my}, has a torsion-free subgroup of index not exceeding
some bound, which depends only on the set M.

1 Introduction

Let G1 = (W1, E1) and G2 = (Va, E2) be two edge-coloured graphs (without multiple edges or loops).
We define a mapping ¢ : Vi3 —— V5 to be a homomorphism if, for every pair of adjacent vertices u
and v of G1,¢(u) and ¢(v) are adjacent in Gy and the colour of the edge ¢(u)p(v) is the same as
that of the edge uv. In Section 2 we prove a number of results asserting the existence of a graph G,
edge-coloured from a set C, into which every graph from a given class of graphs, also edge-coloured
from C, maps homomorphically. In each case we also give explicit upper bounds for the number of
vertices in G.

Homomorphisms arise naturally when dealing with Coxeter groups. For each Coxeter group G
the edges of the corresponding Coxeter graph are “coloured” by integers or co, and there is a simple

relationship between homomorphisms of the Coxeter graph (in a slightly modified form) and those of
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the associated group. Hence some results about group homomorphisms have a natural restatement
in terms of graph homomorphisms.

We apply these ideas to prove that every hyperbolic reflection group, having rotations of orders
from the set M = {mq,mo,...my}, has a torsion-free subgroup of index not exceeding some bound,
which depends only on the set M. We compare this theorem with known results about torsion-free
subgroups of Fuchsian groups [4], and of arbitrary Kleinian groups [5]. In outline, the method is
to reduce statements about torsion-free subgroups to statements about group homomorphisms, to
reformulate these in terms of graph homomorphisms, and then to apply the purely graph-theoretic
results of Section 2.

We tacitly identify graphs edge-coloured from a set of only one colour with uncoloured graphs.
We say that a coloured graph is planar, complete etc., if the underlying uncoloured graph has the
corresponding property.

We denote by C(Y') the Cayley graph obtained from the generating set Y, (where the group will
be clear from the context). In all the cases we consider, Y will be closed under taking inverses, and

we will regard C(Y) as an undirected graph.

2 Edge-coloured graphs and their Homomorphisms
In this section we prove the following.

Theorem 2.1 For every integer n > 1 there is a finite graph G, whose edges are coloured by the
n colours 1,2,...n so that every planar graph whose edges are coloured with these colours maps

homomorphically into G,,.

It is of interest to know how small the graphs G,, in the above theorem can be made. Let A,, denote

the minimum possible number of vertices of a graph G,. We have,
Proposition 2.2 For every positive integer n,
n3+3§)\n §5n4.

We prove the upper bound of this proposition as a consequence of a more general result. For a family
of graphs G and for an integer n > 1, let A\(G,n) denote the minimum possible number of vertices in
an edge coloured graph H so that each member of G whose edges are coloured by colours from the
set {1,2,...n} maps homomorphically into it. (A(G,n) = oo if there is no such finite H). The acyclic
chromatic number of a graph G is the minimum number of colours in a proper vertex colouring of G
so that the vertices of each cycle receive at least 3 distinct colours. This notion was introduced by
Griinbaum and has been studied by various researchers. In particular it has been proved by Borodin
[2] that the acyclic chromatic number of any planar graph is at most 5. Thus the upper bound of

Proposition 2.2 follows from the following more general result, proved below.



Theorem 2.3 Let G be the family of all graphs with acyclic chromatic number not exceeding k,
then, for every odd n, \(Ga,n) = (n + 1), and for every k and n, \(Gy,n) < knF~1.

We note that it is not difficult to show that the family G; ;| of all complete bipartite graphs with

k — 1 vertices in one side consists of graphs with acyclic chromatic number at most £ and yet,
NG ) =nfF"t+E-1

showing that the above theorem is nearly tight. We note also that, by known results about the acyclic
chromatic numbers of graphs embeddable on surfaces other than the plane (see [1]) the assertion of
Proposition 2.2 may be extended to more complicated surfaces.

As we have learned from J. Nesetfil during the completion of this paper, a notion similar to
the one considered here has been studied by Raspaud and Sopena [8], (see also [11], [7]). In these
papers the authors study homomorphisms between directed graphs, and show, in particular, that
there exists a directed graph H on 80 vertices, with no cycles of length 2, so that every orientation
of a planar graph maps homomorphically into H. The proof is based on acyclic colorings, like our
proof here, and although we do not see any way to deduce the results here from the results in the
above mentioned papers or vice versa, it seems that the same techniques are useful in both cases.

To prove Theorem 2.3 we need the following two simple lemmas.
Lemma 2.4 If T is the family of all forests then, for every odd n, A\(T,n) =n+ 1.

Proof:- A star with n edges of distinct colours shows that A(7,n) > n+ 1. A complete graph K
on n + 1 vertices with a proper n edge-colouring of its edges shows that A(7,n) < n+ 1. Indeed the
vertices of each forest can be mapped into those of K one by one, always adding a vertex that has
at most one neighbour in the previously mapped vertices, and using the fact that an edge of each

colour is incident with each vertex of K. O

Lemma 2.5 Let U be a complete bipartite graph on the classes of vertices A = {aq,az,...,a,} and
B = {b1,ba,...,by}, with a proper colouring of its edges by n colours. Then for any forest T" whose
edges are coloured by the same n colours and for any bipartition of the set of vertices of T into vertex
classes V. and W, for which no two vertices of V. or of W are adjacent, there is a homomorphism of
T into U that maps V into A and W into B.

Proof:- It suffices to map any connected component of T. This can be done as in the previous
proof, by mapping the vertices of the component into U one by one, starting by mapping a vertex
into the appropriate vertex class of U, and always adding a vertex that has a unique neighbor among
the previously mapped vertices. Since each colour is incident with each vertex of U, the mapping

can indeed be completed. O



Proof of Theorem 2.3:- The assertion that A\(G2,n) = n + 1 for odd n follows from Lemma 2.4.

To prove the main part of the theorem, let U be a complete bipartite graph on the two vertex classes

A ={ay,a9,...,an} and B = {b1,ba,...,b,}, with a proper colouring of its edges by n colours.
Define an edge-coloured graph G’ as follows:

The vertices of G’ are all k-tuples of the form
(i, L1y L2y e ooy Tjg—1sLj41y -y xk)

where 1 <i <k and 1 <x; <n for all j.

An edge of G’ joins the two vertices
(i7x17x27 sy L1, L1y - - vy .’L'k)

and

(Jsy1, 925+ Yj—1,Yj+15 - - Uk)
if and only if i # j. Such an edge, where i < j, is coloured the same as the edge a;;by, in the graph
U.

We claim that every edge-coloured graph coloured from {1, 2, ...n} with acyclic chromatic number
not exceeding k, maps homomorphically into G’. To see this, let G be such a graph and let V4, ...,V
be a partition of the vertices of G defined by an acyclic colouring of it. Each induced subgraph
Gi; = G[V;UV;](1 <i < j <k)is then a forest so that by Lemma 2.5 there is a homomorphism
¢i,; from each Gj ; into U, mapping V; into A and V; into B. Suppose ¢; j(v) = Ay, ;(v) for allv € V;
and, similarly, ¢; j(w) = by, () for all w € V;

Define a map ¢ from the vertices of G to those of G’ by taking v € V; to the vertex

(4,901,i(v), 2,4 (V), .., Yi—1,3(V), Vi i1 (V) - - Yy (V)

of G'.
Now let v € V;,w € V; be adjacent vertices in G, (i < j). Then w is mapped by ¢ to the vertex

(Js 1,5 (W), Yo j(w), ..., ¥j-1,5(w), Y5 541 (W), - oo s by k(W)
of G'. By the definition of G’ the vertices ¢(v) and ¢(w) are adjacent and joined by an edge of the

same colour as that of the edge ay, . (v)by, ;(w) = ¢i,(v)¢ij(w) in U. Since ¢; ; is a homomorphism,
this is also the colour of vw in G. We have thus shown that ¢ is a homomorphism. Since G’ has

EnF=1 vertices the proof is complete. O

To complete the proof of Proposition 2.2, we need to establish the lower bound for )\,,. To do
this we define a class of graphs, the triangular graphs, A, inductively as follows:

(1) A triangular circuit is in A

(2) If G € A, then the graph obtained by putting a new vertex in one of the faces of G and by
joining it to the three existing vertices of this face, is also in A.

Clearly all triangular graphs are planar. By a simple counting argument we show,



Lemma 2.6 \(A,n) >n3+ 3

Proof:- Let H be a graph edge-coloured from the colours {1,2,...n} into which every triangular
graph, edge-coloured from the same set, maps homomorphically. We suppose for a contradiction
that H has fewer than n3 + 3 vertices.

For each G € A, let h(G) be the set of homomorphisms from G to H (ignoring colours), and
¢(@) the set of edge-colourings of G from the colours {1,2,...n}. Each map ¢ € h(G) induces a
unique colouring of G for which ¢ is also a homomorphism of coloured graphs. This gives a mapping

h(G) — ¢(G) which, by assumption, is onto. We thus have,
e(G)] < W(G)] (1)

Now construct the graph G’ € A by subdividing a face of G. A homomorphism in h(G) can be
extended to G’ in at most n® — 1 ways (the image of the new vertex must differ from that of its three
neighbours) so that, |h(G’)| < (n® — 1)|h(G)|. Each of the three new edges in G’ can be coloured in
n ways so that |c(G’)| = n3|c(G)|. Hence by repeatedly subdividing, we obtain a graph G” € A for
which |¢(G")| > |h(G")|, contrary to (1). 0

It is well known that there is a homomorphism of an uncoloured graph G into a graph with &
vertices if and only if G has a proper vertex colouring by k colours. To see this, observe that given
such a colouring, we can form the complete graph whose k vertices are the colours used. The mapping
that takes each vertex to its colour is then a homomorphism. Conversely given a homomorphism ¢
of GG into the complete graph on k vertices, colouring each vertex by its image under ¢ gives a proper

vertex colouring. In particular we have \; = 4, as a consequence of the four-colour theorem.

3 Coxeter Groups

3.1 Coxeter Groups and homomorphisms

Edge coloured graphs arise naturally from Coxeter groups. These are groups with a presentation of
the form
G =< X|R >

where X = {a; :i € I} and R comprises the relators a?(i € I) and possibly some additional relators
of the form (a;a;)™9 (i # j),my; > 2. If a;a; is of infinite order we set m;; = oo.

We will assume henceforth that the generating set X is finite, X = {ay,...a,}. We refer to the
members of X as canonical generators of G.

From G (or more precisely from its presentation) we may form an edge coloured graph v(G) by
taking as vertices the canonical generators and joining a; and a; by an edge coloured m;; whenever

m;; # 0o. The graph v(G) is closely akin to the familiar Coxeter diagram, but differs in that a;



and a; are joined when m;; = 2 and not when m;; = oco. If v(G) is disconnected then G can be
expressed as a free product of two or more Coxeter groups. We shall suppose henceforth that v(G)
is connected.

From G we may form the index two subgroup G comprising products of an even number of
canonical generators. This subgroup is generated by T' = {r;; = a;a;j|m;; < oo} (we use here the

assumption that v(G) is connected) and has presentation
G° = (T|R))

where R’ contains the relations of the form r?;” and

TivioTigig - -« Timiq (2)

While the generators of G correspond to vertices of (G), those of G® correspond to its directed
edges, r;; being expressed graphically by the directed edge from a; to a;. There is a one to one
correspondence between directed circuits of y(G) (including those of length two) and relations of the
form (2).

Now suppose we have a group H with generating set Y. We colour edges of the Cayley graph
C(Y) by the orders of the corresponding generators.

Let ¢ : G — H be a homomorphism which maps every generator in R’ to a generator in Y
of the same order. We define a homomorphism ¢ from (G) to C(Y) as follows. Let ¢ be defined
arbitrarily at one vertex of 4(G). We then extend the definition of ¢ to the other vertices of v(G)
one by one. If ¢(a;) is defined and a; is adjacent to a; then we set ¢(a;) = d(a;)d(a;a;). The map
6 is well defined because ¢ takes relations of the form (2) to the identity.

In the other direction let ¢ be a graph homomorphism v(G) — C(Y). We obtain a group
homomorphism ¢’ from G to H, which maps T to Y, as follows. Each generator in 7' corresponds
to a directed edge of v(G), which is mapped to a directed edge in C(Y’), which corresponds to a
generator in Y. This determines a homomorphism ¢’ with the required properties. The following

theorem is an easy consequence of the definitions.

Theorem 3.1 If the maps ¢ — ¢ and © — ¢ are as defined above, then (qg)l = ¢ and, if 95’ = at
one point, then gg’ = .

3.2 Reflection Groups and their torsion-free subgroups

We now apply the foregoing ideas in a geometrical context. A Cozxeter polyhedron P in hyperbolic 3-
space H? is one whose dihedral angles are all integer submultiples of . Poincaré’s polyhedral theorem
[6] gives that the group G = G(P) generated by reflections through the faces of P is discrete. Let
x1,... T, denote these reflections. Clearly 3712 = 1(1 < i <'m) and if z; and z; are reflections through

adjacent faces which meet at an angle of 7 /p then (z;2;)P = 1 - since z;x; is a rotation through 27 /p.



Again by Poincaré’s theorem, every relation in G(P) is a consequence of these, so that G(P) is a
Coxeter group. A (hyperbolic) reflection group is the order two subgroup G°(P) of such a G(P). In
geometric terms, GO(P) is the subgroup of orientation preserving isometries in G(P), and the graph
v(G(P)) is simply the dual of the edge skeleton of P. As such it is connected and planar.

According to Selberg’s lemma [9], every finitely generated matrix group has a torsion-free sub-
group of finite index. In particular, finitely generated Coxeter groups (being matrix groups) have
this property. We consider the problem of determining the smallest index of a torsion-free subgroup
of a given group G. We denote this index by m(G).

Let £(G°) denote the least common multiple of the orders of all finite subgroups of G°. It is
easy to show that m(GY) must be a multiple of £(G°) (see e.g. [4]). When G is a Fuchsian group,
Edmonds Ewing and Kulkarni [4] have shown that m(G?)/£(GP) is either 1 or 2 according to the
individual group. By contrast, for Kleinian groups, Jones and Reid [5] have shown that m/(G?)/¢(GY)
can be made arbitrarily large, even if only cocompact groups are considered. For reflection groups
the largest known value of m(G)/¢(G) seems to be 4 (e. g. for the group Fg?%(Q) of [3]). We prove,

Theorem 3.2 If G° is a hyperbolic reflection group then m(G°) is bounded above by a constant that
depends only on ¢(GY).

To prove this we require the following well known lemma (see e.g. [10]).

Lemma 3.3 If G is a (finitely generated) Coxeter group for which G° has a torsion-free subgroup of
index n, then there is a homomorphism from G® onto a transitive group of permutations of {1,2,...n}
for which every edge relator r;; is mapped to a permutation consisting only of m;;-cycles. If G is a

reflection group then the converse holds.
If the transitivity condition is omitted we have a torsion-free subgroup of index not exceeding n.

Sketch of Proof:- Given a torsion free subgroup H of index n, the required permutation represen-
tation is obtained by considering the action of GY on the n cosets of H.

The converse requires the fact that a finite order element of a reflection group must be conjugate
to the power of an edge relator. It then follows that the stabilizer of any point in the set being

permuted is torsion free. O

Let C),(my,ma,...,my) denote the Cayley graph generated by permutations of {1,2,...n} con-
sisting entirely of m; cycles (1 < i < k). Using Theorem 3.1, we have the following result, which is

essentially a restatement of Lemma 3.3 in terms of graph homomorphisms,

Lemma 3.4 If G is a finitely-generated Cozeter group with edge relators of orders my,ms, ..., Mgk,
and there exists an index n torsion-free subgroup of G°, then there is a homomorphism from v(G)
to Cp(my,...,mg). If GO is a reflection group, and such a homomorphism exists, then G° has a

torsion-free subgroup of index not exceeding n.



Proof of Theorem 3.2:- By Theorem 2.1 there exists a graph U with edges coloured m1, mao, ..., mg
with the property that «(G) maps homomorphically into U whenever G is a reflection group
whose edge relators have orders in {mj,...,my}. Since U can be construed as v(G) for some
Coxeter group, Selberg’s lemma and Lemma 3.4 give an n for which U maps homomorphically into
Cpn(mi,ma,...,mg). Since clearly the composition of two homomorphisms is again a homomorphism,
every 7(G) maps homomorphically into this C,(my,ma,..., my), whenever the orders of the edge

relators of GV are in {my1,...,my}. The theorem then follows from Lemma 3.4. O

There are some cases where we can find a precise value for m(GY). When all the dihedral angles
of P are equal to m/m, all the edges of the graph y(G(P)) are coloured m. In this case v(G(P))
maps homomorphically into Cy,(m), if and only if it contains an imbedded copy of K., where c is the
chromatic number of v(G(P)). It is readily verified that C4(2) is isomorphic to K4, so that, when
m = 2, GO(P) has a torsion-free subgroup of index at most 4. Generally (and in all cases where P
is bounded) this index will be exactly 4 and, of course, in G(P), the same subgroup has index 8.
This result was noted by Vesnin [12], and can be used to construct compact hyperbolic manifolds by
glueing together 8 copies of P.

By Andreev’s theorem ([13] Chapter 6, Theorem 2.8), the polyhedron P is unbounded when
m > 3, but may have finite volume when m = 3. Since C4(3) contains a copy of Ky (e.g. the Cayley
graph generated by the three permutations (125)(364), (156)(234) and (163)(245)), we conclude, as
above, that, when m = 3, G°(P) has a torsion-free subgroup of index at most 6.

We note that one of the main theorems of Edmonds et. al. ([4], Theorem 1.4) can be formulated
naturally in terms of graph homomorphisms (although this does not seem to lead to any purely com-
binatorial proof of it). It is equivalent to the statement that every circuit coloured from (myq,...my)
maps homomorphically into Cy,(my,...,my) where either n = £(G°) or n = 2¢(G"), depending on
the individual case. Since, when G is a Dyck group (two-dimensional hyperbolic reflection group),
~v(@) is a circuit, the existence of index n (or 2n) torsion-free subgroups follows, for these groups,

from Lemma 3.4. This result is relatively easily proved for the other Fuchsian groups.

Acknowledgment We would like thank Marston Conder, Yair Caro and Jarik Nesetfil for helpful

suggestions and comments.

References

[1] N. Alon, B. Mohar and D. P. Sanders, “Acyclic Colourings of Graphs on Surfaces”, Israel J.
Math., to appear.

[2] O. V. Borodin, “On acyclic colorings of planar graphs”, Discrete Math. 25, (1979) 211-236.



[3]

M. D. E. Conder and G. J. Martin, “Cusps, Triangle Groups and Hyperbolic 3-Folds”, J. Austral.
Math. Soc. Ser. A 55, (1993) 149-182

A. L. Edmonds, J. H. Ewing, and R. S. Kulkarni, “Torsion-free subgroups of Fuchsian groups
and Tesselations of Surfaces”, Invent. Math. 69, (1982) 331-346.

K. N. Jones and A. W. Reid, “Minimal Index Torsion-free Subgroups of Kleinian Groups”,
preprint.

B. Maskit, Kleinian Groups, Springer-Verlag, 1987.

J. Nesetril, A. Raspaud and E. Sopena, “Colorings and girth of oriented planar graphs”, preprint,
1995.

A. Raspaud and E. Sopena, “Good and semi-strong colorings of oriented planar graphs”, Inform.
Proc. Letters 51 (1994), 171-174.

A. Selberg, On Discontinuous Groups in Higher-dimensional Spaces, Tata Institute, Bombay,
1960.

D. Singerman, “Subgroups of Fuchsian Groups and Finite Permutation Groups”, Bull. London
Math. Soc. 2, (1970) 319-323.

E. Sopena, “The chromatic number of oriented graphs”, preprint, 1995.

A. Yu. Vesnin, “Three-dimensional Hyperbolic Manifolds of the Lobell Type”, Siberian Math.
J. 28, (1987) 731-734.

E. B. Vinberg (Ed.), Geometry II, Encyclopaedia of Mathematical Sciences Vol. 29, Springer-
Verlag, 1993.



