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Abstract

Motivated by a scheduling problem that arises in the study of optical networks we prove

the following result, which is a variation of a conjecture of Haxell, Wilfong and Winkler.

Let k, n be two integers, let wsj , 1 ≤ s ≤ n, 1 ≤ j ≤ k be non-negative reals satisfying∑k
j=1 wsj < 1/n for every 1 ≤ s ≤ n and let dsj be arbitrary non-negative reals. Then there

are real numbers x1, x2, . . . , xn so that for every j, 1 ≤ j ≤ k, the n cyclic closed intervals

I
(j)
s = [xs + dsj , xs + dsj + wsj ], (1 ≤ s ≤ n), where the endpoints are reduced modulo 1, are

pairwise disjoint on the unit circle.

The proof is based on some properties of multivariate polynomials and on the validity of

the Dyson Conjecture.

1 Introduction

Motivated by the study of information transmission in optical networks, the authors of [3] consid-

ered several variants of the following problem. Given n transmitters T1, T2 . . . , Tn and k receivers

R1, R2, . . . , Rk, our objective is to design a rotating schedule that will enable the transmitters to

transmit information to the receivers. We scale time so that the total length of the period in our

periodic protocol is 1. We assume that each transmitter Ts has to transmit data that occupies

time wsj to receiver Rj , so that the total time it has to transmit to all receivers satisfies

ws =
k∑

j=1

wsj < w. (1)
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The transmitter Ts starts to send all this information in time xs in each period, and the time

in which the information reaches receiver number j is governed by a delay dsj . Therefore, the

time interval in which Rj receives information from Ts is the interval [xs + dsj , xs + dsj + wsj ].

Since the communication is periodic, the endpoints of the intervals are computed modulo 1, and

the intervals are considered to be cyclic ones. At any given point of time, each Rj can receive

information from at most one transmitter. Therefore, for each fixed j, the n cyclic closed intervals

[xs + dsj , xs + dsj + wsj ], (1 ≤ s ≤ n), are required to be pairwise disjoint. A feasible schedule is

a choice of x1, x2, . . . , xn so that all members in each of these k families of intervals are indeed

pairwise disjoint.

The problem considered is how large can w be, so that for any choice of numbers wsj that

satisfy (1), and for any choice of delays dsj , there is always a feasible schedule. Obviously w

cannot exceed 1/n, since it may be the case that all transmitters have to communicate all their

data to the first receiver, which will thus have to be able to allocate to them pairwise disjoint

intervals in its rotating schedule. Our main result in this note is that this is tight. If w = 1/n

then there is always a feasible schedule. This is stated in the following theorem.

Theorem 1.1 Let k, n be two integers, let wsj , 1 ≤ s ≤ n, 1 ≤ j ≤ k be non-negative reals

satisfying

ws =
k∑

j=1

wsj < 1/n for every 1 ≤ s ≤ n, (2)

and let dsj be arbitrary non-negative reals. Then there are real numbers x1, x2, . . . , xn so that for

every j, 1 ≤ j ≤ k, the n cyclic closed intervals [xs + dsj , xs + dsj + wsj ], (1 ≤ s ≤ n), where the

endpoints are reduced modulo 1, are pairwise disjoint on the unit circle.

The (short) proof, presented in the next section, is algebraic. It is based on some simple properties

of multivariate polynomials, and on a result in enumerative combinatorics known as the Dyson

Conjecture. Interestingly (and unfortunately) the proof is nonconstructive in the sense that it

provides no efficient algorithmic way of finding a feasible schedule x1, . . . , xn for given sets of time

durations wsj and delays dsj .

It seems plausible that the theorem can be generalized to the case in which not all the quantities

ws are bounded by the same real:

Conjecture 1.2 Let k, n be two integers, let wsj , 1 ≤ s ≤ n, 1 ≤ j ≤ k be non-negative reals and

put ws =
∑k

j=1 wsj . Suppose that
∑

s ws < 1, and let dsj be arbitrary non-negative reals. Then

there are real numbers x1, x2, . . . , xn so that for every j, 1 ≤ j ≤ k, the n cyclic closed intervals
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[xs + dsj , xs + dsj + wsj ], (1 ≤ s ≤ n), where the endpoints are reduced modulo 1, are pairwise

disjoint on the unit circle.

The special case of this conjecture in which for every fixed s, the k quantities wsj are equal,

has been conjectured (in a slightly different language) by Haxell, Wilfong and Winkler [3]. The

special case in which for every fixed j, the n quantities wsj are equal, is a special case of Theorem

1.1. The very special case in which all nk quantities wsj are equal (which follows, of course, from

Theorem 1.1), can be proved in a simpler way as well, using a simple greedy approach.

2 The proof

The proof of Theorem 1.1 uses (a special case of) the following result proved in [1], where it is

called Combinatorial Nullstellensatz.

Theorem 2.1 ([1]) Let F be an arbitrary field, and let P = P (y1, . . . , yn) be a polynomial in

F [y1, . . . , yn]. Suppose the degree deg(P ) of P is
∑n

i=1 ti, where each ti is a nonnegative integer,

and suppose the coefficient of
∏n

i=1 yti
i in P is nonzero. Then, if S1, . . . , Sn are subsets of F with

|Si| > ti, there are z1 ∈ S1, z2 ∈ S2, . . . , zn ∈ Sn so that

P (z1, . . . , zn) 6= 0.

We also need the following result, known as the Dyson Conjecture, which has been proved in

[2], [4] )(see also [5] for a more combinatorial proof.)

Theorem 2.2 ([2], [4]) The coefficient of the monomial
∏n

s=1 y
(n−1)cs
s in the polynomial∏

1≤r<s≤n

(yr − ys)cr+cs

is

(−1)c2+2c3+...+(n−1)cn
(c1 + c2 + . . . + cn)!

c1!c2! . . . cn!
.

Proof of Theorem 1.1: Given k, n and real numbers wsj , dsj satisfying (2), let p ≡ 1 mod(n)

be a large prime. For every 1 ≤ s ≤ n, 1 ≤ j ≤ k, define

c′sj = dwsjpe+ 2

and let bsj be the nearest integer to dsjp. By (2) and by Dirichlet’s Theorem on primes in

arithmetic progressions we can make sure the prime p is as large as needed to ensure that for
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every fixed s, 1 ≤ s ≤ n,
k∑

j=1

c′sj ≤ (p− 1)/n.

Let csj be positive integers satisfying csj ≥ c′sj for all s, j and

k∑
j=1

csj = (p− 1)/n

for all s, 1 ≤ s ≤ n.

We construct the feasible schedule in a discrete fashion, by splitting our circular time unit

into p equal pieces, and by allocating appropriate intervals of consecutive pieces for each required

transmision.

Consider the following polynomial in n variables y1, y2, . . . , yn over the finite field Zp:

P (y1, y2, . . . , yn) =
∏

1≤r<s≤n

k∏
j=1

csj−1∏
`=−crj

(yr + brj − ys − dsj − `).

The degree of this polynomial is precisely

∑
1≤r<s≤n

k∑
j=1

(crj + csj) =
∑

1≤r<s≤n

2(p− 1)
n

= (n− 1)(p− 1).

The coefficient of the monomial ∏
y

(p−1)(n−1)/n
i

in this polynomial is precisely the coefficient of this monomial in the polynomial

∏
1≤r<s≤n

k∏
j=1

csj−1∏
`=−crj

(yr − ys) =
∏

1≤r<s≤n

(yr − ys)2(p−1)/n.

By Theorem 2.2 (with cs = (p− 1)/n for all s) this coefficient is, up to a sign,

(p− 1)!
[(p− 1)/n)!]n

which is not zero in Zp.

By Theorem 2.1 (with ti = (p − 1)(n − 1)/n (< p) and Si = Zp for all i), there are some

zs ∈ Zp such that

P (z1, z2, . . . , zn) 6= 0.
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We can now define xs = zs/p and observe that by the definition of the numbers csj , bsj and

the polynomial P , this is a feasible schedule. Indeed, for every r < s and every j there is an

ε ∈ [−1, 1] such that

xr + drj − xs − dsj =
1
p
(zr + brj − zs − bsj + ε).

As P does not vanish in (z1, z2, . . . , zn), the quantity zr + brj − zs − bsj , reduced modulo p, does

not lie in the open interval (−crj −1, csj). It follows that the quantity xr +drj −xs−dsj , reduced

modulo 1, does not lie in the interval (−crj

p ,
csj−1

p ), which contains the closed interval [−wrj , wsj ].

Therefore, the intervals [xr + drj , xr + drj + wrj ] and [xs + dsj , xs + dsj + wsj ] are disjoint, as

needed. This completes the proof. 2

3 Remarks, extensions and the algorithmic aspects

As is usually the case with applications of the Combinatorial Nullstellensatz, the proof it provides

is non-constructive, and supplies no efficient algorithm for finding a required feasible schedule for

a given set of time durations wsj and delays dsj . The fact that here we use the relatively simple

special case of the theorem in which all sets Si are the whole field (namely, we simply use the fact

that the polynomial is not identically zero), does not seem to help in finding a solution efficiently.

It is worth noting that if, for n > 1, we replace the assumption that for every fixed s,
∑

j wsj <
1
n by the stronger assumption that for every fixed s,

∑
j wsj < 1

2n−2 then a trivial greedy algorithm

will provide a feasible schedule, since we can simply determine the numbers xs one by one. Indeed,

if s > 1 and the values of xr for all r < s have already been determined, there is always room for

xs, as the measure of all forbidden values for it is at most
∑

r:r<s

∑k
j=1 wrj + (s− 1)

∑k
j=1 wsj <

2(s− 1) 1
2n−2 ≤ 1. Similar reasoning applies to the more general Conjecture 1.2, whose statement

becomes easy if we strengthen, for n > 1, the assumption
∑n

s=1 ws < 1 to
∑n

s=1 ws < n
2n−2 .

(Here the greedy solution is obtained by determining the numbers xs one by one, according to a

non-increasing order of the quantities ws).

It is not difficult to extend the statement of Theorem 1.1 by using the full power of Theorem

2.1 to get the following result, which enables us to put some restrictions on the numbers xs.

Theorem 3.1 Let k, n be two integers, let wsj , 1 ≤ s ≤ n, 1 ≤ j ≤ k be non-negative reals and put

ws =
∑k

j=1 wsj . Suppose that
∑

s ws < 1. Let rs be non-negative reals such that (n−1)ws + rs < 1

for each s, 1 ≤ s ≤ n, and let dsj be arbitrary non-negative reals. Then for any given measurable

sets Js in [0, 1], where the measure of Js is rs, there are real numbers x1, x2, . . . , xn ∈ [0, 1] so that
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xs 6∈ Js and so that for every j, 1 ≤ j ≤ k, the n cyclic closed intervals [xs + dsj , xs + dsj + wsj ],

(1 ≤ s ≤ n), where the endpoints are reduced modulo 1, are pairwise disjoint on the unit circle.

The proof is essentially identical to that of Theorem 1.1, with the only change that here we apply

Theorem 2.1 with each Si ⊂ Zp defined using the set Ji. This result may be useful in certain online

scenarios, where some transmissions have already been scheduled, and we wish to add additional

ones without changing the existing schedule. Here, too, the proof is not algorithmic.
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