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Abstract
In this work we derandomize two central results in graph algorithms, replacement paths and distance
sensitivity oracles (DSOs) matching in both cases the running time of the randomized algorithms.

For the replacement paths problem, let G = (V,E) be a directed unweighted graph with n

vertices and m edges and let P be a shortest path from s to t in G. The replacement paths problem
is to find for every edge e ∈ P the shortest path from s to t avoiding e. Roditty and Zwick [ICALP
2005] obtained a randomized algorithm with running time of Õ(m

√
n). Here we provide the first

deterministic algorithm for this problem, with the same Õ(m
√
n) time. Due to matching conditional

lower bounds of Williams et. al. [FOCS 2010], our deterministic combinatorial algorithm for the
replacement paths problem is optimal up to polylogarithmic factors (unless the long standing bound
of Õ(mn) for the combinatorial boolean matrix multiplication can be improved). This also implies
a deterministic algorithm for the second simple shortest path problem in Õ(m

√
n) time, and a

deterministic algorithm for the k-simple shortest paths problem in Õ(km
√
n) time (for any integer

constant k > 0).
For the problem of distance sensitivity oracles, let G = (V,E) be a directed graph with real-edge

weights. An f -Sensitivity Distance Oracle (f -DSO) gets as input the graph G = (V,E) and a
parameter f , preprocesses it into a data-structure, such that given a query (s, t, F ) with s, t ∈ V
and F ⊆ E ∪ V, |F | ≤ f being a set of at most f edges or vertices (failures), the query algorithm
efficiently computes the distance from s to t in the graph G \ F (i.e., the distance from s to t in the
graph G after removing from it the failing edges and vertices F ).

For weighted graphs with real edge weights, Weimann and Yuster [FOCS 2010] presented several
randomized f -DSOs. In particular, they presented a combinatorial f -DSO with Õ(mn4−α) prepro-
cessing time and subquadratic Õ(n2−2(1−α)/f ) query time, giving a tradeoff between preprocessing
and query time for every value of 0 < α < 1. We derandomize this result and present a combinatorial
deterministic f -DSO with the same asymptotic preprocessing and query time.
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1 Introduction

In many algorithms used in computing environments such as massive storage devices, large
scale parallel computation, and communication networks, recovering from failures must be
an integral part. Therefore, designing algorithms and data structures whose running time is
efficient even in the presence of failures is an important task. In this paper we study variants
of shortest path queries in setting with failures.

The computation of shortest paths and distances in the presence of failures was extensively
studied. Two central problems researched in this field are the Replacement Paths problem
and Distance Sensitivity Oracles, we define these problems hereinafter.

The Replacement Paths problem (See, e.g., [37, 40, 20, 18, 30, 39, 6, 43, 31, 33, 34,
35, 42, 19]). Let G = (V,E) be a graph (directed or undirected, weighted or unweighted)
with n vertices and m edges and let PG(s, t) be a shortest path from s to t. For every edge
e ∈ PG(s, t) a replacement path PG(s, t, e) is a shortest path from s to t in the graph G \ {e}
(which is the graph G after removing the edge e). Let dG(s, t, e) be the length of the path
PG(s, t, e). The replacement paths problem is as follows: given a shortest path PG(s, t) from
s to t in G, compute dG(s, t, e) (or an approximation of it) for every e ∈ PG(s, t).

Distance Sensitivity Oracles (See, e.g., [11, 21, 8, 9, 13, 15, 16, 17, 28]). An f -
Sensitivity Distance Oracle (f -DSO) gets as input a graph G = (V,E) and a parameter
f , preprocesses it into a data-structure, such that given a query (s, t, F ) with s, t ∈ V and
F ⊆ E ∪ V, |F | ≤ f being a set of at most f edges or vertices (failures), the query algorithm
efficiently computes (exactly or approximately) dG(s, t, F ) which is the distance from s to t
in the graph G \ F (i.e., in the graph G after removing from it the failing edges and vertices
F ). Here we would like to optimize several parameters of the data-structure: minimize the
size of the oracle, support many failures f , have efficient preprocessing and query algorithms,
and if the output is an approximation of the distance then optimize the approximation-ratio.

An important line of research in the theory of computer science is derandomization. In
many algorithms and data-structures there exists a gap between the best known randomized
algorithms and the best known deterministic algorithms. There has been extensive research
on closing the gaps between the best known randomized and deterministic algorithms in many
problems or proving that no deterministic algorithm can perform as good as its randomized
counterpart. There also has been a long line of work on developing derandomization
techniques, in order to obtain deterministic versions of randomized algorithms (e.g., Chapter
16 in [2]).

In this paper we derandomize algorithms and data-structures for computing distances
and shortest paths in the presence of failures. Many randomized algorithms for computing
shortest paths and distances use variants of the following sampling lemma (see Lemma 1 in
Roditty and Zwick [37]).
I Lemma 1 (Lemma 1 in [37]). Let D1, D2, . . . , Dq ⊆ V satisfy |Di| > L for 1 ≤ i ≤ q and
|V | = n. If R ⊆ V is a random subset obtained by selecting each vertex, independently, with
probability (c lnn)/L, for some c > 0, then with probability of at least 1 − q · n−c we have
Di ∩R 6= ∅ for every 1 ≤ i ≤ q.

Our derandomization step of Lemma 1 is very simple, as described in Section 1.3, we use
the folklore greedy approach to prove the following lemma, which is a deterministic version
of Lemma 1.
I Lemma 2. [See also Section 1.3] Let D1, D2, . . . , Dq ⊆ V satisfy |Di| > L for 1 ≤ i ≤ q and
|V | = n. One can deterministically find in Õ(qL) time a set R ⊂ V such that |R| = Õ(n/L)
and Di ∩R 6= ∅ for every 1 ≤ i ≤ q.
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We emphasize that the use of Lemma 2 is very standard and is not our main contribution.
The main technical challenge is how to efficiently and deterministically compute a small
number of sets D1, D2, . . . , Dq ⊆ V so that the invocation of Lemma 2 is fast.

1.1 Derandomizing the Replacment Paths Algorithm of Roditty and
Zwick [37]

We derandomize the algorithm of Roditty and Zwick [37] and obtain a near optimal determ-
inistic algorithm for the replacement paths problem in directed unweighed graphs (a problem
which was open for more than a decade since the randomized algorithm was published) as
stated in the following theorem.

I Theorem 3. There exists a deterministic algorithm for the replacement paths problem
in unweighted directed graphs whose runtime is Õ(m

√
n). This algorithm is near optimal

assuming the conditional lower bound of combinatorial boolean matrix multiplication of [42].

The term “combinatorial algorithms” is not well-defined, and it is often interpreted as
non-Strassen-like algorithms [4], or more intuitively, algorithms that do not use any matrix
multiplication tricks. Arguably, in practice, combinatorial algorithms are to some extent
considered more efficient since the constants hidden in the matrix multiplication bounds are
high. On the other hand, there has been research done to make fast matrix multiplication
practical, e.g., [27, 5].

Vassilevska Williams and Williams [42] proved a subcubic equivalence between
√
n

occurrences of the combinatorial replacement paths problem in unweighted directed graphs
and the combinatorial boolean multiplication (BMM) problem. More precisely, they proved
that there exists some fixed ε > 0 such that the combinatorial replacement paths problem
can be solved in O(mn1/2−ε) time if and only if there exists some fixed δ > 0 such that the
combinatorial boolean matrix multiplication (BMM) can be solved in subcubic O(n3−δ) time.
Giving a subcubic combinatorial algorithm to the BMM problem, or proving that no such
algorithm exists, is a long standing open problem. This implies that either both problems can
be polynomially improved, or neither of them does. Hence, assuming the conditional lower
bound of combinatorial BMM, our combinatorial Õ(m

√
n) algorithm for the replacement

paths problem in unweighted directed graphs is essentially optimal (up to no(1) factors).
The replacement paths problem is related to the k simple shortest paths problem, where

the goal is to find the k simple shortest paths between two vertices. Using known reductions
from the replacement paths problem to the k simple shortest paths problem, we close this
gap as the following Corollary states.

I Corollary 4. There exists a deterministic algorithm for computing k simple shortest paths
in unweighted directed graphs whose runtime is Õ(km

√
n).

More related work can be found in Section 1.5. As written in Section 1.5, the trivial
Õ(mn) time algorithm for solving the replacement paths problem in directed weighted graphs
(simply, for every edge e ∈ PG(s, t) run Dijkstra in the graph G \ {e}) is deterministic and
near optimal (according to a conditional lower bound by [42]). To the best of our knowledge
the only deterministic combinatorial algorithms known for directed unweighted graphs are the
algorithms for general directed weighted graphs whose runtime is Õ(mn) leaving a significant
gap between the randomized and deterministic algorithms. As mentioned above, in this
paper we derandomize the Õ(m

√
n) algorithm of Roditty and Zwick [37] and close this gap.
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1.2 Derandomizing the Combinatorial Distance Sensitivity Oracle of
Weimann and Yuster [39]

Our second result is derandomizing the combinatorial distance sensitivity oracle of Weimann
and Yuster [39] and obtaining the following theorem.

I Theorem 5. Let G = (V,E) be a directed graph with real edge weights, let |V | = n and
|E| = m. There exists a deterministic algorithm that given G and parameters f = O( logn

log logn )
and 0 < α < 1 constructs an f -sensitivity distance oracle in Õ(mn4−α) time. Given a query
(s, t, F ) with s, t ∈ V and F ⊆ E ∪ V, |F | ≤ f being a set of at most f edges or vertices
(failures), the deterministic query algorithm computes in Õ(n2−2(1−α)/f ) time the distance
from s to t in the graph G \ F .

We remark that while our focus in this paper is in computing distances, one may obtain
the actual shortest path in time proportional to the number of edges of the shortest paths,
using the same algorithm for obtaining the shortest paths in the replacement paths problem
[37], and in the distance sensitivity oracles case [39].

1.3 Technical Contribution and Our Derandomization Framework
Let A be a random algorithm that uses Lemma 1 for sampling a subset of vertices R ⊆ V .
We say that P = {D1, . . . , Dq} is a set of critical paths for the randomized algorithm A if A
uses the sampling Lemma 1 and it is sufficient for the correctness of algorithm A that R is
a hitting set for P (i.e., every path in P contains at least one vertex of R). According to
Lemma 2 one can derandomize the random selection of the hitting set R in time that depends
on the number of paths in P. Therefore, in order to obtain an efficient derandomization
procedure, we want to find a small set P of critical paths for the randomized algorithms.

Our main technical contribution is to show how to compute a small set of critical paths
that is sufficient to be used as input for the greedy algorithm stated in Lemma 2.

Our framework for derandomizing algorithms and data-structures that use the sampling
Lemma 1 is given in Figure 1.

1 Step 1: Prove the existence of a small set of critical paths {D1, . . . , Dq} such that
|Di| > L and show that it is sufficient for the correctness of the randomized
algorithm that the set R obtained by Lemma 1 hits all the paths D1, . . . , Dq.

2 Step 2: Find an efficient algorithm to compute the paths D1, . . . , Dq.
3 Step 3: Use a deterministic algorithm to compute a small subset R ⊆ V of vertices
such that Di ∩R 6= ∅ for every 1 ≤ i ≤ q. For example, one can use the greedy
algorithm of Lemma 2 or the blocker set algorithm of [29] to find a subset R ⊂ V of
Õ(n/L) vertices.

Figure 1 Our derandomization framework to derandomize algorithms that use the sampling
Lemma 1.

Our first main technical contribution, denoted as Step 1 in Figure 1, is proving the
existence of small sets of critical paths for the randomized replacement path algorithm of
Roditty and Zwick [37] and for the distance sensitivity oracles of Weimann and Yuster
[39]. Our second main technical contribution, denoted as Step 2 in Figure 1, is developing
algorithms to efficiently compute these small sets of critical paths.
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For the replacement paths problem, Roditty and Zwick [37] proved the existence of a
critical set of O(n2) paths, each path containing at least d

√
ne edges. Simply applying

Lemma 2 on this set of paths requires Õ(n2.5) time which is too much, and it is also not
clear from their algorithm how to efficiently compute this set of critical paths. As for Step 1,
we prove the existence of a small set of O(n) critical paths, each path contains d

√
ne edges,

and for Step 2, we develop an efficient algorithm that computes this set of critical paths in
Õ(m

√
n) time.

For the problem of distance sensitivity oracles, Weimann and Yuster [39] proved the
existence of a critical set of O(n2f+3) paths, each path containing n(1−α)/f edges (where
0 < α < 1). Simply applying Lemma 2 on this set of paths requires Õ(n2f+3+(1−α)/f ) time
which is too much, and here too, it is also not clear from their algorithm how to efficiently
and deterministically compute this set of critical paths. As for Step 1, we prove the existence
of a small set of O(n2+ε) critical paths, each path contains n(1−α)/f edges, and for Step 2,
we develop an efficient deterministic algorithm that computes this set of critical paths in
Õ(mn1+ε) time.

For Step 3, we use the folklore greedy deterministic algorithm denoted here by
GreedyPivotsSelection({D1, . . . , Dq}). Given as input the paths D1, . . . , Dq, each path
contains at least L vertices, the algorithm chooses a set of pivots R ⊆ V such that for every
1 ≤ i ≤ q it holds that Di ∩R 6= ∅. In addition, it holds that |R| = Õ(nL ) and the runtime of
the algorithm is Õ(qL).

The GreedyPivotsSelection algorithm works as follows. Let P = {D1, . . . , Dq}. Starting
with R← ∅, find a vertex v ∈ V which is contained in the maximum number of sets of P,
add it to R and remove all the sets that contain v from P. Repeat this process until P = ∅.

I Lemma 6. Let 1 ≤ L ≤ n and 1 ≤ q < poly(n) be two integers. Let D1, . . . , Dq ⊆ V be
paths satisfying |Di| ≥ L for every 1 ≤ i ≤ q. The algorithm GreedyPivotsSelection({D1, . . . , Dq})
finds in Õ(qL) time a set R ⊂ V such that for every 1 ≤ i ≤ q it holds that R ∩Di 6= ∅ and
|R| = O(n log q

L ) = Õ(n/L).

Proof. We first prove that for every 1 ≤ i ≤ q it holds that R∩Di 6= ∅ and |R| = O(n log q
L ) =

Õ(n/L).
When the algorithm terminates then every set D ∈ D contains at least one of the vertices

of R, as otherwise D would have contained the sets which are disjoint from R and the
algorithm should have not finished since D 6= ∅.

For every vertex v ∈ V , let c(v) be a variable which denotes, at every moment of the
algorithm, the number of sets in D which contain v.

Denote by Di the set D after i iterations. Let D0 = {D1, . . . , Dq} be the initial set
D given as input to the algorithm, then |D0| = q. We claim that the process terminates
after at most Õ(n/L) iterations, and since at every iteration we add one vertex v to R,
it follows that |R| = Õ(n/L). Recall that D contains sets of size at least L. Hence,
Σv∈V c(v) ≥ |D|L. It follows that the average number of sets that a vertex v ∈ V belongs to
is: avg = Σv∈V c(v)

n ≥ |D|Ln . By the pigeonhole principle, the vertex vi = arg maxv∈V {c(v)}
belongs to at least |D|Ln sets of D. Therefore, |Di| = |{D ∈ D|vi ∈ D}| ≥ |D|Ln . At iteration
i we remove from D the sets Di, so in each iteration we decrease the size of D by at least a
factor of (1−L/n). After the ith iteration, the size of D is at most (1−L/n)i|D0|. Therefore,
after the i = (n/L) ln q + 1 iteration, the size of D is at most (1− L/n)i|D0| < 1/q|D0| ≤ 1,
where the last inequality holds since |D0| = q. It follows that after (n/L) ln q + 1 iterations
we have D = ∅.

At each iteration we add one vertex vi to the set R, thus the size of the set R is Õ(n/L).
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Next we describe an implementation of the GreedyPivotsSelection algorithm (see Figure
2 for pseudo-code). The first thing we do is keep only an arbitrary subset of L vertices from
every D ∈ D so that every set D ∈ D contains exactly L vertices.

We implement the algorithm GreedyPivotsSelection as follows. During the runtime of
the algorithm we maintain a counter c(v) for every vertex v ∈ V which equals the number of
sets in D that contain v. During the initialization of the algorithm, we construct a subset of
vertices V ′ ⊆ V which contains all the vertices in all the paths D, and compute we compute
c(v) directly, first by setting ∀v∈V ′c(v)← 0 and then we scan all the sets D ∈ D and every
vertex v ∈ D and increase the counter c(v) ← c(v) + 1. After this initialization we have
c(v) = |{D ∈ D|v ∈ D}| which is the number of sets of D that contain v. We further initialize
a binary search tree BST and insert every vertex v ∈ V ′ into BST with the key c(v), and
initialize R← ∅. We also create a list L(v) for every vertex v ∈ V ′ which contains pointers
to the sets D ∈ D that contain v. Hence, L(v) = {D ∈ D|v ∈ D} and c(v) = |L(v)|.

To obtain the set R we run the following loop. While D 6= ∅ we find the vertex v ∈ V ′
which is contained in the maximum number of paths of D and add v to R. The vertex
v is computed in O(logn) time by extracting the element in BST whose key is maximal.
Then we remove from D all the sets which contain v (these are exactly the sets L(v)) and
we update the counters c(v) by scanning every set D ∈ L(v) and every vertex u ∈ D and
decreasing the counter c(u) by one (we also update the key of u in BST to the counter c(u)).

We analyse the runtime of this greedy algorithm. Computing the subset of vertices
V ′ ⊆ V and setting all the values c(v) ← 0 at the beginning for every v ∈ V ′ takes Õ(qL)
time. Computing the values c(v) = |{D ∈ D|v ∈ D}| takes O(qL) time as we loop over all
the q sets D ∈ D and for every D we loop over the exactly L vertices v ∈ D and increase
the counter c(v) by one. Initializing the binary search tree BST and inserting to it every
vertex v ∈ V ′ with key c(v) takes Õ(|V ′|) = Õ(qL) time, and all the extract-max operations
on BST take additional O(|V ′|) = Õ(qL) time. The total time of operations of the form
c(v)← c(v)− 1 is O(qL) as this is the sum of all values c(v) at the beginning and each such
operation is handled in O(logn) time by updating the key of the vertex v in BST to c(v)− 1.
The total time for checking the lists L(v) of all vertices chosen to R is at most O(qL), as
this is the sum of sizes of all sets L(v). Therefore, the total running time is Õ(qL). J

1.4 Related Work - the Blocker Set Algorithm of King

We remark that the GreedyPivotsSelection algorithm is similar to the blocker set algorithm
described in [29] for finding a hitting set for a set of paths. The blocker set algorithm was
used in [29] to develop sequential dynamic algorithms for the APSP problem. Additional
related work is that of Agarwal et. al. [1]. They presented a deterministic distributed
algorithm to compute APSP in an edge-weighted directed or undirected graph in Õ(n3/2)
rounds in the Congest model by incorporating a deterministic distributed version of the
blocker set algorithm.

While our derandomization framework uses the greedy algorithm (or the blocker set
algorithm) to find a hitting set of vertices for a critical set of paths D1, . . . , Dq, we stress
that our main contribution are the techniques to reduce the number of sets q the greedy
algorithm must hit (Step 1), and the algorithms to efficiently compute the sets D1, . . . , Dq

(Step 2). These techniques are our main contribution, which enable us to use the greedy
algorithm (or the blocker set algorithm) for a wider range of problems. Specifically, these
techniques allow us to derandomize the best known random algorithms for the replacement
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Algorithm: GreedyPivotsSelection({D1, . . . , Dq})
/* Initialization */

1 V ′ ← ∅
2 for D ∈ D do
3 for v ∈ D do
4 V ′ ← V ′ ∪ {v}
5 end
6 end
7 for v ∈ V ′ do
8 c(v)← 0, L(v)← ∅
9 end

10 for D ∈ D do
11 for v ∈ D do
12 c(v)← c(v) + 1
13 L(v).append(D) /* Append the list L(v) with a pointer to the set

D */
14 end
15 end
16 BST ← Empty-Binary-Search-Tree()
17 for v ∈ V ′ do
18 Insert v to the binary-search BST with the key c(v).
19 end
20 R← ∅.

/* Loop Invariant: c(v) = |{D ∈ D|v ∈ D}| */
21 while D 6= ∅ do
22 v = BST.Extract−Max() /* v is the vertex in BST whose key c(v)

is maximal. */
23 R← R ∪ {v}
24 for D ∈ L(v) do
25 if D ∈ D then
26 for u ∈ D do
27 BST .remove(u)
28 c(u)← c(u)− 1
29 Insert u to the binary-search BST with the key c(u).
30 end
31 D.delete(D)
32 end
33 end
34 end

Figure 2 Algorithm GreedyPivotsSelection
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paths problem and distance sensitivity oracles. We believe that our techniques can also be
leveraged for additional related problems which use a sampling lemma similar to Lemma 1.

1.5 More Related Work
We survey related work for the replacement paths problem and distance sensitivity oracles.

The replacement paths problem. The replacement paths problem is motivated by
several different applications and has been extensively studied in the last few decades (see
e.g. [34, 26, 25, 35, 42, 20, 37, 18, 30, 6]). It is well motivated by its own right from
the fault-tolerance perspective. In many applications it is desired to find algorithms and
data-structures that are resilient to failures. Since links in a network can fail, it is important
to find backup shortest paths between important vertices of the graph.

Furthermore, the replacement paths problem is also motivated by several applications.
First, the fastest algorithms to compute the k simple shortest paths between s and t in
directed graphs executes k iterations of the replacement paths between s and t in total
Õ(mnk) time (see [43, 31]). Second, considering path auctions, suppose we would like to find
the shortest path from s to t in a directed graph G, where links are owned by selfish agents.
Nisan and Ronen [36] showed that Vickrey Pricing is an incentive compatible mechanism,
and in order to compute the Vickery Pricing of the edges one has to solve the replacement
paths problem. It was raised as an open problem by Nisan and Ronen [36] whether there
exists an efficient algorithm for solving the replacement paths problem. In biological sequence
alignment [10] replacement paths can be used to compute which pieces of an alignment are
most important.

The replacement paths problem has been studied extensively, and by now near optimal
algorithms are known for many cases of the problem. For instance, the case of undirected
graphs admits deterministic near linear solutions (see [34, 26, 25, 35]). In fact, Lee and
Lu present linear O(n+m)-time algorithms for the replacement-paths problem in on the
following classes of n-node m-edge graphs: (1) undirected graphs in the word-RAM model
of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4)
directed acyclic graphs.

A natural question is whether a near linear time algorithm is also possible for the directed
case. Vassilevska Williams and Williams [42] showed that such an algorithm is essentially
not possible by presenting conditional lower bounds. More precisely, Vassilevska Williams
and Williams [42] showed a subcubic equivalence between the combinatorial all pairs shortest
paths (APSP) problem and the combinatorial replacement paths problem. They proved that
there exists a fixed ε > 0 and an O(n3−ε) time combinatorial algorithm for the replacement
paths problem if and only if there exists a fixed δ > 0 and an O(n3−δ) time combinatorial
algorithm for the APSP problem. This implies that either both problems admit truly subcubic
algorithms, or neither of them does. Assuming the conditional lower bound that no subcubic
APSP algorithm exists, then the trivial algorithm of computing Dijkstra from s in every
graph G \ {e} for every edge e ∈ PG(s, t), which takes O(mn+ n2 logn) time, is essentially
near optimal.

The near optimal algorithms for the undirected case and the conditional lower bounds
for the directed case seem to close the problem. However, it turned out that if we consider
the directed case with bounded edge weights then the picture is not yet complete.

For instance, if we assume that the graph is directed with integer weights in the range
[−M,M ] and allow algebraic solutions (rather than combinatorial ones), then Vassilevska
Williams presented [40] an Õ(Mnω) time algebraic randomized algorithm for the replacement
paths problem, where 2 ≤ ω < 2.373 is the matrix multiplication exponent, whose current
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best known upper bound is 2.3728639 ([32, 41, 14]).
Bernstein presented in [6] a (1+ε)-approximate deterministic replacement paths algorithm

which is near optimal (whose runtime is Õ((m log(nC/c)/ε), where C is the largest edge
weight in the graph and c is the smallest edge weight).

For unweighted directed graphs the gap between randomized and deterministic solutions
is even larger for sparse graphs. Roditty and Zwick [37] presented a randomized algorithm
whose runtime is Õ(m

√
n) time for the replacement paths problem for unweighted directed

graphs. Vassilevska Williams and Williams [42] proved a subcubic equivalence between the
combinatorial replacement paths problem in unweighted directed graphs and the combinatorial
boolean multiplication (BMM) problem. They proved that there exists some fixed ε > 0 such
that the combinatorial replacement paths problem can be solved in O(mn1/2−ε) time if and
only if there exists some fixed δ > 0 such that the combinatorial boolean matrix multiplication
(BMM) can be solved in subcubic O(n3−δ) time. Giving a subcubic combinatorial algorithm
to the BMM problem, or proving that no such algorithm exists, is a long standing open
problem. This implies that either both problems can be polynomially improved, or neither
of them does. Hence, assuming the conditional lower bound of combinatorial BMM, the
randomized algorithm of Roditty and Zwick [37] is near optimal.

In the deterministic regime no algorithm for the directed case is known that is asymptotic-
ally better (up to ploylog) than invoking APSP algorithm. Interestingly, in the fault-tolerant
and the dynamic settings many of the existing algorithms are randomized, and for many
of the problems there is a polynomial gap between the best randomized and deterministic
algorithms (see e.g. sensitive distance oracles [21], dynamic shortest paths [22, 7], dynamic
strongly connected components [23, 24, 12], dynamic matching [38, 3], and many more).
Randomization is a powerful tool in the classic setting of graph algorithms with full knowledge
and is often used to simplify the algorithm and to speed-up its running time. However,
physical computers are deterministic machines, and obtaining true randomness can be a hard
task to achieve. A central line of research is focused on the derandomization of algorithms
that relies on randomness.

Our main contribution is a derandomization of the replacement paths algorithm of [37]
for the case of unweighted directed graphs. After more than a decade we give the first
deterministic algorithm for the replacement paths problem, whose runtime is Õ(m

√
n). Our

deterministic algorithm matches the runtime of the randomized algorithm, which is near
optimal assuming the conditional lower bound of combinatorial boolean matrix multiplication
[42]. In addition, to the best of our knowledge this is the first deterministic solution for the
directed case that is asymptotically better than the APSP bound.

The replacement paths problem is related to the k shortest paths problem, where the
goal is to find the k shortest paths between two vertices. Eppstein [19] solved the k shortest
paths problem for directed graphs with nonnegative edge weights in O(m+ n logn+ k) time.
However, the k shortest paths may not be simple, i.e., contain cycles. The problem of k simple
shortest paths (loopless) is more difficult. The deterministic algorithm by Yen [43] (which was
generalized by Lawler [31]) for finding k simple shortest paths in weighted directed graphs can
be implemented in O(kn(m+n logn)) time. This algorithm essentially uses in each iteration
a replacement paths algorithm. Roditty and Zwick [37] described how to reduce the problem
of k simple shortest paths into k executions of the second shortest path problem. For directed
unweighted graphs, the randomized replacement paths algorithm of Roditty and Zwick [37]
implies that the k simple shortest paths has a randomized Õ(km

√
n) time algorithm. To

the best of our knowledge no better deterministic algorithm is known than the algorithms
for general directed weighted graphs, yielding a significant gap between randomized and the
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deterministic k simple shortest paths for directed unweighted graphs. Our deterministic
replacement paths algorithm closes this gap and gives the first deterministic k simple shortest
paths algorithm for directed unweighted graphs whose runtime is Õ(km

√
n).

The best known randomized algorithm for the k simple shortest paths problem in directed
unweighted graphs takes Õ(km

√
n) time ([37]), leaving a significant gap compared to the

best known deterministic algorithm which takes Õ(kmn) time (e.g., [43], [31]). We close this
gap by proving the existence of a deterministic algorithm for computing k simple shortest
paths in unweighted directed graphs whose runtime is Õ(km

√
n).

1.6 Outline
The structure of the paper is as follows. In Section 2 we describe some preliminaries and
notations. In Section 3 we apply our framework to the replacement paths algorithm of
Roditty and Zwick [37]. In Section 4 we apply our framework to the DSO of Weimann and
Yuster for graphs with real-edge weights [39].

In order for this paper to be self-contained, a full description of the combinatorial
deterministic replacement paths algorithm is given in Section 5 and a full description of the
deterministic distance sensitivity oracles is given in Section 6.

2 Preliminaries

Let G = (V,E) be a directed weighted graph with n vertices and m edges with real edge
weights ω(·). Given a path P in G we define its weight ω(P ) = Σe∈E(P )ω(e).

Given s, t ∈ V , let PG(s, t) be a shortest path from s to t in G and let dG(s, t) = ω(PG(s, t))
be its length, which is the sum of its edge weights. Let |PG(s, t)| denote the number of
edges along PG(s, t). Note that for unweighted graphs we have |PG(s, t)| = dG(s, t). When
G is known from the context we sometimes abbreviate PG(s, t), dG(s, t) with P (s, t), d(s, t)
respectively.

We define the path concatenation operator ◦ as follows. Let P1 = (x1, x2, . . . , xr)
and P2 = (y1, y2, . . . , yt) be two paths. Then P = P1 ◦ P2 is defined as the path P =
(x1, x2, . . . , xr, y1, y2, . . . , yt), and it is well defined if either xr = y1 or (xr, y1) ∈ E.

For a graph H we denote by V (H) the set of its vertices, and by E(H) the set of its
edges. When it is clear from the context, we abbreviate e ∈ E(H) by e ∈ H and v ∈ V (H)
by v ∈ H.

Let P be a path which contains the vertices u, v ∈ V (P ) such that u appears before v
along P . We denote by P [u..v] the subpath of P from u to v.

For every edge e ∈ PG(s, t) a replacement path PG(s, t, e) for the triple (s, t, e) is a
shortest path from s to t avoiding e. Let dG(s, t, e) = ω(PG(s, t, e)) be the length of the
replacement path PG(s, t, e).

We will assume, without loss of generality, that every replacement path PG(s, t, e) can
be decomposed into a common prefix CommonPrefs,t,e with the shortest path PG(s, t), a
detour Detours,t,e which is disjoint from the shortest path PG(s, t) (except for its first vertex
and last vertex), and finally a common suffix CommonSuffs,t,e which is common with the
shortest path PG(s, t). Therefore, for every edge e ∈ PG(s, t) it holds that PG(s, t, e) =
CommonPrefs,t,e ◦Detours,t,e ◦ CommonSuffs,t,e (the prefix and/or suffix may be empty).

Let F ⊆ V ∪E be a set of vertices and edges. We define the graph G \F = (V \F,E \F )
as the graph obtained from G by removing the vertices and edges F . We define a replacement
path PG(s, t, F ) as a shortest path from s to t in the graph G \ F , and let dG(s, t, F ) =
w(PG(s, t, e)) be its length.
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3 Deterministic Replacement Paths in Õ(m
√

n) Time - an Overview

In this section we apply our framework from Section 1.3 to the replacement paths algorithm
of Roditty and Zwick [37]. A full description of the deterministic replacement paths algorithm
is given in Section 5.

The randomized algorithm by Roddity and Zwick as described in [37] takes Õ(m
√
n)

expected time. They handle separately the case that a replacement path has a short detour
containing at most d

√
ne edges, and the case that a replacement path has a long detour

containing more than d
√
ne edges. The first case is solved deterministically. The second case

is solved by first sampling a subset of vertices R according to Lemma 1, where each vertex
is sampled uniformly independently at random with probability c lnn/

√
n for large enough

constant c > 0. Using this uniform sampling, it holds with high probability (of at least
1− n−c+2) that for every long triple (s, t, e) (as defined hereinafter), the detour Detours,t,e
of the replacement path PG(s, t, e) contains at least one vertex of R.

I Definition 7. Let s, t ∈ V, e ∈ PG(s, t). The triple (s, t, e) is a long triple if every
replacement path from s to t avoiding e has its detour part containing more than d

√
ne edges.

Note that in Definition 7 we defined (s, t, e) to be a long triple if every replacement path
from s to t avoiding e has a long detour (containing more than d

√
ne edges). We could have

defined (s, t, e) to be a long triple even if at least one replacement path from s to t avoiding e
has a long detour (perhaps more similar to the definitions in [37]), however we find Definition
7 more convenient for the following reason. If (s, t, e) has a replacement path whose detour
part contains at most d

√
ne edges, then the algorithm of [37] for handling short detours finds

deterministically a replacement path for (s, t, e). Hence, we only need to find the replacement
paths for triples (s, t, e) for which every replacement path from s to t avoiding e has a long
detour, and this is the case for which we define (s, t, e) as a long triple.

It is sufficient for the correctness of the replacement paths algorithm that the following
condition holds; For every long triple (s, t, e) the detour Detours,t,e of the replacement path
PG(s, t, e) contains at least one vertex of R. As the authors of [37] write, the choice of the
random set R is the only randomization used in their algorithm. To obtain a deterministic
algorithm for the replacement paths problem and to prove Theorem 3, we prove the following
deterministic alternative of Lemma 2.

I Lemma 8 (Our derandomized version of Lemma 2 for the replacement paths algorithm).
There exists an Õ(m

√
n) time deterministic algorithm that computes a set R ⊆ V of Õ(

√
n)

vertices, such that for every long triple (s, t, e) there exists a replacement path PG(s, t, e)
whose detour part contains at least one of the vertices of R.

Following the above description, in order to prove Theorem 3, that there exists an Õ(m
√
n)

deterministic replacement paths algorithm, it is sufficient to prove the derandomization
Lemma 8, we do so in the following sections.

3.1 Step 1: the Method of Reusing Common Subpaths - Defining the
Set Dn

In this section we prove the following lemma.

I Lemma 9. There exists a set Dn of at most n paths, each path of length exactly d
√
ne

with the following property; for every long triple (s, t, e) there exists a path D ∈ Dn and a
replacement path PG(s, t, e) such that D is contained in the detour part of PG(s, t, e).
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In order to define the set of paths Dn and prove Lemma 9 we need the following definitions.
Let G′ = G \E(PG(s, t)) be the graph obtained by removing the edges of the path PG(s, t)
from G. For two vertices u and v, let dG′(u, v) be the distance from u to v in G′.

We use the following definitions of the index ρ(x), the set of vertices V√n and the set of
paths Dn.

I Definition 10 (The index ρ(x)). Let PG(s, t) =< v0, . . . , vk > and let X = {x ∈
V | ∃0≤i≤k dG′(vi, x) = d

√
ne} be the subset of all the vertices x ∈ V such that there

exists at least one index 0 ≤ i ≤ k with dG′(vi, x) = d
√
ne.

For every vertex x ∈ X we define the index 0 ≤ ρ(x) ≤ k to be the minimum index such
that dG′(vρ(x), x) = d

√
ne.

I Definition 11 (The set of vertices V√n). We define the set of vertices V√n = {x ∈
X|∀i<ρ(x)dG′(vi, x) > d

√
ne}. In other words, V√n is the set of all vertices x ∈ X such that

for all the vertices vi before vρ(x) along PG(s, t) it holds that dG′(vi, x) > d
√
ne.

I Definition 12 (A set of paths Dn). For every vertex x ∈ V√n, let D(x) be an arbitrary
shortest path from vρ(x) to x in G′ (whose length is d

√
ne as dG′(vρ(x), x) = d

√
ne). We

define Dn = {D(x)|x ∈ V√n}.

Note that while V√n is uniquely defined (as it is defined according to distances between
vertices) the set of paths Dn is not unique, as there may be many shortest paths from vρ(x)
to x in G′, and we take D(x) = PG′(vρ(x), x) to be an arbitrary such shortest path.

The basic intuition for the method of reusing common subpaths is as follows. Let
PG(s, t, e1), . . . , PG(s, t, er) be arbitrary replacement paths such that x is the (d

√
ne+ 1)th

vertex along the detours of all the replacement path PG(s, t, e1), . . . , PG(s, t, er). Then one can
construct replacement paths P ′G(s, t, e1), . . . , P ′G(s, t, er) such that the subpath D(x) ∈ Dn is
contained in all these replacement paths. Therefore, the subpath D(x) is reused as a common
subpath in many replacement paths. We utilize this observation in the following proof of
Lemma 9.

Proof of Lemma 9. Obviously, the set Dn described in Definition 12 contains at most n
paths, each path is of length exactly d

√
ne.

We prove that for every long triple (s, t, e) there exists a path D ∈ Dn and a replacement
path P ′(s, t, e) s.t. D is contained in the detour part of P ′(s, t, e).

Let PG(s, t, e) be a replacement path for (s, t, e). Since (s, t, e) is a long triple then the
detour part Detours,t,e of PG(s, t, e) contains more than d

√
ne edges. Let x ∈ Detours,t,e be

the (d
√
ne+ 1)th vertex along Detours,t,e, and let vj be the first vertex of Detours,t,e. Let P1

be the subpath of Detours,t,e from vj to x and let P2 be the subpath of PG(s, t, e) from x to
t. In other words, PG(s, t, e) =< v0, . . . , vj > ◦P1 ◦ P2. Since Detours,t,e contains more than
d
√
ne edges and is disjoint from PG(s, t) except for the first and last vertices of Detours,t,e

and P1 ⊂ Detours,t,e it follows that P1 is disjoint from PG(s, t) (except for the vertex vj). In
particular, since P1 is a shortest path in G \ {e} that is edge-disjoint from PG(s, t), then P1
is also a shortest path in G′ = G \ E(PG(s, t)). We get that dG′(vj , x) = |P1| = d

√
ne.

We prove that j = ρ(x) and x ∈ V√n. As we have already proved that dG′(vj , x) = d
√
ne,

we need to prove that for every 0 ≤ i < j it holds that dG′(vi, x) > d
√
ne. Assume by

contradiction that there exists an index 0 ≤ i < j such that dG′(vi, x) ≤ d
√
ne. Then the

path P̂ =< v0, . . . , vi > ◦PG′(vi, x) ◦ P2 is a path from s to t that avoids e and its length is:
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|P̂ | = | < v0, . . . , vi > ◦PG′(vi, x) ◦ P2|
≤ i+ d

√
ne+ |P2|

< j + d
√
ne+ |P2|

= |PG(s, vj) ◦ P1 ◦ P2|
= |PG(s, t, e)|

This means that the path P̂ is a path from s to t in G \ {e} and its length is shorter than
the length of the shortest path PG(s, t, e) from s to t in G \ {e}, which is a contradiction.
We get that dG′(vj , x) = d

√
ne and for every 0 ≤ i < j it holds that dG′(vi, x) > d

√
ne.

Therefore, according to Definitions 10 and 11 it holds that j = ρ(x) and x ∈ V√n.
Let D(x) ∈ Dn, then according to Definition 12, D(x) is a shortest path from vρ(x) to x

in G′. We define the path P ′(s, t, e) =< v0, . . . , vρ(x) > ◦D(x) ◦ P2. It follows that P ′(s, t, e)
is a path from s to t that avoids e and |P ′(s, t, e)| = | < v0, . . . , vρ(x) > ◦D(x) ◦ P2| =
ρ(x) + d

√
ne+ |P2| = |PG(s, t, e)| = dG(s, t, e). Hence, P ′(s, t, e) is a replacement path for

(s, t, e) such that D(x) ⊂ P ′(s, t, e) so the lemma follows. J

3.2 Step 2: the Method of Decremental Distances from a Path -
Computing the Set Dn

In this section we describe a decremental algorithm that enables us to compute the set of
paths Dn in Õ(m

√
n) time, proving the following lemma.

I Lemma 13. There exists a deterministic algorithm for computing the set of paths Dn in
Õ(m

√
n) time.

Our algorithm for computing the set of path Dn is a variant of the decremental SSSP
(single source shortest paths) algorithm of King [29]. Our variant of the algorithm is used to
find distances of vertices from a path rather than from a single source vertex as we define
below.

Overview of the Deterministic Algorithm for Computing Dn in Õ(m
√
n) Time.

In the following description let P = PG(s, t). Consider the following assignment of weights
ω to edges of G. We assign weight ε for every edge e on the path P , and weight 1 for all
the other edges where ε is a small number such that 0 < ε < 1/n. We define a graph
Gw = (G,w) as the weighted graph G with edge weights ω. We define for every 0 ≤ i ≤ k
the graph Gi = G \ {vi+1, . . . , vk} and the path Pi = P \ {vi+1, . . . , vk}. We define the graph
Gwi = (Gi, w) as the weighted graph Gi with edge weights ω.

The algorithm computes the graph Gw by simply taking G and setting all edge weights of
PG(s, t) to be ε (for some small ε such that ε < 1/n) and all other edge weights to be 1. The
algorithm then removes the vertices of PG(s, t) from Gw one after the other (starting from
the vertex that is closest to t). Loosely speaking after each vertex is removed, the algorithm
computes the distances from s in the current graph. In each such iteration, the algorithm
adds to V w√

n
all vertices such that their distance from s in the current graph is between d

√
ne

and d
√
ne + 1. We will later show that at the end of the algorithm we have V w√

n
= V√n.

Unfortunately, we cannot afford running Dijkstra after the removal of every vertex of PG(s, t)
as there might be n vertices on PG(s, t). To overcome this issue, the algorithm only maintains
nodes at distance at most d

√
ne+ 1 from s. In addition, we observe that to compute the

SSSP from s in the graph after the removal of a vertex vi we only need to spend time on
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nodes such that their shortest path from s uses the removed vertex. Roughly speaking, for
these nodes we show that their distance from s rounded down to the closest integer must
increase by at least 1 as a result of the removal of the vertex. Hence, for every node we spend
time on it in at most d

√
ne+ 1 iterations until its distance from s is bigger than d

√
ne+ 1.

As we will show later this will yield our desired running time.
In Section 5.4 we give a formal description and analysis of the algorithm and prove

Lemma 13.
Proof of Theorem 3. We summarize the Õ(m

√
n) deterministic replacement paths

algorithm and outline the proof of Theorem 3. First, compute in Õ(m
√
n) time the set

of paths Dn as in Lemma 13. Given Dn, the deterministic greedy selection algorithm
GreedyPivotsSelection(Dn) (as described in Lemma 2) computes a set R ⊂ V of Õ(

√
n)

vertices in Õ(n
√
n) time with the following property; every path D ∈ Dn contains at least

one of the vertices of R. Theorem 3 follows from Lemmas 8, 9 and 13.

4 Deterministic Distance Sensitivity Oracles - an Overview

In this section we apply our framework from Section 1.3 to the combinatorial distance
sensitivity oracles of Weimann and Yuster [39]. A full description of the deterministic
combinatorial distance sensitivity oracles is given in Section 6.

Let 0 < ε < 1 and 1 ≤ f = O( logn
log logn ) be two parameters. In [39], Weimann and Yuster

considered the following notion of intervals (note that in [39] they use a parameter 0 < α < 1
and we use a parameter 0 < ε < 1 such that ε = 1− α). They define an interval of a long
simple path P as a subpath of P consisting of nε/f consecutive vertices, so every simple
path induces less than n (overlapping) intervals. For every subset F ⊂ E of at most f edges,
and for every pair of vertices u, v ∈ V , let PG(u, v, F ) be a shortest path from u to v in
G \ F . The path PG(u, v, F ) induces less than n (overlapping) intervals. The total number
of possible intervals is less than O(n2f+3) as each one of the (at most) O(n2f+2) possible
queries (u, v, F ) corresponds to a shortest path PG(u, v, F ) that induces less than n intervals.

I Definition 14. Let Df be defined as all the intervals (subpaths containing nε/f edges) of
all the replacement paths PG(s, t, F ) for every s, t ∈ V, F ⊆ E ∪ V with |F | ≤ f .

Weimann and Yuster apply Lemma 1 to find a set R ⊆ V of Õ(n1−ε/f ) vertices that
hit w.h.p. all the intervals Df . According to these bounds (that Df contains O(n2f+3)
paths, each containing exactly nε/f edges) applying the greedy algorithm to obtain the set R
deterministically according to Lemma 2 takes Õ(n2f+3+ε/f ) time, which is very inefficient.

In this section we assume that all weights are non-negative (so we can run Dijkstra’s
algorithm) and that shortest paths are unique, we justify these assumptions in Section 6.4.

4.1 Step 1: the Method of Using Fault-Tolerant Trees to Significantly
Reduce the Number of Intervals

In Lemma 15 we prove that the set of intervals Df actually contains at most O(n2+ε) unique
intervals, rather than the O(n2f+3) naive upper bound mentioned above. From Lemmas 15
and 2 it follows that the GreedyPivotsSelection(Df ) finds in Õ(n2+ε+ε/f ) time the subset
R ⊆ V of Õ(n1−ε/f ) vertices that hit all the intervals Df . In Section 6.3.4 we further reduce
the time it takes for the greedy algorithm to compute the set of pivots R to Õ(n2+ε).

I Lemma 15. |Df | = O(n2+ε).
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In order to prove Lemma 15 we describe the fault-tolerant trees data-structure, which is
a variant of the trees which appear in Appendix A of [11].

I Definition 16. Let PLG(s, t, F ) be the shortest among the s-to-t paths in G \ F that
contain at most L edges and let dLG(s, t, F ) = ω(PLG(s, t, F )). In other words, dLG(s, t, F ) =
min{ω(P ) | P is an s− to− t path on at most L edges}. If there is no path from s to t in
G \ F containing at most L edges then we define PLG(s, t, F ) = ∅ and dLG(s, t, F ) =∞. For
F = ∅ we abbreviate PLG(s, t, ∅) = PLG(s, t) as the shortest path from s to t that contains at
most L edges, and dLG(s, t) = dLG(s, t, ∅) as its length.

Let s, t ∈ V be vertices and let L, f ≥ 1 be fixed integer parameters, we define the trees
FTL,f (s, t) as follows.

In the root of FTL,f (s, t) we store the path PLG(s, t) (and its length dLG(s, t)), and also
store the vertices and edges of PLG (s, t) in a binary search tree BSTL(s, t); If PLG (s, t) = ∅
then we terminate the construction of FTL,f (s, t).
For every edge or vertex a1 of PLG(s, t) we recursively build a subtree FTL,f (s, t, a1) as
follows. Let PLG (s, t, {a1}) be the shortest path from s to t that contains at most L edges
in the graph G\{a1}. Then in the subtree FTL,f (s, t, a1) we store the path PLG (s, t, {a1})
(and its length dLG(s, t, {a1})) and we also store the vertices and edges of PLG (s, t, {a1}) in
a binary search tree BSTL(s, t, a1); If PLG (s, t, {a1}) = ∅ we terminate the construction of
FTL,f (s, t, a1). If f > 1 then for every vertex or edge a2 in PLG(s, t, {a1}) we recursively
build the subtree FTL,f (s, t, a1, a2) as follows.
For the recursive step, assume we want to construct the subtree FTL,f (s, t, a1, . . . , ai). In
the root of FTL,f (s, t, a1, . . . , ai) we store the path PLG(s, t, {a1, . . . , ai}) (and its length
dLG(s, t, {a1, . . . , ai})) and we also store the vertices and edges of PLG (s, t, {a1, . . . , ai}) in a
binary search tree BSTL(s, t, a1, . . . , ai). If PLG(s, t, {a1, . . . , ai}) = ∅ then we terminate
the construction of FTL,f (s, t, a1, . . . , ai). If i < f then for every vertex or edge ai+1 in
PLG(s, t, {a1, . . . , ai})) we recursively build the subtree FTL,f (s, t, a1, . . . , ai, ai+1).

Observe that there are two conditions in which we terminate the recursive construction
of FTL,f (s, t, a1, . . . , ai):

Either i = f in which case FTL,f (s, t, a1, . . . , af ) is a leaf node of FTL,f (s, t) and we
store in the leaf node FTL,f (s, t, a1, . . . , af ) the path PLG(s, t, {a1, . . . , af}).
Or there is no path from s to t in G \ {a1, . . . , ai} that contains at most L edges and then
FTL,f (s, t, a1, . . . , ai) is a leaf vertex of FTL,f (s, v) and we store in it PLG (s, t, {a1, . . . , ai}) =
∅.

Querying the tree FTL,f (s, t). Given a query (s, t, F ) such that F ⊂ V ∪ E with
|F | = f we would like to compute dLG(s, t, F ) using the tree FTL,f (s, t).

The query procedure is as follows. Let PLG(s, t) be the path stored in the root of
FTL,f (s, t) (if the root of FTL,f (s, t) contains ∅ then we output that dLG(s, t, F ) = ∞).
First we check if PLG(s, t) ∩ F = ∅ by checking if any of the elements a1 ∈ F appear in
BSTL(s, t) (which takes O(logL) time for each element a1 ∈ F ). If PLG(s, t) ∩ F = ∅ we
output dLG(s, t, F ) = dLG(s, t) (as PLG (s, t) does not contain any of the vertices or edges in F ).
Otherwise, let a1 ∈ PLG(s, t) ∩ F .

We continue the search similarly in the subtree FTL,f (s, t, a1) as follows. Let PLG (s, t, {a1})
be the path stored in the root of FTL,f (s, t, a1) (if the root of FTL,f (s, t, a1) contains ∅ then
we output that dLG(s, t, F ) =∞). First we check if PLG(s, t, {a1}) ∩ F = ∅ by checking if any
of the elements a2 ∈ F appear in BSTL(s, t, a1) (which takes O(logL) time for each element
a2 ∈ F ). If PLG(s, t, {a1}) ∩ F = ∅ we output dLG(s, t, F ) = dLG(s, t, {a1}) (as PLG(s, t, {a1})
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does not contain any of the vertices or edges in F ). Otherwise, let a2 ∈ PLG (s, t, {a1})∩F . We
continue the search similarly in the subtrees FTL,f (s, t, a1, a2), FTL,f (s, t, a1, a2, . . . , ai) until
we either reach a leaf node which contains ∅ (and in this case we output that dLG(s, t, F ) =∞)
or we find a path PLG(s, t, {a1, . . . , ai}) such that PLG(s, t, {a1, . . . , ai}) ∩ F = ∅ and then we
output dLG(s, t, F ) = dLG(s, t, {a1, . . . , ai}).

In Section 6.1 we prove the following lemma.

I Lemma 17. Given the tree FTL,f (s, t) and a set of failures F ⊂ V ∪ E with |F | ≤ f , the
query procedure computes the distance dLG(s, t, F ) in O(f2 logL) time.

We are now ready to prove lemma 15 asserting that |Df | = O(n2+ε).

Proof of Lemma 15. Let L = nε/f and let D be the set of all the unique shortest paths
PLG(s, t, {a1, . . . , ai}) stored in all the nodes of all the trees {FTL,f (s, t)}s,t∈V (see Section
6.4 for more details on the assumption of unique shortest paths in our algorithms). Since the
number of nodes in every tree FTL,f (s, t) is at most Lf = (nε/f )f = nε, and there are O(n2)
trees (one tree for every pair of vertices s, t ∈ V ) we get that the number of nodes in all the
trees {FTL,f (s, t)}s,t∈V is O(n2+ε) and hence |D| = O(n2+ε).

We prove that Df ⊆ D. By definition, Df contains all the intervals (subpaths containing
nε/f edges) of all the replacement paths PG(s, t, F ) for every s, t ∈ V, F ⊆ E ∪ V with
|F | ≤ f . Let P ∈ Df be the unique shortest path as defined in Section 6.4, then P

is a subpath containing nε/f edges of the replacement paths PG(s, t, F ). Let u be the
first vertex of P , and let v be the last vertex of P . Then P is a shortest path from
u to v in G \ F , and since we assume that the shortest paths our algorithms compute
are unique (according to Section 6.4) then P = PG(u, v, F ) is the unique shortest path
from u to v in G \ F . Since P is assumed to be a path on exactly L = nε/f edges, then
P = PG(u, v, F ) = PLG(u, v, F ). According to the query procedure in the tree FTL,f (u, v)
and Lemma 17, if we query the tree FTL,f (u, v) with (u, v, F ) then we reach a node
FTL,f (u, v, a1, . . . , ai) which contains the path PLG(u, v, {a1, . . . , ai}) with {a1, . . . , ai} ⊆ F
such that PLG(u, v, {a1, . . . , ai}) = PLG(u, v, F ) = P is the shortest u-to-v path in G \ F .
Hence, P ∈ D and thus Df ⊆ D and |Df | ≤ |D| = O(n2+ε) J

4.2 Step 2: Efficient Construction of the Fault-Tolerant Trees -
Computing the Paths Df

Recall that we defined the trees FTL,f (u, v) with respect the parameters f (the maximum
number of failures) and L (where we search for shortest paths among paths of at most L
edges). The idea is to build the trees FTL,f (u, v) using dynamic programming having the
trees FTL−1,f (u, v) with parameters f, L− 1 as subproblems.

Assume we have already built the trees FT i,f (u, v), where u, v ∈ V, 1 ≤ i < L, we describe
how to build the trees FT i+1,f (u, v). Let (u, v, F ) be a query for which we want to compute
the distance di+1(u, v, F ) (as part of the construction of the tree FT i+1,f (u, v)). Scan all the
edges (u, z) ∈ E and query the tree FT i,f (z, v) with the set F to find the distance di(z, v, F ).
Querying the tree FT i,f (z, v) takes O(f2 log i) = O(f2 logL) time as described in Lemma
17 (note that f2 logL = Õ(1) for f ≤ logn as L ≤ n), and we run O(out-degree(u)) such
queries and take the minimum of the following equation.

di+1(u, v, F ) = min
z
{ω(u, z) + di(z, v, F ) | (u, z) ∈ E AND u, z, (u, z) 6∈ F} (1)

parenti+1(u, v, F ) = arg min
z
{ω(u, z) + di(z, v, F ) | (u, z) ∈ E AND u, z, (u, z) 6∈ F} (2)
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Note that in Equation 1 we assume that for every vertex u ∈ V it holds that G contains
the self loops (u, u) ∈ E such that ω(u, u) = 0.

So the time to compute di+1(u, v, F ) is Õ(out-degree(u)). Next, we describe how to
reconstruct the path P i+1(u, v, F ) in O(L) additional time. We reconstruct the shortest
path P i+1(u, v, F ) by simply following the (at most L) parent pointers. In more details, let
z = parenti+1(u, v, F ) be the vertex defined according to Equation 2. We reconstruct the
shortest path P i+1(u, v, F ) by concatenating (u, z) with the shortest path P i(z, v, F ) (which
we reconstruct in the same way), thus we can reconstruct P i+1(u, v, F ) edge by edge in
constant time per edge, and hence it takes O(L) time to reconstruct the path P i+1(u, v, F )
that contains at most L edges.

The tree FT i,f (u, v) contains if ≤ Lf nodes, and thus all the trees {FT i,f (u, v)} for all
i ≤ L, u, v ∈ V contain O(n2Lf+1) nodes together.

In each such node we compute the distance di(u, v, {a1, . . . , aj}) in Õ(out-degree(u)) time
and reconstruct the path P i(u, v, {a1, . . . , aj}) in additional O(L) time. Theretofore, com-
puting all the distances di(u, v, {a1, . . . , aj}) and all the paths P i(u, v, {a1, . . . , aj}) in all the
nodes of all the trees {FT i,f (u, v)}u,v∈V,1≤i≤L takes Õ(

∑
i≤L,u,v∈V L

f (out-degree(u) + L)) =
Õ(mnLf+1 + n2Lf+2) time. substituting L = Õ(nε/f ) we get an algorithm to compute the
trees {FTL,f (u, v)}u,v∈V in Õ(mn1+ε+ε/f + n2+ε+2ε/f ) time.

This proves the following Lemma.

I Lemma 18. One can deterministically construct the trees FTL,f (s, t) for every s, t ∈ V
in Õ(mn1+ε+ε/f + n2+ε+2ε/f ) time.

In Section 6.3 we further reduce the runtime to Õ(mn1+ε) by using dynamic programming
only for computing the first f − 1 levels of the trees FTL,f (s, t) and then applying Dijkstra
in a sophisticated manner to compute the last layer of the trees FTL,f (s, t). In addition,
we also boost-up the runtime of the greedy pivots selection algorithm from Õ(n2+ε+ε/f ) to
Õ(n2+ε) time.

5 Deterministic Replacement Paths Algorithm

In this section we add the missing parts of the Õ(m
√
n) time deterministic replacement

paths algorithm, derandomizing the replacement paths algorithm of Roddity and Zwick [37].
Recall the notion of a long triple (s, t, e) as in Definition 7. Let s, t ∈ V, e ∈ PG(s, t), the
triple (s, t, e) is a long triple if for every replacement path from s to t avoiding e has its
detour part containing more than d

√
ne edges.

In order for this paper to be self-contained, let us start by describing the randomized
Õ(m

√
n) replacement paths algorithm of Roditty and Zwick [37].

5.1 The Randomized Õ(m
√

n) Replacement Paths Algorithm of
Roditty and Zwick - a Summary

The algorithm by Roddity and Zwick that is described in [37] takes Õ(m
√
n) time. Their

algorithm handles separately the case that a replacement path has a short detour containing
at most d

√
ne edges, and the case that a replacement path has a long detour containing more

than d
√
ne edges. The first case is solved deterministically while the second case is solved by

a randomized algorithm as described below.
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5.1.1 Handling Short Detours
Roditty and Zwick’s algorithm finds replacement paths with short detours (containing at
most d

√
ne edges) deterministically. Let P = PG(s, t) =< v0, . . . , vk > be the shortest path

from s to t, and let G′ = G \ E(PG(s, t)) be the graph G after removing the edges of P and
let ` = b k

2
√
n
c.

As explained in Section 2, for every triple (s, t, e) ∈ V × V × E every replacement
paths PG(s, t, e) can be partitioned into a common prefix CommonPrefs,t,e, a disjoint detour
Detours,t,e and a common suffix CommonSuffs,t,e. In this part of handling short detours,
we would like to find all distances dG(s, t, e) such that there exists at least one replacement
path PG(s, t, e) whose detour part Detours,t,e contains at most d

√
ne edges.

The algorithm for handling short detours has two parts. The first part, computes a table
RD[i, j] which is defined as follows. For every 0 ≤ i ≤ k and 0 ≤ j ≤ d

√
ne − 1 the entry

RD[i, j] gives the length of the shortest path in G′ (i.e., the detour) starting at vi and ending
at vi+j , if its length is at most d

√
ne, or indicates that dG′(vi, vi+j) > d

√
ne. The second

part, uses the table of detours RD to find replacement paths whose detour part contains at
most d

√
ne edges.

First part: computing the table RD. The algorithm builds an auxiliary graph
GA obtained by adding a new source vertex r to G′ and an edge (r, v2qd

√
ne) of weight

ω(r, v2qd
√
ne) = qd

√
ne for every 0 ≤ q ≤ `. The weight of all the edges E \ E(P ) is set to 1.

Then the algorithm runs Dijkstra’s algorithm from r in GA to find all the best short detours
(i.e., the shortest paths on at most d

√
ne edges from vi to vj in G′ where 1 ≤ i < j ≤ k)

that start in one of the vertices v0, v2d
√
ne, . . . , v2`d

√
ne. See Figure 3 as an illustration of the

graph GA.

𝑟

𝑣 2𝑖−2 𝑛 𝑣 2𝑖−1 𝑛 𝑣2𝑖 𝑛 𝑣(2𝑖+1) 𝑛 𝑣(2𝑖+2) 𝑛 𝑣(2𝑖+3) 𝑛

𝑖 − 1 𝑛
𝑖 𝑛 (𝑖 + 1) 𝑛

Figure 3 An illustration of the auxiliary graph GA obtained from G′ = G \E(P ) by adding the
following auxiliary edges. We add the edges (r, v2qd

√
ne) of weight qd

√
ne for every 0 ≤ q ≤ `. In

this example we present the subgraph with the vertices v(2q−2)d
√
ne, . . . , v(2q+3)d

√
ne, where we add

the edges (r, v(2q−2)d
√
ne), (r, v2qd

√
ne), (r, v(2q+2)d

√
ne) with weights (q− 1)d

√
ne, qd

√
ne, (q+ 1)d

√
ne

respectively.

In a sense, the algorithm already found all the relevant detours from about k√
n
of the

vertices. More precisely, the algorithm has found the entries RD[i, j] for 0 ≤ i ≤ k, 0 ≤
j ≤ d

√
ne − 1 such that (i mod 2d

√
ne) = 0. By running this algorithm in O(

√
n) phases

(in phase p we compute the entries of RD[i, j] such that 0 ≤ i ≤ k, 0 ≤ j ≤ d
√
ne − 1 and

(i mod 2d
√
ne) = p), we can find all the relevant detours starting from all the nodes of
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the path P . That is, we run this algorithm 2d
√
ne − 1 more times to find short detours

emanating from the other vertices of PG(s, t). In the pth phase (for 0 ≤ p ≤ 2d
√
ne − 1) find

the short detours emanating from one of the vertices vp, vp+2d
√
ne, . . . , vp+2`d

√
ne by running

the algorithm on the graph GA obtained by adding to G′ the edges (r, vp+2qd
√
ne) of weight

ω(r, vp+2qd
√
ne) = qd

√
ne for every 0 ≤ q ≤ b k−p

2d
√
nec. Store the computed detours in the table

RD.
This part takes Õ(m

√
n) time, as we run d

√
ne instances of Dijkstra’s algorithm whose

runtime is Õ(m).
The correctness of this algorithm for computing short detours is based on the following

theorem from [37].

I Theorem 19 (Theorem 1 in [37]). If dGA(r, v2qd
√
ne+j) ≤ (q+1)d

√
ne, where 0 ≤ q ≤ ` and

0 ≤ j ≤ d
√
ne − 1, then dG′(v2qd

√
ne, v2qd

√
ne+j) = dGA(r, v2qd

√
ne+j) − qd

√
ne. Otherwise,

dG′(v2qd
√
ne, v2qd

√
ne+j) > d

√
ne.

The basic idea of the proof of Theorem 19 is the following. Let 0 ≤ q ≤ ` and 0 ≤ j ≤
d
√
ne − 1. If the distance from r to v2qd

√
ne+j in GA is less than (q + 1)d

√
ne then it must

be that the shortest path from r to v2qd
√
ne+j starts with the edge (r, v2qd

√
ne). Otherwise,

if it starts with the edge (r, v2zd
√
ne) for z > q then the weight of this edge is at least

(z + 1)d
√
ne which is already larger than (q + 1)d

√
ne contradicting the assumption that

the distance from r to v2qd
√
ne+j in GA is less than (q + 1)d

√
ne. On the other hand, if

it starts with the edge (r, v2zd
√
ne) for z < q then the length of any such path is at least

zd
√
ne + dG′(v2zd

√
ne, 2qd

√
ne+ j) ≥ qd

√
ne + dG(v2zd

√
ne, 2qd

√
ne+ j) = qd

√
ne + 2(q −

z)d
√
ne ≥ (q + 1)d

√
ne where the first inequality holds since distances in G′ (which is

obtained by removing the edges of PG(s, t) from G) are only larger than distances in G, and
the last inequality holds since z < q.

Second part: using the table RD to find replacement paths whose detour part
contains at most d

√
ne edges. To find the replacement path from s to t that avoids the edge

(vi, vi+1) and uses a short detour, the algorithm finds indices i− d
√
ne ≤ a ≤ i and i < b ≤

i+d
√
ne for which the expression dG(s, va)+RD[a, b−a]+dG(vb, t) = a+RD[a, b−a]+(k−b)

is minimized. The algorithm computes it for every edge (vi, vi+1) ∈ PG(s, t) using a priority
queue Q and a sliding window approach in time Õ(m

√
n) as follows. When looking for the

shortest replacement path for the edge (vi, vi+1), the priority queue Q contains all pairs (a, b)
such that i− d

√
ne ≤ a ≤ i and i < b ≤ i+ d

√
ne. The key associated with a pair (a, b) is,

as mentioned above, a+RD[a, b− a] + (k − b). In the start of the iteration corresponding
to the edge (vi, vi+1), the algorithm inserts the pairs (i, j), for i+ 1 ≤ j ≤ i+ d

√
ne into Q,

and removes from it the pairs (j, i), for i− d
√
ne ≤ j ≤ i. A find-min operation on Q then

returns the minimal pair (a, b).
The complexity of this process is only Õ(nd

√
ne): for every vertex vi (for every 0 ≤ i ≤ n)

we perform O(
√
n) insert operations (for all values of j such that i+ 1 ≤ j ≤ i+ d

√
ne) which

is larger than the assumed distance from r to v2id
√
ne+j in GA is at most id

√
ne+ j O(

√
n)

delete operations (for all values of j such that i − d
√
ne ≤ j ≤ i), and a single find-min

operation. In total, we have O(n
√
n) operations of insert/delete/find-min which take Õ(n

√
n)

time. Thus, the total running time of the algorithm for handling short detours is Õ(m
√
n).

5.1.2 Handling Long Detours
To find long detours, the algorithm samples a random set R as in Lemma 1 such that each
vertex is sampled independently uniformly at random with probability (4 lnn)/

√
n, the set R
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has expected size of Õ(
√
n). For every sampled vertex r ∈ R and for every edge ei = (vi, vi+1)

(where 0 ≤ i ≤ k) we find the shortest replacement path PG(s, t, e) which passes through r.

This algorithm has two steps as well. In the first step, for every sampled vertex r ∈ R, we
construct two BFS trees from r, one in G′ = G \ E(P ) and one in the graph obtained from
G′ by reversing all the edge directions. This computes the distances dG′(r, v) and dG′(v, r),
for every r ∈ R and v ∈ V .

In the second step, we run the following procedure for every sampled vertex r ∈ R. Given
r ∈ R, we find for every edge ei = (vi, vi+1) ∈ PG(s, t) the shortest path from s to t avoiding
ei which passes through r. To do so, we construct two priority queues Qin[r] and Qout[r]
containing indices of vertices on PG(s, t). During the computation of a replacement path for
the edge ei = (vi, vi+1) we would like to run a find-min operation using priority queue Qin[r]
to find the shortest path from s to r which avoids ei, and we would like to run a find-min
operation using priority queue Qout[r] to find the shortest path from r to t which avoids
ei. To do so, during the computation of a replacement path for the edge ei = (vi, vi+1) we
would like to have Qin[r] = {0, 1, . . . , i} and Qout[r] = {i+ 1, . . . , k} such that an element
j ∈ Qin[r] has its key in Qin[r] equal to j + dG′(vj , r) and an element j ∈ Qout[r] has its key
in Qout[r] equal to dG′(r, vj) + (k − j). Note that we have already computed dG′(vj , r) in
the BFS tree rooted in r in the graph G′ with reverse edge directions and we have already
computed dG′(r, vj) in the BFS tree rooted in r in the graph G′.

In order to achieve that at iteration i (for 0 ≤ i ≤ k − 1) we have Qin[r] = {0, 1, . . . , i}
and Qout[r] = {i+ 1, . . . , k} we apply the following sliding window approach. We initiate the
queuesQin[r] contains only the element 0 with key equal to dG′(v0, r) andQout[r] = {1, . . . , k}
such that an element j ∈ Qout[r] has its key in Qout[r] equal to dG′(r, vj) + (k− j). Then we
compute the length of the shortest path from s to t avoiding e0 and passing through r as
find-min(Qin[r])+ find-min(Qout[r]). Next, we remove from Qout[r] the element 1 and insert
it to Qin[r] with its key equal to 1 + dG′(v1, r), and compute the length of the shortest path
from s to t avoiding e1 and passing through r as find-min(Qin[r])+ find-min(Qout[r]). In
general, after finishing the ith iteration we run the (i+ 1)th iteration as follows. we remove
from Qout[r] the element i+ 1 and insert it to Qin[r] with its key equal to i+ 1 +dG′(vi+1, r),
and compute the length of the shortest path from s to t avoiding ei+1 and passing through r
as find-min(Qin[r])+ find-min(Qout[r]).

Finally, for every edge ei = (vi, vi+1) we iterate over all vertices r ∈ R and find the
shortest path from s to t going through one of the vertices R. When (s, t, e) is a long triple,
there exists at least one replacement path PG(s, t, e) whose detour part contains at least
d
√
ne edges, and thus with high probability at least one of the vertices of the detour is

sampled in the set R (since we sample every vertex uniformly at random with probability
(4 lnn)/

√
n).

The total expected time of computing these distances is Õ(m
√
n): first of all, there

are Õ(
√
n) randomly chosen vertices R and every BFS computation takes O(m+ n) time.

Secondly, for every r ∈ R we perform O(n) insert, delete and find-min operations on the
queues Qin[r] and Qout[r] which takes Õ(n) time per vertex r ∈ R, and hence Õ(n

√
n)

expected time. Finally for every edge ei we iterate over all the vertices r ∈ R to find the
minimum length of a shortest path from s to t avoiding ei which passes through one of the
vertices r ∈ R. There are O(n) edges ei ∈ PG(s, t), and for every edge ei we iterate over
O(|R|) vertices which is Õ(

√
n) in expectation, and thus the total runtime of this part is

Õ(n
√
n). In total we get that the algorithm takes Õ(m

√
n) time.
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5.2 The Only Randomization Used in The Replacement Paths
Algorithm of Roditty and Zwick

As mentioned above, the algorithm by Roddity and Zwick handles separately the case that
the replacement path has a short detour containing at most d

√
ne edges, and the case that

the replacement path has a long detour containing more than d
√
ne edges. The first case is

solved deterministically. The second case is solved by first sampling a subset of vertices R
according to Lemma 1, where each vertex is sampled uniformly independently at random
with probability c lnn/

√
n for large enough constant c > 0. Using this uniform sampling,

it holds with high probability (of at least 1− n−c+2) that for every long triple (s, t, e), the
detour Detours,t,e of the replacement path PG(s, t, e) contains at least one vertex of R.

As the authors of [37] write, the choice of the random set R is the only randomization
used by their algorithm. More precisely, the only randomization used in the algorithm of
[37] is described in the following lemma (to be self-contained, we re-write the lemma here).

I Lemma 20 (proved in [37]). Let R ⊆ V be a random subset obtained by selecting each
vertex, independently, with probability (c lnn)/

√
n, for some constant c > 0. Then with high

probability of at least 1− n−c+2, the set R contains Õ(
√
n) vertices and for every long triple

(s, t, e) there exists a replacement path PG(s, t, e) whose detour part contains at least one of
the vertices of R.

5.3 Derandomizing the Replacement Paths Algorithm of Roditty and
Zwick - Outline

To obtain a deterministic algorithm for the replacement paths problem and to prove Theorem
3, we prove the following deterministic alternative to Lemma 20 by a clever choice of the set
R of Õ(

√
n) vertices.

I Lemma 21 (Our derandomized version of Lemma 20). There exists an Õ(m
√
n) time

deterministic algorithm which computes a set R ⊆ V of Õ(
√
n) vertices, such that for every

long triple (s, t, e) there exists a replacement path PG(s, t, e) whose detour part contains at
least one of the vertices of R.

Following the above description, in order to prove Theorem 3, that there exists an Õ(m
√
n)

deterministic replacement paths algorithm, it is sufficient to prove the derandomization
lemma (Lemma 21), we do so in the following sections. Following is an overview our approach.

We compute in Õ(m
√
n) time a set Dn of at most n paths, each path of length exactly

d
√
ne. The crucial part of our algorithm is in efficiently computing the set of paths Dn

with the following property; for every long triple (s, t, e) there exists a path D ∈ Dn and a
replacement path PG(s, t, e) such that D is contained in the detour part of PG(s, t, e). More
precisely, we prove the following Lemma.

I Lemma 22. There exists a deterministic Õ(m
√
n) algorithm for computing a set Dn of at

most n paths, each path of length exactly d
√
ne with the following property; for every long

triple (s, t, e) there exists a path D ∈ Dn and a replacement path PG(s, t, e) such that D is
the detour part of PG(s, t, e).

After computingDn we obtain the set of verticesR by running the GreedyPivotsSelection(Dn)
algorithm as described in Section 1.3 and Section 1.3, and as stated in Lemma 2. Given
Dn, the deterministic greedy selection algorithm GreedyPivotsSelection(Dn) computes a set
R ⊂ V of Õ(

√
n) vertices in Õ(n

√
n) time with the following property; every path D ∈ Dn

contains at least one of the vertices of R.



22 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

Using Lemma 22 and Lemma 2 we can prove the derandomization Lemma 21 and thus
prove Theorem 3.

Proof of Theorem 3. According to Lemma 22 we deterministically compute in Õ(m
√
n)

time the set Dn of at most n paths, each path of length exactly d
√
ne with the following

property; for every long triple (s, t, e) there exists a path D ∈ Dn and a replacement path
PG(s, t, e) such that D is contained in the detour part of PG(s, t, e).

Then, we run the greedy selection algorithm on the set of paths Dn. According to Lemma
2, the greedy selection algorithm takes Õ(n

√
n) time, and computes the set R ⊂ V of Õ(

√
n)

vertices such that every path D ∈ Dn contains at least one of the vertices of R.
We get that for every long triple (s, t, e) there exists a path D ∈ Dn and a replacement

path PG(s, t, e) such that D is contained in the detour part of PG(s, t, e), and the path
D ∈ Dn contains at least one of the vertices of R. Hence, for every long triple (s, t, e) there
exists a replacement path PG(s, t, e) whose detour part contains at least one of the vertices
of R. This proves Lemma 21.

Thus, we derandomize the randomized selection of the set of vertices R in Roditty and
Zwick’s algorithm [37], and as this is the only randomization used by their algorithm we
obtain an Õ(m

√
n) deterministic algorithm for the replacement paths problem in unweighted

directed graphs. J

In the following section we prove Lemma 22. In Section 3.1 we already mathematically
defined the set Dn and in Section 5.4 we describe a deterministic algorithm for computing
Dn in Õ(m

√
n) time.

5.4 An Õ(m
√

n) Deterministic Algorithm for Computing Dn
In this section we describe how to compute Dn in Õ(m

√
n) time and thus proving Lemma 22.

In Section 3.2 we presented an overview of the algorithm. We refer the reader to first read
the overview in Section 3 before reading the following formal description of the algorithm
and its analysis.

In this section we describe the algorithm more formally, and analyse its correctness and
runtime. Given the shortest path PG(s, t) =< s = v0, . . . , vk = t > the algorithm computes
the weighted graph Gw = (G,w) by taking the graph G and setting the weight of the edges
of PG(s, t) to be ε for some small ε such that 0 < ε < 1/n and the weight of all other edges
to be 1. The algorithm then invokes Dijkstra from s in Gw, builds the shortest paths tree Ts
rooted at s and sets the distances array d[v] = dGw(s, v) for every v ∈ V . In addition, the
algorithm initializes the set V w√

n
to be V w√

n
← {v ∈ V | d

√
ne ≤ d[v] < d

√
ne+ 1}. For every

vertex v ∈ V w√
n
, let D̃w(v) be the suffix of the last d

√
ne edges of the shortest path from s

to v in Ts. Add to the set Dw√
n
(initially is set to be the empty set) the subpath D̃w(v) for

every vertex v ∈ V w√
n
.

The algorithm then removes from Ts all the vertices v such that d[v] > d
√
ne + 1 and

sets d[v] =∞.
Next, the algorithm operates in |PG(s, t)| iterations. In iteration i starting from k − 1 to

0 the algorithm does the following. Let Ts,vi+1 be the subtree of Ts rooted at vi+1. Construct
the graph Gs,vi+1 as follows. The set of vertices Vs,vi+1 of Gs,vi+1 is Vs,vi+1 = {s} ∪ {v ∈ V |
v ∈ Ts,vi+1 \ {vi+1} or (∃(v, v′) ∈ E such that v ∈ Ts \ {vi+1} and v′ ∈ Ts,vi+1)} \ {vi+1}.
Essentially, Vs,vi+1 contains all the vertices in the subtree of Ts rooted in vi+1 and all of their
neighbours (except the vertex vi+1 itself).
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The set of edges of Gs,vi+1 contains two types of edges. The first type is auxiliary shortcut
edges, for every vertex v ∈ Vs,vi+1 such that v /∈ Ts,vi+1 add an edge (s, v) with weight d[v].
The second type is original edges, for every vertex v ∈ Ts,vi+1 \ {vi+1} add all its incident
edges (v, v′) such that v′ ∈ Vs,vi+1 with weight 1.

The algorithm removes from the tree Ts the vertex vi+1. The algorithm then computes
Dijkstra from s in Gs,vi+1 and for every vertex v ∈ Ts,vi+1 \ {vi+1} it sets d[v] = dGs,vi+1

(s, v)
and sets the parent of v in Ts to be the parent of v in the computed Dijkstra. For every
vertex v ∈ Ts,vi+1 such that d[v] > d

√
ne+ 1 remove v from Ts and set d[v] =∞. For every

vertex v ∈ Ts,vi+1 such that d
√
ne ≤ d[v] < d

√
ne+ 1 add v to V w√

n
and the subpath D̃w(v)

to Dw√
n
.

We prove the correctness and efficiency of our algorithm in the following Lemmas.

I Lemma 23. Let x be a vertex such that x ∈ V√n and let D′(x) be the suffix of the last
d
√
ne edges of the shortest path from s to x in Gwρ(x). Then D′(x) is a shortest path from

vρ(x) to x in G′.

Proof. Since x ∈ V√n then by definition of V√n for every index 0 ≤ i < ρ(x) it holds that
dG′(vi, x) > d

√
ne. Thus, every path in G′ from vi to x for every i < ρ(x) contains more

than d
√
ne edges, and thus any path from s to x in Gwρ(x) that does not pass through vρ(x)

has length at least d
√
ne+ 1.

Therefore, the shortest path from s to x in Gwρ(x) passes through vρ(x) and its length is
dGw

ρ(x)
(s, vρ(x)) + dGw

ρ(x)
(vρ(x), x) = ερ(x) + dG′(vρ(x), x) = ερ(x) + d

√
ne < d

√
ne+ 1 (where

the last inequality holds as ε < 1/n and ρ(x) ≤ n). Hence, the suffix of the last d
√
ne edges

of the shortest path from s to x in Gwρ(x) is a shortest path from vρ(x) to x in G′. J

The following lemma shows that after the i’th iteration Ts is a shortest path tree in Gwi
trimmed at distance d

√
ne+ 1 and d[v] is the distance from s to v in Ts for every v ∈ V .

I Lemma 24. After the ith iteration, if dGw
i

(s, v) < d
√
ne + 1 then v ∈ Ts and d[v] =

dTs(s, v) = dGw
i

(s, v), and otherwise d[v] =∞.

Proof. We prove the claim by induction on i.
For i = k, that is, Gwk = Gw the claim trivially holds by the correctness of Dijkstra on

Gw. Assume the claim is correct for iteration j such that j > i and consider iteration i for
some i < k.

Consider a vertex v such that dGw
i

(s, v) < d
√
ne + 1. We also have dGw

i+1
(s, v) <

d
√
ne + 1 as Gwi ⊆ Gwi+1. By induction hypothesis we have that before iteration i, d[v] =

dTs(s, v) = dGw
i+1

(s, v).
If v /∈ Ts,vi+1 then d[v] and dTs(s, v) do not change. Moreover the shortest path from s

to v in Ts before the iteration is a shortest path in Gwi+1, since this shortest path does not
contain vi+1 it is also a shortest path in Gwi . Hence, after iteration i it holds that v ∈ Ts
and d[v] = dTs(s, v) = dGw

i
(s, v).

Consider the case that v ∈ Ts,vi+1 \ {vi+1}. We prove that dGs,vi+1
(s, v) = dGw

i
(s, v). We

first prove that dGs,vi+1
(s, v) ≥ dGw

i
(s, v). By construction of Gs,vi+1 , every edge (x, y) of

Gs,vi+1 is either an original edge of G with weight 1 that exists also in Gwi , or it is an auxiliary
shortcut edge (s, y) such that y /∈ Ts,vi+1 and its weight in Gs,vi+1 is defined as ω(s, y) = d[y].
In the latter case, we have already proved in the previous paragraph that d[y] = dGw

i
(s, y)

is the length of the shortest path from s to y in Gwi . Hence, every s-to-v path in Gs,vi+1 is
associated with an s-to-v path in Gwi of the same length, and hence dGs,vi+1

(s, v) ≥ dGw
i

(s, v).
We now prove that dGw

i
(s, v) ≤ dGs,vi+1

(s, v). Let P ′ be a shortest path from s to v in
Gwi . Since we assumed dGw

i
(s, v) < d

√
ne+ 1 and Gwi ⊂ Gwi+1 then dGw

i+1
(s, v) < d

√
ne+ 1
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and hence by the induction hypothesis all the vertices along P ′ are in Ts at the beginning
of iteration i. Let v′ ∈ P ′ be the last vertex of P ′ such that v′ /∈ Ts,vi+1 . Since we assume
v ∈ Ts,vi+1 , then v′ 6= v and all the vertices following v′ in P ′ are in Ts,vi+1 . Let P1 be the
subpath of P ′ from s to v′, and let P2 be the subpath of P ′ from v′ to v. We claim that
the edge (s, v′) ∈ Gs,vi+1 and its weight is ω(s, v′) = dGw

i
(s, v′). Since v′ is a neighbour of a

vertex in Ts,vi+1 (e.g., the vertex which follows v′ in P ′ is in Ts,vi+1 by definition of v′) then
it holds that v′ ∈ Vs,vi+1 . Hence (s, v′) is a shortcut edge from s to v′ whose weight equals to
the weight of the shortest path d[v′] and as v′ 6∈ Ts,vi+1 then we have already proved above
that v′ ∈ Ts and d[v′] = dTs(s, v′) = dGw

i
(s, v′). Furthermore, since all the vertices of P ′

after v′ are contained in Ts,vi+1 and thus in Vs,vi+1 , then it follows that all the edges of P2
are contained in Gs,vi+1 with weight 1 which is their original weights in Gwi . Hence, the path
P ′′ = (s, v′) ·P2 is a path in Gs,vi+1 whose length is |P ′′| = ω(s, v′) + |P2| = |P1|+ |P2| = |P ′|.
Therefore, Gs,vi+1 contains a s-to-v path (e.g., the path P ′′) whose length is |P ′|. It follows
that dGw

i
(s, v) ≤ dGs,vi+1

(s, v). Therefore, it holds that dGs,vi+1
(s, v) = dGw

i
(s, v) and the

claim follows.
Consider the case where dGw

i
(s, v) > d

√
ne+ 1. If dGw

i+1
(s, v) > d

√
ne+ 1 then the

claim follows by induction hypothesis. Otherwise it follows that v ∈ Ts,vi+1 . It is not
hard to verify that for every vertex u that belongs to Ts after iteration i, we indeed have
dGs,vi+1

(s, u) = dGw
i

(s, u) ≤ d
√
ne + 1. Hence, since v > d

√
ne + 1 we have v /∈ Ts and

d[v] =∞ after iteration i.
J

The following lemmas show that every vertex x belongs to at most d
√
ne+ 1 trees Ts,vi+1 .

As we will later see, this will imply our desired running time.

I Lemma 25. Consider an iteration i for some 0 ≤ i ≤ k − 1 and a vertex x such that
x ∈ Ts,vi+1 \ {vi+1}. Then

bdGw
i

(s, x)c ≥ bdGw
i+1

(s, x)c+ 1.

Proof. Assume x belongs to Ts,vi+1 \ {vi+1} for some 0 ≤ i ≤ k − 1. By Lemma 24 after
the i’th iteration, the shortest path between s and x in Ts is a shortest path between
s and x in Gwi . Moreover, since x belongs to Ts,vi+1 \ {vi+1} then vi+1 is on a shortest
path from s to x in Gwi+1. Therefore, dGw

i+1
(s, x) = ε(i + 1) + dG′(vi+1, x). Observe that

bdGw
i+1

(s, x)c is the length of the shortest path from vi+1 to x in G′ (since ε < 1/n). Assume
by contradiction that bdGw

i
(s, x)c ≤ bdGw

i+1
(s, x)c. Then the length of the shortest path from

vi′ to x in G′ for some index i′ < i+ 1 is at most the length of the path from vi+1 to x in
G′. Then the path from s to vi′ along PG(s, t) concatenated with the shortest path from
vi′ to x in G′ has length in Gwi+1 at most εi′ + bdGw

i+1
(vi′ , x)c and hence it is shorter than

dGw
i+1

(s, x) = ε(i+ 1) + dG′(vi+1, x) which is a contradiction since dGw
i+1

(s, x) is the length of
the shortest path from s to x in Gwi+1. J

By Lemmas 24 and 25 and the fact that the algorithm trims the tree Ts at distance
d
√
ne+ 1 we get the following.

I Lemma 26. Every vertex x belongs to at most d
√
ne+ 1 subtrees Ts,vi+1 for 0 ≤ i ≤ k− 1.

Proof. Assume x belongs to the trees Ts,vi1 ...Ts,vir for i1 < i2 < ... < ir. We will show that
r ≤ d

√
ne+ 1, which implies the lemma.

By Lemma 24 as long as x ∈ Ts for some iteration j we have that after iteration j it
holds that d[v] = dGw

j
(s, v). By Lemma 25 we have bdGw

ij
(s, x)c + 1 ≤ bdGw

ij−1
(s, x)c ≤

bdGw
ij−1

(s, x)c.
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Since the algorithm only maintains vertices v whose distance d[v] is less than d
√
ne+ 1

then after x participates in d
√
ne+ 1 subtrees Ts,vi+1 the algorithm removes it from Ts and

therefore r ≤ d
√
ne+ 1 as required. J

I Lemma 27. The total running time of the algorithm is Õ(m
√
n).

Proof. The dominant part of the running time of the algorithm is the computations of
Dijkstra. The first Dijkstra computation is on the graph Gw and it takes O(m + n logn)
time.

We claim that the computation of iteration i takes O(
∑
v∈Ts,vi+1

deg(v) logn), where
deg(v) is the degree of v in G. To see this, note that both the number of nodes and the
number of edges in Gs,vi+1 is bounded by O(

∑
v∈Ts,vi+1

deg(v)). By Lemma 26 every node
v belongs to at most d

√
ne + 1 trees Ts,vi+1 . It is not hard to see now that the lemma

follows. J

The following Lemma proves Lemma 9.

I Lemma 28. V w√
n

= V√n and Dw√
n
can be chosen as the set Dn according to Definition 12.

Proof. We first prove that V w√
n
⊆ V√n. Let x ∈ V w√

n
. As x ∈ V w√

n
then there exists an

iteration i′ such that after iteration i′, d
√
ne ≤ d[x] < d

√
ne+ 1. Consider the tree Ts after

iteration i′. By Lemma 24 after iteration i′, the path from s to x in Ts is of length d[x] and
is a shortest path in Gwi′ . Let P be the shortest path from s to x in Ts.

Let i be the maximal index such that vi is on the shortest path P . As P does not contain
any vertex vj such that i+ 1 ≤ j then P is also a shortest path in Gwi . As P is of length
between d

√
ne and d

√
ne+1 we prove that i = ρ(x). We need to prove that dG′(vi, x) = d

√
ne

and that the distance from vj for every j ≤ i to x in G′ is more than d
√
ne.

We first prove that dG′(vi, x) = d
√
ne. Since P is a shortest s-to-x path in Ts and

i be the maximal index such that vi is on the shortest path P then P is composed of
the path < v0, . . . , vi > followed by a shortest path from vi to x in G′. That is P =<
v0, . . . , vi > ·PG′(vi, x) (where PG′(vi, x) is a shortest path from vi to x in G′) . We have
that d

√
ne ≤ |P | = | < v0, . . . , vi > | + |PG′(vi, x)| = εi + dG′(vi, x) < d

√
ne + 1 and

| < v0, . . . , vi > | = iε < 1 (as ε < 1/n). Since all the edges of PG′(vi, x) have weight 1, we
get that |PG′(vi, x)| = dG′(vi, x) = b|P |c = d

√
ne.

Next, we prove that the distance from vj for every j < i to x in G′ is more than d
√
ne.

Indeed, assume by contradiction there exists an index j < i such that dG′(vj , x) ≤ d
√
ne.

Then the path P ′ =< v0, . . . , vj > ◦PG′(vj , x) (where PG′(vj , x) is a shortest path from vj
to x in G′) has length |P ′| = εj + dG′(vj , x) ≤ εj + d

√
ne < εi+ d

√
ne = |P |. We get that P ′

which is a s-to-x path in Gwi is shorter than P which is a shortest s-to-x path in Gwi , which
is a contradiction. We proved that dG′(vi, x) = d

√
ne and dG′(vj , x) > d

√
ne for every j ≤ i

and hence i = ρ(x). By Lemma 23 it follows that D̃w(x) (which is the subpath containing the
last d

√
ne edges of P ) is a shortest path from vρ(x) to x in G′. Note also that the algorithm

adds to Dw√
n
the subpath D̃w(v).

We now prove that V√n ⊆ V w√n. Let x ∈ V√n then there exists an index 0 ≤ ρ(x) ≤ k
such that dG′(vρ(x), x) = d

√
ne and for all 0 ≤ i < ρ(x) it holds that dG′(vi, x) ≥ d

√
ne+ 1.

Consider the tree Ts at the end of iteration ρ(x).
We first prove that dGw

ρ(x)
(s, x) < d

√
ne+ 1 and hence by Lemma 24 it follows that x ∈ Ts.

Let P be the following path from s to x. P =< v0, . . . , vρ(x) > ◦PG′(vρ(x), x), that is, the
path composed of the first ρ(x) edges from s to vρ(x) along PG(s, t) followed by a shortest
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path from vρ(x) to x in G′. Since |P | = ερ(x) + dG′(vρ(x), x) = ερ(x) + d
√
ne < d

√
ne+ 1 and

P is a path in Gwρ(x) it follows that dGw
ρ(x)

(s, x) ≤ |P | < d
√
ne+ 1.

Next, we prove that dGw
ρ(x)

(s, x) ≥ d
√
ne. Let P ′ = PGw

ρ(x)
(s, x) be a shortest path

from s to x in Gwρ(x). Let i be the maximal index such that vi ∈ P ′, then the subpath
of P ′ from vi to x is a shortest path in G′ and its length dG′(vi, x). Since i ≤ ρ(x) (as
P ′ is a path in Gwρ(x)) then by Definition 10 it follows that dG′(vi, x) ≥ d

√
ne. Therefore,

dGw
ρ(x)

(s, x) = |P ′| ≥ dG′(vi, x) ≥ d
√
ne.

By Lemma 24 after the ρ(x) iteration, d[v] = dGw
ρ(x)

(s, x). Hence, by the end of the
ρ(x) iteration d

√
ne ≤ d[v] < d

√
ne + 1. Therefore, by construction x ∈ V w√

n
. Let P be

the shortest s-to-x path in Ts after the ρ(x) iteration. By Lemma 24 it holds that P is a
shortest s-to-x path in Gwρ(x), and by Lemma 23 it follows that D̃w(x) (which is the subpath
containing the last d

√
ne edges of P ) is a shortest path from vρ(x) to x in G′. Note that the

algorithm adds to Dw√
n
the subpath D̃w(v).

In the proof above, we have also proved that every vertex x ∈ V√n we add a single path
D(x) to Dw√

n
. The path D(x) is obtained by the algorithm by taking the last d

√
ne edges

of a shortest path from s to x in the graph Gwρ(x), and we have already proved that it is a
shortest path from ρ(x) to x in G′ whose length is d

√
ne. This proves that Dw√

n
can be used

as the set of paths Dn according to Definition 12. J

5.5 An Alternative Õ(m
√

n) Deterministic Algorithm for Computing Dn
We shortly describe an alternative Õ(m

√
n) deterministic algorithm for computing Dn. The

algorithm of Roddity and Zwick [37] for handling short detours constructs 2d
√
ne auxiliary

graphs GA0 , . . . , GA2d√ne−1 (see Figure 3 as an illustration of the graph GA = GA0 ). For every
0 ≤ z ≤ 2d

√
ne − 1, the auxiliary graph GAz is obtained by adding a new source vertex rz to

G′ and an edge (rz, vz+2qd
√
ne) of weight ω(rz, vz+2q) = qd

√
ne for every integer 0 ≤ q ≤

√
n

2 .
The weight of all the edges E \E(P ) is set to 1. Then run Dijkstra’s algorithm from rz in
GAz that computes a shortest paths tree Tz.

We claim that given the shortest paths trees T0, . . . , T2d
√
ne−1, the following algorithm

computes the set of paths Dn. For every v ∈ V the algorithm computes the minimum index
0 ≤ i ≤ k such that at least one of the shortest paths trees T0, . . . , T2d

√
ne−1 contains a

path from vi to v of length d
√
ne, and let P ′(v) be this path from vi to v. If no such index

0 ≤ i ≤ k exists, then set P ′(v) = ∅. For every vertex v ∈ V finding this minimum index i
takes O(

√
n) time as there are O(

√
n) shortest paths trees to check, and in every shortest

paths tree Tz we only need to check the first edge (rz, vj) of the path from rz to v. So, given
the shortest paths trees T0, . . . , T2d

√
ne−1, computing the paths Dn = {P ′(v) | v ∈ V } takes

O(n
√
n) time.

I Lemma 29. Let x ∈ V√n and let z := (ρ(x) mod 2d
√
ne). Then the shortest paths tree

Tz contains a shortest path in G′ from vρ(x) to x of length d
√
ne.

Proof. Since x ∈ V√n then dG′(vρ(x), x) = d
√
ne and thus the shortest path in G′ from vρ(x)

to x contains exactly d
√
ne edges. We prove that every shortest path in GAz from rz to x

must start with the edge (rz, vρ(x)).
Let P ′ = (rz, vρ(x)) ◦ PG′(vρ(x), x). Assume there exists a path P1 in GAz from rz to x

that starts with the edge (rz, v′) such that v′ = vρ(x)−i·2d
√
ne for some integer i > 0. Then

ω(P1) = ω(rz, v′) + dG′(v′, x) = ω(rz, vρ(x))− i · d
√
ne+ dG′(v′, x) ≥ ω(rz, vρ(x))− i · d

√
ne+

(2i + 1) · d
√
ne = ω(rz, vρ(x)) + (i + 1) · d

√
ne > ω(rz, vρ(x)) + d

√
ne = ω(P ′). Then P ′ is

shorter than P1 and thus P1 is not a shortest path in GAz .
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Assume there exists a path P2 in GAz from rz to x that starts with the edge (rz, v′)
such that v′ = vρ(x)+i·2d

√
ne for some integer i > 0. Then ω(P2) = ω(rz, v′) + dG′(v′, x) =

ω(rz, vρ(x)) + i · d
√
ne+ dG′(v′, x) > ω(rz, vρ(x)) + d

√
ne = ω(P ′). Then P ′ is shorter than

P2 and thus P2 is not a shortest path in GAz .
It follows that every shortest path from rz to x in GAz must start with the edge (rz, vρ(x)).

In particular, the shortest paths tree Tz contains a shortest path in G′ from vρ(x) to x of
length d

√
ne. J

Finally, let Dn := {P ′(v) | v ∈ V } be the set of paths computed by the above algorithm.
Then Dn is a set of O(n) paths, each path contains exactly d

√
ne edges, and it follows

from Lemma 29 and Definition 12 that a subset of the paths Dn satisfies the conditions of
Definition 12. Hence, it is sufficient to use the greedy algorithm GreedyPivotsSelection to hit
the set of paths Dn.

6 Deterministic f-Sensitivity Distance Oracles

As explained in the introduction, an f -Sensitivity Distance Oracle gets as an input a graph
G and a parameter f , preprocesses it into a data-structure, such that given a query (s, t, F )
with s, t ∈ V, F ⊆ E ∪ V, |F | ≤ f one may efficiently compute the distance dG\F (s, t).

In this section we derandomize the result of Weimann and Yuster [39] for real edge weights.
They presented an f -sensitivity distance oracle whose preprocessing time is Õ(mn1+ε) (which
is larger than the time it takes to compute APSP which is O(mn) by a factor of nε) and whose
query time is subquadratic Õ(n2−2ε/f ). More precisely, we prove the following theorem which
obtains deterministically the same preprocessing and query time bounds as the randomized
f -sensitivity distance oracle in [39] for real edge weights.

I Theorem 30. Let G be a weighted directed graph, and let f ≥ 1 be a parameter. One
can deterministically construct an f -sensitivity distance oracle in Õ(mn1+ε) time, such that
given a query (s, t, F ) with F ⊂ V ∪ E and |F | ≤ f the deterministic query algorithm for
computing dG\F (s, t) takes subquadratic Õ(n2−2ε/f ) time.

The basic idea in derandomizing the real weighted f -sensitivity distance oracles of
Weimann and Yuster [39] is to use a variant of the fault tolerant trees FTL,f (s, t) described
in Appendix A in [11] to find short replacement paths, and then use the greedy algorithm
from Section 1.3 and Lemma 2 for derandomizing the random selection of the pivots, and
finally continue with the algorithm of [39] for stitching short segments to obtain the long
replacement paths. This overview is made clear in the description below.

According to Section 6.4, we will assume WLOG the following holds.
Unique shortest paths assumption: we assume that all the shortest paths are
unique.
Non-negative weights assumption: we assume that edge weights are non-negative,
so that we can run Dijkstra.

Outline. Let s, t ∈ V be vertices and let f, L ≥ 1 be integer parameters. In Section
4.1 we described the trees FTL,f (s, t) which are a variant of the trees that appear in
Appendix A of [11]. In Section 4.2 we described how to construct the trees FTL,f (s, t) in
Õ(mn1+ε+ε/f + n2+ε+2ε/f ) time.

In Section 6.1 we prove Lemma 17, that the algorithm described in Section 4.1 computes
the distance dLG(s, t, F ) in O(f2 logL) time. In Section 6.2 we describe how to use the trees
FTL,f (s, t) in order to construct an f -sensitivity distance oracle. In Section 6.3 we reduce
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the construction time of the trees FTL,f (s, t) to Õ(mn1+ε). In Section 6.3.4 we reduce the
runtime of the GreedyPivotsSelection algorithm from Õ(n2+ε+ε/f ) to Õ(n2+ε). In Section
6.4 we justify our assumptions of non-negative edge weights and unique shortest paths.

6.1 Proof of Lemma 17
Proof of Lemma 17. We first prove correctness, that the query procedure outputs dLG(s, t, F ).
The query procedure outputs a distance dLG(s, t, {a1, . . . , ai}) such that {a1, a2, . . . , ai} ⊆ F
and PLG (s, t, {a1, . . . , ai})∩F = ∅ (note that this includes the case that dLG(s, t, {a1, . . . , ai}) =
∞ when there is no path from s to t in G\{a1, a2, . . . , ai} that contains at most L edges). The
distance dLG(s, t, {a1, . . . , ai}) is the minimum length of an s-to-t path that contains at most
L edges in the graph G \ {a1, a2, . . . , ai}. On the one hand, since {a1, a2, . . . , ai} ⊆ F and
distances may only increase as we delete more and more vertices and edges, we obtain that
dLG(s, t, {a1, . . . , ai}) ≤ dLG(s, t, F ). On the other hand, since PLG(s, t, {a1, . . . , ai}) ∩ F = ∅
then PLG(s, t, {a1, . . . , ai}) is a path in the graph G \ F that contains at most L edges, and
hence its length dLG(s, t, {a1, . . . , ai}) is at least the length of the shortest s-to-t path in G\F
that contains at most L edges which is dLG(s, t, F ), so we get dLG(s, t, {a1, . . . , ai}) ≥ dLG(s, t, F ).
It follows that the output of the query is dLG(s, t, {a1, . . . , ai}) = dLG(s, t, F ).

We analyze the runtime of the query. The runtime of the query is O(f2 logL) as
we advance along a root to leaf path in FTL,f (s, t) (whose length is at most f) and in
each node FTL,f (s, t, a1, . . . , ai) of the tree FTL,f (s, t) we make O(f) queries ai+1 ∈ F

to BSTL(s, t, a1, . . . , ai) which take O(logL) as we search in a binary search tree with L
elements. So query time is the multiplication of the following terms:

f — length of root-to-leaf path in FTL,f (s, t)
f — number of elements ai+1 ∈ F to check in the node FTL,f (s, t, a1, . . . , ai) whether or
not ai+1 ∈ PLG(s, t, {a1, . . . , ai})
O(logL) — time to check for a single element ai+1 ∈ F whether or not ai+1 ∈
PLG (s, t, {a1, . . . , ai}) by searching ai+1 in BSTL(s, t, a1, . . . , ai) which is a binary search
tree containing L elements.

J

6.2 Deterministic f-Sensitivity Distance Oracles with
Õ(mn1+ε+ε/f + n2+ε+2ε/f ) Preprocessing Time

In this section we describe how to plug-in the trees FTL,f (s, t) from Section 4.1 in the
f -sensitivity distance oracles of Weimann and Yuster [39].

Let us first recall how the f -sensitivity distance oracle of Weimann and Yuster [39] works.
The following Lemma is proven in [39].

I Lemma 31 (Theorem 1.1 in [39]). Given a directed graph G with real positive edge weights,
an integer parameter 1 ≤ f ≤ ε logn/ log logn and a real parameter 0 < ε < 1, there
exists a randomized f -sensitivity distance oracle whose construction is randomized and takes
Õ(mn1+ε) time. Given a query (s, t, F ) where F ⊂ V ∪ E with |F | ≤ f , the data-structure
answers the query by computing w.h.p. dG(s, t, F ) in Õ(n2−2ε/f ) time.

Proof. Use α = 1− ε in the construction of Weimann and Yuster [39]. In order for this result
to be self-contained, we briefly explain the preprocessing and query procedures of Weimann
and Yuster [39].

Preprocessing:
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1. Randomly generate graphs G1, . . . , Gr (with r = Õ(nε)) where every graph is independ-
ently obtained by removing each edge with probability 1/nε/f . Compute APSP on each
of the graphs {G1, . . . , Gr}. It is proven in [39] that with high probability for every set
F ⊆ E ∪ V with |F | ≤ f and for every s − t shortest path PG(s, t, F ) that contains at
most nε/f edges in the graph G \ F , there exists at least one graph Gi ∈ {G1, . . . , Gr}
that excludes F and contains PG(s, t, F ).

2. Sample a random set B of pivots, where every vertex is taken with probability 6f lnn
nε/f

.

Query: Given a query (s, t, F ) build the dense graph H (denoted by GS in [39]) whose
vertices are B ∪ {s, t} as follows. First, find all the graphs that exclude F , GF = {Gi | 1 ≤
i ≤ r, F ∩ Gi = ∅}. Then, for every u, v ∈ B ∪ {s, t} add the edge (u, v) to H and set is
weight to be the minimum length of the shortest path from u to v in all the graphs GF . If
there is no path from u to v in any of the graphs GF then set ωH(u, v) =∞. Finally, run
Dijkstra from s in the graph H and output dG(s, t, F ) = dH(s, t). J

We derandomize Lemma 31 as follows.

I Lemma 32. Given a directed graph G with real positive edge weights, an integer parameter
1 ≤ f ≤ ε logn/ log logn and 0 < ε < 1, there exists a deterministic f-sensitivity distance
oracle whose construction is deterministic and takes Õ(mn1+ε+ε/f + n2+ε+2ε/f ) time. Given
a query (s, t, F ) where F ⊂ V ∪E with |F | ≤ f , the data-structure answers deterministically
the query by computing dG(s, t, F ) in Õ(n2−2ε/f ) time.

To prove Lemma 32 we describe how to use the fault-tolerant trees {FTL,f (s, t)}s,t∈V to
construct the deterministic f -sensitivity distance oracle.

Preprocessing:
1. Compute the trees FTL,f (u, v) . Deterministically construct the fault-tolerant trees

FTL,f (u, v) for every u, v ∈ V as in Lemma 18.
2. Compute the set of vertices B ⊆ V . Let PL,f be the set of all paths in all the nodes

of all the trees {FTL,f (u, v)}u,v∈V that contain at least nε/f/2 edges. Use the greedy
algorithm as in Lemma 2, to find deterministically a set of pivots B, such that for every
P ∈ PL,f it holds that B ∩ V (P ) 6= ∅.

Query: Given a query (s, t, F ) build the complete graph H (also referred to as the
dense graph) whose vertices are B ∪ {s, t} as follows. For every u, v ∈ B ∪ {s, t} query the
tree FTL,f (u, v) with (u, v, F ) according to the query procedure described in Section 4.1
and set the weight of the edge (u, v) in H to the distance computed dLG(u, v, F ) (i.e., set
ωH(u, v) = dLG(u, v, F )). Finally, run Dijkstra from s in the graph H and output dH(s, t) as
an estimate of the distance dG(s, t, F ).

Proof of Lemma 32. We prove the correctness of the DSO and then analyse its preprocessing
and query time.

Proof of correctness. We prove that dG(s, t, F ) = dH(s, t). Since dH(s, t) is the
length of some path from s to t in G \ F then dH(s, t) ≥ dG(s, t, F ). Next we prove that
dG(s, t, F ) ≥ dH(s, t).

Let PG(s, t, F ) be the shortest path from s to t in G \ F . We prove that the set of
vertices B hits every subpath of PG(s, t, F ) that contains exactly nε/f/2 edges. To see that,
let u, v be two vertices such that u appears before v along PG(s, t, F ) and PG(s, t, F )[u..v]
contains nε/f/2 edges. It follows that the shortest path from u to v in G \ F contains less
than L = nε/f edges. According to the assumption of unique shortest paths (as in Section
6.4.2) it follows that querying the tree FTL,f (u, v) with (u, v, F ) finds a path PLG(u, v, F ),
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and since the shortest path from u to v in G \ F contains less than L = nε/f edges then
PLG(u, v, F ) = PG(u, v, F ) = PG(s, t, F )[u..v] is the shortest path from u to v in G \ F , and
it contains exactly nε/f/2 edges. Therefore, PLG(u, v, F ) is a path in a node of the tree
FTL,f (u, v) and thus PLG(u, v, F ) ∈ PL,f . Hence, when computing the hitting set B that
hits all the paths of PL,f the algorithm obtains a set B, and in particular it holds that
B ∩ PLG(u, v, F ) 6= ∅ and thus B hits the path PG(s, t, F )[u..v] = PG(u, v, F ). This prove
that B hits every subpath of PG(s, t, F ) that contains exactly nε/f/2 edges.

Let s = v1, v2, . . . , vk = t be all the vertices of H = B ∪ {s, t} that appear along
PG(s, t, F ) sorted according to the order of their appearance along the path PG(s, t, F ). As
B hits every subpath of PG(s, t, F ) that contains exactly nε/f/2 edges, it follows that for
every 0 ≤ i < k the subpath of PG(s, t, F ) from vi to vi+1 contains at most nε/f edges.
Therefore, the shortest path from vi to vi+1 in G \ F contains at most L = nε/f edges
and hence dLG(vi, vi+1, F ) = dG(vi, vi+1, F ). By Lemma 17 it holds that querying the tree
FTL,f (vi, vi+1) according to the query procedure described in Section 4.1 computes the
distance dLG(vi, vi+1, F ) = dG(vi, vi+1, F ). Hence ωH(< v1, . . . , vk >) = ωH(v1, v2) + . . . +
ωH(vk−1, vk) = dLG(v1, v2, F )+ . . .+dLG(vk−1, vk, F ) = dG(v1, v2, F )+ . . .+dG(vk−1, vk, F ) =
dG(s, t, F ) where the last equality holds as s = v1, v2, . . . , vk = t are the vertices of H that
appear along PG(s, t, F ) sorted according to the order of their appearance along the path
PG(s, t, F ).

It follows that the path < v1, . . . , vk > is an s-to-t path in H whose weight in H is
dG(s, t, F ) and hence the shortest s-to-t path in H has length at most ωH(< v1, . . . , vk >

) = dG(s, t, F ). Therefore dH(s, t) ≤ ωH(< v1, . . . , vk >) = dG(s, t, F ) and since we already
proved that dH(s, t) ≥ dG(s, t, F ) it follows that dH(s, t) = dG(s, t, F ).

Analysing the preprocessing time. Next we analyse preprocessing time of the DSO.
Constructing the trees FTL,f (u, v) for every u, v ∈ V as in Lemma 18 takes Õ(mn1+ε+ε/f +
n2+ε+2ε/f ) time. We analyse the time it takes to compute the set of vertices B ⊆ V . Let
PL,f be the set of all paths in all the nodes of all the trees {FTL,f (u, v)}u,v∈V that contain
at least nε/f/2 edges. Observe that PL,f contains at most O(n2+ε) paths, as the number of
nodes in each of the n2 trees FTL,f (u, v) is O(nε) and every such node contains a single path
of G. Thus, using the greedy algorithm as in Lemma 2 finds deterministically in Õ(n2+ε+ε/f )
time a set of pivots B, such that |B| = Õ(n1−ε/f ) and B hits all the paths in PL,f . Thus,
the total preprocessing time of the DSO is Õ(mn1+ε+ε/f + n2+ε+2ε/f ) time.

Analysing the query time. Next we analyse the query time of the DSO. During
query, the algorithm constructs the graph H. During the construction of H the algorithm
runs Õ(n2−2ε/f ) queries using the trees {FTL,f (u, v)}u,v∈V , each query is answered in
O(f2 logn) = Õ(1) time since we assumed f ≤ logn/ log logn. Thus, constructing the graph
H takes Õ(n2−2ε/f ) time, and also running Dijkstra from s in the graph H takes Õ(n2−2ε/f )
time. Therefore, the total query time is Õ(n2−2ε/f ) time. J

6.3 Deterministic f-Sensitivity Distance Oracles with Õ(mn1+ε)
Preprocessing Time

In this section we reduce the preprocessing time of constructing the f -sensitivity distance
oracle described in Lemma 32 from Õ(mn1+ε+ε/f + n2+ε+2ε/f ) to match the preprocessing
time of [39] which is Õ(mn1+ε), while keeping the same query time of Õ(n2−2ε/f ).

We improve the preprocessing time in two ways: improving the construction time of the
trees FTL,f (u, v) and reducing the runtime of the greedy selection algorithm by considering
a smaller set of paths PL,f . In Section 6.3.1 we reduce the time it takes to construct the
trees {FTL,f (u, v)}u,v∈V from Õ(mn1+ε+ε/f + n2+ε+2ε/f ) to Õ(mn1+ε). In Section 6.3.4 we
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show that the runtime of the greedy selection algorithm of the pivots B can be reduced from
Õ(n2+ε+ε/f ) to Õ(n2+ε) which is negligible compared to Õ(mn1+ε). This will give us the
desired Õ(mn1+ε) preprocessing time.

6.3.1 Building the Trees FTL,f (u, v) in Õ(mn1+ε) Time
In this section we describe how to construct the trees FTL,f (u, v) in Õ(mn1+ε) time. We
first define the node FTL′,f (u, v, a1, . . . , ai) of the tree FTL′,f (u, v) as follows.

I Definition 33. Let 1 ≤ L′ ≤ L, 0 ≤ i ≤ f and u, v ∈ V . Assume a1 ∈ PL
′(u, v), a2 ∈

PL
′(u, v, {a1}), . . . , ai ∈ PL

′(u, v, {a1, . . . , ai−1}). We define the node FTL′,f (u, v, a1, . . . , ai)
of depth i in the tree FTL′,f (u, v) as the node we reach if we query the tree FTL′,f (u, v)
with F = {a1, . . . , ai} according to the query procedure described in Section 4.1. If i = f

then FTL
′,f (u, v, a1, . . . , af ) is a leaf node of FTL′,f (u, v) of depth f . We slightly abuse

notation and use FTL′,f (u, v, a1, . . . , ai) to both denote the node FTL′,f (u, v, a1, . . . , ai) and
the subtree of FTL′,f (u, v) rooted in FTL′,f (u, v, a1, . . . , ai).

Recall that in Section 4.1 we described how to build the trees FTL,f (u, v) in Õ(mn1+ε+ε/f+
n2+ε+2ε/f ) time. More generally, we built the trees {FTL′,f (u, v)}1≤L′≤L,u,v∈V in Õ(mnLf+1+
n2Lf+2) time, where the construction time consists of the following two terms Õ(mnLf+1)
and Õ(n2Lf+2). The first term Õ(mnLf+1) is the time it takes to solve the dynamic pro-
gramming Equation 1 in all the nodes of all the trees {FTL′,f (u, v)}u,v∈V,1≤L′≤L. In Section
6.3.3 we reduce the runtime of this part to Õ(mnLf ) by applying Dijkstra on auxiliary
graphs HF,t we define later rather than computing the dynamic-programming in the last
layer of the trees.

The second term Õ(n2Lf+2) is the time it takes to reconstruct all the paths PL′(s, t, {a1, . . . , ai})
that are explicitly stored in all the nodes of all the trees {FTL′,f (u, v)}u,v∈V,1≤L′≤L. It
takes Õ(n2Lf+2) time since the number of nodes in all the trees {FTL′,f (u, v)}u,v∈V,1≤L′≤L
is Õ(n2Lf+1), and it takes O(L) time to reconstruct each path (which contains at most L
edges). In Section 6.3.2 we reduce this term to Õ(n2Lf ) = Õ(n2+ε) by not reconstructing
the paths in the leaves of the trees of depth f .

6.3.2 The improved algorithm for constructing the trees FTL,f (u, v)
We describe the algorithm with the improved construction time. First, the algorithm
constructs the trees {FTL′,f (u, v)}1≤L′≤L,u,v∈V up to level f − 1, i.e., constructing the trees
{FTL′,f−1(u, v)}1≤L′≤L,u,v∈V , without constructing the nodes in level f . Note that using
the analysis above this takes Õ(mnL(f−1)+1) = Õ(mnLf ) = Õ(mn1+ε) time.

We are left with explaining how to accelerate the construction of the last layer (the layer of
depth f) of the trees {FTL,f (u, v)}u,v∈V . The algorithm reconstructs the paths in level f −1
only for the trees {FTL,f (u, v)}u,v∈V . That is, for every leaf node FTL,f−1(u, v, a1, . . . , af−1)
of FTL,f−1(u, v) we can reconstruct the path PLG(u, v, {a1, . . . , af−1}) in O(L) time by
following the parent pointers parentL(u, v, F ) as computed in Equation 2. Reconstruct-
ing these Õ(n2Lf−1) paths PLG(u, v, {a1, . . . , af−1}) take Õ(n2Lf ) = Õ(n2+ε) time. Then
for every vertex or edge af ∈ PLG(u, v, {a1, . . . , af−1}) we need to construct the leaf node
FTL,f (u, v, a1, . . . , af−1, af ). We describe the construction of the leaves FTL,f (u, v, a1, . . . , af−1, af )
in the following paragraphs.

Let Fu,v = {{a1, . . . , af} | the node FTL,f (u, v, a1, . . . , af ) is a leaf node of FTL,f (u, v)}.
Equivalently, Fu,v = {{a1, . . . , af} | a1 ∈ PL(u, v), a2 ∈ PL(u, v, {a1}), . . . , af ∈ PL(u, v, {a1, . . . , af−1})}.
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In the remaining of this section we describe how to compute the distances dLG(u, v, F ) and
the parent pointer parentL(u, v, F ) for every u, v ∈ V, F ∈ Fu,v in total Õ(mnLf ) time.

We first explain why it is not possible to use Equation 1 to compute the distance
dLG(u, v, {a1, . . . , af}). Let F = {a1, . . . , af} ∈ Fu,v. According to Equation 1, dLG(u, v, F ) =
minz{ω(u, z) + dL−1(z, v, F ) | (u, z) ∈ E AND u, z, (u, z) 6∈ F}, where the distance
dL−1(z, v, F ) need to be obtained by querying the tree FTL−1,f (z, v) using the query F . But
querying the tree FTL−1,f (z, v) with the set F might reach a leaf node FTL−1,f (z, v, a1, . . . , af ),
and since we did not construct yet the last layer (of level f) of FTL−1,f (z, v) then we do
not have the distance dL−1(z, v, F ) computed yet. This breaks the dynamic programming of
Equation 1. To overcome this difficulty, we run Dijkstra in auxiliary graphs HF,t.

6.3.3 The auxiliary graphs HF,t

Let t ∈ V be a fixed vertex, we define Ft = ∪s∈V Fs,t. For every F ∈ Ft we build the
graph HF,t = (VF,t, EF,t) as follows. Let V ′F,t ⊆ V be the set of all vertices s ∈ V such that
F ∈ Fs,t.

Note that we can easily compute the sets V ′F,t for all the vertices t ∈ V in Õ(n2Lf ) time
using the following procedure. Initialize an empty hash table h. For every s ∈ V, F ∈ Fs,t:

Check if h contains (F, t). If (F, t) 6∈ h then set h[F, t] to be an empty list of vertices
(which will eventually represent V ′F,t).
Append s to the end of the list h[F, t].

After scanning all the sets F ∈ Fs,t for every s, t ∈ V , we get that the vertices V ′F,t are listed
in h[F, t]. The runtime of this procedure is Õ(n2Lf ) for all the vertices t ∈ V as the number
of sets F in

⋃
s,t∈V Fs,t is at most the number of leaves in all the trees {FTL,f (s, t)}s,t∈V ,

which is Õ(n2Lf ).
Let VF,t be the set of vertices V ′F,t and their neighbours, i.e., VF,t = V ′F,t ∪N(V ′F,t).
Let s ∈ VF,t and let u be a neighbour of s in G, i.e., (s, u) ∈ E, such that s, u has not

failed (i.e., s, u, (s, u) 6∈ F ). If u ∈ VF,t then we add the edge (s, u) to HF,t with its weight
ω(s, u). Otherwise, u 6∈ VF,t, this means that if we query the tree FTL,f (u, t) with the
set F then the query ends in an internal node of FTL,f (u, t) and not in a leaf of depth f .
Let FTL,f (u, t, a1, . . . , ai) be the internal node we reach at the end of the query such that
{a1, . . . , ai} ( F . Then the path PLG(u, t, {a1, . . . , ai}) does not contain F (as otherwise we
would have not finished the query of F in the tree FTL,f (u, t) at this node), and hence we
already computed dLG(u, t, F ) = dLG(u, t, {a1, . . . , ai}) in the node FTL,f (u, t, a1, . . . , ai). We
add an edge (u, t) to HF,t and assign to it the weight dLG(u, t, F ), and we refer to these edges
as shortcuts.

Finally, we compute Dijkstra from t in the graph HF,t with reverse edge directions. This
gives us the distances dHF,t(s, t) for every s ∈ VF,t. We claim that dHF,t(s, t) ≤ dLG(s, t, F )
and that computing all the Dijkstra’s in all the graphs HF,t takes Õ(mn1+ε) time.

I Lemma 34. Let s ∈ VF,t, then dG(s, t, F ) ≤ dHF,t(s, t) ≤ dLG(s, t, F ).

Proof. We first prove that dG(s, t, F ) ≤ dHF,t(s, t). If dHF,t(s, t) <∞ then the shortest path
from s to t in HF,t is composed of two types of edges:

An edge (u, v) such that u, v, (u, v) 6∈ F whose weight equals to ω(u, v) (its weight in
the graph G). In this case, the edge (u, v) also exists in the graph G \ F with the same
weight.
A “shortcut” edge (u, t) whose weight is dLG(u, t, F ). In this case, there is a path from u

to t in the graph G \ F whose weight is dLG(u, t, F ).
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In both cases we get that for every edge (u, v) in the graph HF,t there exists a u-to-v
path in the graph G \ F whose weight in G \ F equals to the weight of the edge (u, v) in
HF,t. Hence, dG(s, t, F ) ≤ dHF,t(s, t).

We now prove that dHF,t(s, t) ≤ dLG(s, t, F ). Let PLG (s, t, F ) =< v0, . . . , vk > be a shortest
path from s to t in G\F on at most L edges (i.e., k ≤ L). We prove that there exists an s-to-t
path P in HF,t whose weight ωHF,t(P ) ≤ ωG(PLG(s, t, F )) and since dHF,t(s, t) ≤ ωHF,t(P )
it follows that dHF,t(s, t) ≤ ωHF,t(P ) ≤ ωG(PLG(s, t, F )) = dLG(s, t, F ). In order to construct
the path P in HF,t, note that for every edge (vi, vi+1) of PLG(s, t, F ) (for every 0 ≤ i < k)
it holds that either (vi, vi+1) ∈ G \ F exists in HF,t with the same weight as its weight in
G, or there exists an edge (vi, t) in HF,t whose weight is dLG(vi, t, F ). Let 0 ≤ ` ≤ k be the
maximum index such that for every 0 ≤ i < ` the edge (vi, vi+1) ∈ HF,t. We define the path
P :=< v0, . . . , v` > ◦(v`, t), then P is a path in HF,t and its weight is ωHF,t(P ) = ωHF,t(<
v0, . . . , v` >)+ωHF,t(v`, t) = ωG(< v0, . . . , v` >)+dLG(v`, t, F ) where the last inequality holds
as every 0 ≤ i < ` the edge (vi, vi+1) exists in HF,t with the same weight as its weight in
G and the edge (v`, t) exists in HF,t and its weight in HF,t is dLG(vi, t, F ). It follows that
ωHF,t(P ) = ωG(< v0, . . . , v` >) + dLG(v`, t, F ) = d`G(s, v`) + dLG(v`, t, F ) ≤ dLG(s, t) where the
last equality holds by the triangle inequality and the fact that < v0, . . . , v` >⊆ PLG(s, t, F ).
Hence, the shortest path from s to t in HF,t has weight at most dLG(s, t, F ), and thus
dHF,t(s, t) ≤ dLG(s, t, F ). J

I Lemma 35. Computing Dijkstra’s algorithm in all the graphs HF,t takes Õ(mnLf ) =
Õ(mn1+ε) time.

Proof. The runtime of Dijkstra in the graphHF,t is Õ(Σ{s∈V ′
F,t
}deg(s)), asO(Σ{s∈V ′

F,t
}deg(s))

is a bound on the number of edges and vertices in HF,t.
It follows that the runtime of running all Dijkstra algorithms is Õ(Σt∈V ΣF∈FtΣ{s∈V ′F,t}deg(s)).

Note that a vertex s ∈ V ′F,t iff F = {a1, . . . , af} and FTL,f (s, t, a1, . . . , af ) is a leaf node of
FTL,f (s, t) at depth f . Hence, for a fixed vertex t ∈ V it holds that ΣF∈FtΣ{s∈V ′F,t}deg(s)
is the sum of deg(s) for every leaf node of FTL,f (s, t). As FTL,f (s, t) contains Õ(Lf ) leaves,
then ΣF∈FtΣ{s∈V ′F,t}deg(s) = Õ(Lf · Σs∈V deg(s)) = Õ(mLf ). Therefore,
Õ(Σt∈V ΣF∈FtΣ{s∈V ′F,t}deg(s)) = Õ(nmLf ) = Õ(mn1+ε), where the last equality holds as
L = nε/f . J

6.3.4 Reducing the Runtime of the Greedy Selection Algorithm
We have O(n2) trees {FTL,f (s, t)}s,t∈V , every tree contains O(nε) nodes, and every node
FTL,f (s, t, a1, . . . , ai) contains a path PLG (s, t, {a1, . . . , ai}) with at most L = nε/f edges. In
the greedy algorithm we want to hit all of these paths that contain at least nε/f/2 edges and
at most nε/f edges. In total there might be O(n2+ε) such paths {PG(s, t, a1, . . . , ai)}, each
path contains at least nε/f/2 edges and at most nε/f edges, and thus according to Lemma
2 finding a set of vertices R of size Õ(n1−ε/f ) which hits all these paths takes Õ(n2+ε+ε/f )
time.

Let R<f be the hitting set of vertices obtained by the greedy algorithm which hits all
the paths P<f = {PG(s, t, {a1, . . . , ai})|1 ≤ i < f} that contains at least nε/f/4 edges and
at most nε/f edges, these are paths that appear in the internal nodes of the trees FTL,f (s, t)
(which are not in the last layer of the trees). Since there are only O(n2+ε−ε/f ) such paths
P<f , each path contains at least nε/f/8 edges and at most nε/f edges, and thus according to
Lemma 2 finding a set of vertices R<f of size Õ(n1−ε/f ) which hits all of these paths takes
Õ(n2+ε) time.
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We define Premaining to be the subset of paths {PG(s, t, {a1, . . . , af})} for which the
following conditions hold:

PG(s, t, {a1, . . . , af}) is a path stored in a some leaf node (FTL,f (s, t, a1, . . . , af )) of
depth f in at least one of the trees FTL,f (s, t).
PG(s, t, {a1, . . . , af}) contains between nε/f/2 to nε/f edges.
PG(s, t, {a1, . . . , af}) does not contain any of the vertices R<f .

Following we describe how to compute in Õ(mn1+ε) time a set Pf of Õ(n2+ε−ε/f ) paths,
each path contains at least nε/f/8 edges, such that if we hit all the paths Pf then we also
hit every path of Premaining.

In Lemma 35 we run Dijkstra in the graph HF,t and computed shortest paths to t, let
TF,t be the shortest paths tree rooted in t in the graph HF,t. Let XF,t be all the vertices
x ∈ VF,t in the tree TF,t at depth nε/f/8 (i.e., the number of edges from the root of TF,t to
x is nε/f/8) such that there exists at least one vertex y ∈ VF,t which is a descendent of x
in TF,t and y is at depth nε/f/4 in TF,t. Let PF,t be the set of paths in the tree TF,t from
every vertex x ∈ XF,t to the root t where a shortcut edge (u, t) is replaced with the subpath
PLG(u, t, F ), so that every path in PF,t is a valid path in G \ F . Finally, let Pf =

⋃
F,t PF,t.

We claim that Pf is a set of Õ(n2+ε−ε/f ) paths, each path contains at least nε/f/8 edges,
such that if we hit all the paths Pf then we also hit all the paths Premaining. We first need
the following lemma.

I Lemma 36. The total number of vertices in all the graphs HF,t is ΣF,t|VF,t| = Õ(n2+ε).

Proof. Since every vertex of VF,t is either a vertex of V ′F,t or a neighbour of such a vertex,
then it holds that ΣF,t|VF,t| ≤ ΣF,tΣ{x∈V ′

F,t
}deg(x).

Note that a vertex x ∈ V ′F,t iff querying the tree FTL,f (x, t) with F results in reaching
a leaf at depth f of the tree FTL,f (x, t). Hence, for a fixed vertex x ∈ V , the sum
(ΣF,t | x∈V ′

F,t
deg(x)) is bounded by the number of nodes in the last layer of all the trees

{FTL,f (x, t)}t∈V multiplied by deg(x). Since the last layer of every tree FTL,f (x, t) contains
nε nodes, and for every vertex x ∈ V there are n trees {FTL,f (x, t)}t∈V , then we get a bound
Õ(Σx∈V n1+εdeg(x)) = Õ(mn1+ε) on the number of vertices in all the graphs HF,t. J

I Lemma 37. Pf is a set of Õ(n2+ε−ε/f ) paths, each path contains at least nε/f/8 edges,
such that if we hit all the paths Pf then we also hit all the paths Premaining. The runtime to
compute Pf is Õ(mn1+ε).

Proof. Let PG(s, t, {a1, . . . , af}) = PG(s, t, F ) ∈ Premaining be the path stored in the node
FTL,f (s, t, a1, . . . , af ) such that {a1, . . . , af} = F . Denote by PG(s, t, F ) =< v1, . . . , vr >.

Since PG(s, t, F ) ∈ Premaining then PG(s, t, F ) contains between nε/f/2 to nε/f edges
and it is not hit by R<f . Let 1 ≤ i < r − nε/f/4 − 1, then vi is a vertex on the path
PG(s, t, F ) which is not among the last nε/f/4 vertices of the path. Then PG(vi, t, F ) is a
subpath of PG(s, t, F ) (since shortest paths are unique). Furthermore, since R<f (which
hits all the paths which contain at least nε/f/4 vertices in all the non-leaf nodes of all
the trees) does not hit PG(vi, t, F ) then it follows that PG(vi, t, F ) is stored in a leaf node
FTL,f (vi, t, F ) of the tree FTL,f (vi, t). A similar argument shows that PG(vi+1, t, F ) is
stored in a leaf node FTL,f (vi+1, t, F ) of the tree FTL,f (vi+1, t). It follows that vi, vi+1 ∈ VF,t
and (vi, vi+1) ∈ HF,t. Therefore, PH(s, t) contains at least all the edges (vi, vi+1) for every
1 ≤ i < r − nε/f/4− 1, and since r is the number of vertices of PG(s, t, F ) which contains at
least nε/f/2 vertices then PH(s, t) contains at least nε/f/4 vertices.

Since PH(s, t) is a path in HF,t containing at least nε/f/4 vertices then it holds for the
nε/f/8-th vertex x from the end of PH(s, t) that x ∈ XF,t. Therefore, the subpath PH(x, t)
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of PH(s, t) from x to t which contains nε/f/8 edges is contained in Pf . Hence, if we hit Pf
we also hit PH(x, t) and therefore we also hit PG(s, t, F ). This proves that hitting all the
paths of Pf also hits all the paths of Premaining.

Next, we prove that Pf contains Õ(n2+ε−ε/f ) paths. We have already proved in 35 that
the number of vertices in all the graphs HF,t is Õ(n2+ε). Recall that Pf =

⋃
F,t{PH(x, t) | x ∈

XF,t}. Furthermore, for every vertex x ∈ XF,t there exists at least nε/f/8 unique vertices in
the subtree of x. To see this, recall that by definition if the vertex x ∈ XF,t there exists at
least one vertex y ∈ VF,t which is a descendent of x in TF,t and y is at depth nε/f/4 in TF,t.
Thus, the set of vertices of TF,t from x to y contains at least nε/f/8 vertices which belong to
the subpath of TF,t rooted at x.

Therefore, |Pf | =
∑
F,t |XF,t| = Õ(n2+ε/(nε/f/8) = Õ(n2+ε−ε/f ).

Finally, the run time to compute Pf is Õ(mn1+ε) as it is dominated by the Dijkstra
algorithms in the graphs HF,t whose runtime is Õ(mn1+ε) according to Lemma 35, and every
path in Pf contains at least nε/f/8 edges by definition. J

After computing Pf in Õ(n2+ε) time, we run the greedy selection algorithm from Lemma
2 on the set of paths Pf in Õ(n2+ε) time (note that the bound on the runtime follows as
|Pf | = Õ(n2+ε−ε/f )) to obtain a set Rf of Õ(n1−ε/f ) vertices that hit all the paths Pf and
thus they also hit all the paths Premaining. Let R = R<f ∪Rf . So in total this takes Õ(n2+ε)
time to find the set R of Õ(n1−ε/f ) vertices that hit all the paths {PG(s, t, {a1, . . . , ai})} in
all the nodes of all the trees FTL,f (s, t) which contain at least nε/f/2 edges and at most
nε/f edges.

I Corollary 38. One can find deterministically in Õ(n2+ε) time a set R of Õ(n1−ε/f ) vertices
that hit all the paths {PG(s, t, {a1, . . . , ai})} in all the nodes of all the trees FTL,f (s, t) which
contain at least nε/f/2 edges and at most nε/f edges.

6.4 Assumptions
In the algorithms we described for the case of directed graphs with real edge weights for
constructing and querying the DSO we made two assumptions:

We assumed all edge weights are non-negative, so that we can run Dijkstra algorithm.
We assumed all the shortest paths: PG(s, t), PG(s, t, F ), PLG(s, t), PLG(s, t, F ) are unique.

In this section we justify these two assumptions.

6.4.1 Handling Negative Weights
In the description above we assumed that edge weights are non-negative. In this section we
describe how to reduce the problem of general edge weights to non-negative edge weights.

We handle it similarly to Weimann and Yuster [39] by the well known method of
feasible price functions in order to transform the negative edge weights to be nonnegative
in the graph G as the first step of the preprocessing algorithm. For a directed graph
G = (V,E) with (possibly negative) edge weights ω(·), a price function is a function φ from
the vertices of G to the reals. For an edge (u, v), its reduced weight with respect to φ is
ωφ(u, v) = ω(u, v) + φ(u)− φ(v). A price function φ is feasible if ωφ(u, v) ≥ 0 for all edges
(u, v) ∈ E. The reason feasible price functions are used in the computation of shortest paths
is that for any two vertices s, t ∈ V , for any s-to-t path P , ωφ(P ) = ω(P ) +φ(s)−φ(t). This
shows that an s-to-t path is shortest with respect to ωφ(·) iff it is shortest with respect to
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ω(·). Moreover, the s-to-t distance with respect to the original weights ω(·) can be recovered
by adding φ(t)− φ(s) to the s-to-t distance with respect to ωφ(·).

The most natural feasible price function comes from single-source distances. Let s be
a new vertex added to G with an edge from s to every other vertex of G having weight 0.
Let d(v) denote the distance from s to vertex v ∈ G. Then for every edge (u, v) ∈ E, we
have that d(v) ≤ d(u) + ω(u, v), so ωd(u, v) ≥ 0 and thus d(·) is feasible. This means that
knowing d(·), we can now use Dijkstra’s SSSP algorithm on G (with reduced weights) from
any source we choose and obtain the SSSP with respect to the original G.

Therefore, we first compute φ = d(·) in the original graph, store φ and change the
weights of every edge (u, v) to ωd(u, v) which are non-negative. Then we continue with the
preprocessing and query algorithms as described in Section 6. Finally, at the end of the query
when we computed dG(s, t, F ) with respect to the weights ωφ(·), we add to it φ(t)− φ(s) to
obtain the weight of this shortest path PG(s, t, F ) with respect to the original weights ω(·).

6.4.2 Unique Shortest Paths Assumption
In this section we justify the unique shortest paths assumption.

For randomized algorithms, unique shortest paths can be achieved easily by using a
folklore method of adding small perturbations to the edge weights, such that all the shortest
paths in the resulting graph are unique w.h.p. and a shortest path in the resulting graph is
also a shortest path in the original graph.

We describe a way to define unique shortest paths in a graph H which fits the algorithms
we presented. First, we assume that the weights are non-negative according to the reduction
described in Section 6.4.1. Next, let 0 < ε′ < 1 be a small enough number such that
n · ε′ < min{ω(u, v) | (u, v) ∈ E}. Add ε′ to the weight of all the edges of the graph. Then we
get that all the edges have positive weights, and every shortest path in the graph after adding ε′
is also a shortest path in the original graph. Now, we define the unique shortest paths PLH(s, t)
in the graph H by recursion on L ≥ 0. For L = 0 we define P 0

H(s, s) =< s > and d0
H(s, s) = 0,

and for every pair of vertices s, t ∈ V, s 6= t we define P 0
H(s, t) = ∅ and d0

H(s, t) = ∞. For
the inductive step we need to define PLH(s, t). Let u1, . . . , u` be all the neighbours of s
which minimize ω(s, ui) + dL−1

H (ui, t) among all the vertices V . Let ui be the vertex whose
index (label) is minimal among u1, . . . , u`. We define PLH(s, t) = (s, ui) ◦ PL−1

H (ui, t) and
dLH(s, t) = ω(s, ui) + dL−1

H (ui, t), such that PL−1
H (ui, t) are uniquely defined by the induction

hypothesis. For every pair of vertices s, t ∈ V such that the above inductive step did not
define PLH(s, t) we define PLH(s, t) = ∅ and dLH(s, t) =∞. We define PH(s, t) as follows. Let
X = arg min0≤L≤n{dLH(s, t)}. Then we define PH(s, t) = PXH (s, t).

Finally, for every s, t ∈ V we define PG(s, t) = PG(s, t), dG(s, t) = ω(PG(s, t)), and for
every 0 ≤ L ≤ n we define PLG (s, t) = PLG (s, t), dLG(s, t) = ω(PLG (s, t)). For a subset F ⊆ E∪V
we define PLG(s, t, F ) = PLG\F (s, t), dLG(s, t, F ) = dLG\F (s, t), PG(s, t, F ) = PG\F (s, t) and
dG(s, t, F ) = dG\F (s, t). It is not difficult to prove the following lemma.

I Lemma 39. For every s, t ∈ V, F ⊆ E ∪ V, 0 ≤ L ≤ n the path PLG(s, t, F ) is a shortest
path among all s to t paths in G \ F that contain L edges, and the path PG(s, t, F ) is a
shortest path from s to t in G \F . Both PG(s, t, F ) and PLG (s, t, F ) are uniquely defined, and
their lengths are dG(s, t, F ) and dLG(s, t, F ) respectively.

The following lemma is also not difficult to prove.

I Lemma 40. When running Dijkstra or the dynamic programming algorithm as described in
Section 4.2 in the graph G \F , if during the execution of the algorithm instead of considering
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vertices in arbitrary order we always consider vertices in ascending order of their labels
(indices) then we compute the unique shortest paths PLG(s, t, F ).

7 Open Questions

Here are some open questions that immediately follow our work.

Weimann and Yuster [39] presented a randomized algebraic algorithm for constructing
a DSO whose runtime is subcubic and the query has subquadratic runtime supporting
f = O(lgn/ lg lgn) edges or vertices failures. Grandoni and Vassilevska Williams [21]
presented a randomized algebraic algorithm for constructing a DSO whose runtime is
subcubic and the query has sublinear runtime supporting a single (f = 1) edge failure.
The preprocessing algorithms of both these DSOs is randomized and algebraic, and it
remains an open question if there exists a DSO with subcubic deterministic preprocessing
algorithm and subquadratic or sublinear deterministic query algorithm, matching their
randomized equivalents?
Both the DSOs of Weimann and Yuster [39] and Grandoni and Vassilevska Williams
[21] use the following randomized procedure (e.g., Lemma 2 in [21]): Let 0 < ε < 1,
1 ≤ f ≤ ε lgn/ lg lgn, L = nε/f , and let C > 0 be a large enough constant. Sample
s = Lf ·C logn graphs {G1, . . . , Gs}, where each Gi is obtained from G by independently
removing each edge with probability (1/L). For C large enough, it holds whp that for
every (s, t, e) for which there exists a replacement path PG(s, t, F ) on at most L nodes,
there is at least one Gi that does not contain F but contains at least one replacement
path for (s, t, F ) on at most L edges. The time to compute the graphs G1, . . . , Gs using
randomization is Õ(m · s) = Õ(n2+ε).
We ask what is the minimum s such that we can deterministically compute such graphs
G1, . . . , Gs in Õ(n2 · s) time such that the above property holds (that for every (s, t, e)
for which there exists a replacement path PG(s, t, F ) on at most L nodes, there is at least
one Gi that does not contain F but contains at least one replacement path for (s, t, F )
on at most L edges).
The randomized algorithm has a simple solution (as mentioned above, sample s =
Lf · C logn graphs {G1, . . . , Gs}, where each Gi is obtained from G by independently
removing each edge with probability (1/L)). As there are O(n2f+2) different possible
queries (s, t, F ), and there are at most O(n2f+3) intervals PG(s, t, F ) (which we want to
maintain) containing exactly nε/f vertices, it is not difficult to prove (as done in [39])
that for every possible query (s, t, F ) there exists whp at least one graph Gi which does
not contain F but contains PG(s, t, F ).
It is not clear how to efficiently derandomize a degenerated version of the above con-
struction. We can even allow some relaxations to the above requirements. Assume
there is a list L = {(s1, t1, F1), . . . , (s`, t`, F`)} of at most ` = O(n2+ε) queries which
are the only queries that interest us, and assume there is a smaller set of intervals
P = {PG(s1, t1, F1), . . . , PG(s`, t`, F`)} each contains exactly nε/f edges that we want to
maintain. Then, what is the minimum s (asymptotically) such that one can construct
deterministically graphs {G1, . . . , Gs} in Õ(n2 · s) time, such that for every 1 ≤ i ≤ `

there exists at least one graph Gi which does not contain Fi but contains PG(si, ti, Fi)?
It is an open question how to achieve this goal, even for f = 1 and even if we allow s to
be greater than Ω̃(nε) (to the extend that running APSP in the graphs G1, . . . , Gs still
takes subcubic time)?
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An indirect open question is to derandomize more randomized algorithms and data-
structures in closely related fields, perhaps utilizing some of our techniques and framework.
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