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Abstract. There is substantial literature dealing with fixed parameter
algorithms for the dominating set problem on various families of graphs.
In this paper, we give a k%), time algorithm for finding a dominat-
ing set of size at most k£ in a d-degenerated graph with n vertices. This
proves that the dominating set problem is fixed-parameter tractable for
degenerated graphs. For graphs that do not contain K} as a topological
minor, we give an improved algorithm for the problem with running time
(O(h))" n. For graphs which are Kj,-minor-free, the running time is fur-
ther reduced to (O(log k))"*/?n. Fixed-parameter tractable algorithms
that are linear in the number of vertices of the graph were previously
known only for planar graphs.

For the families of graphs discussed above, the problem of finding an
induced cycle of a given length is also addressed. For every fixed H and
k, we show that if an H-minor-free graph G with n vertices contains an
induced cycle of size k, then such a cycle can be found in O(n) expected
time as well as in O(nlogn) worst-case time. Some results are stated
concerning the (im)possibility of establishing linear time algorithms for
the more general family of degenerated graphs.

Keywords: H-minor-free graphs, degenerated graphs, dominating set
problem, finding an induced cycle, fixed-parameter tractable algorithms.

1 Introduction

This paper deals with fixed-parameter algorithms for degenerated graphs. The
degeneracy d(G) of an undirected graph G = (V, E) is the smallest number d
for which there exists an acyclic orientation of G in which all the outdegrees are
at most d. Many interesting families of graphs are degenerated (have bounded
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degeneracy). For example, graphs embeddable on some fixed surface, degree-
bounded graphs, graphs of bounded tree-width, and non-trivial minor-closed
families of graphs.

There is an extensive literature dealing with fixed-parameter algorithms for
the dominating set problem on various families of graphs. Our main result is
a linear time algorithm for finding a dominating set of fixed size in degener-
ated graphs. This is the most general class of graphs for which fixed-parameter
tractability for this problem has been established. To the best of our knowledge,
linear time algorithms for the dominating set problem were previously known
only for planar graphs. Our algorithms both generalize and simplify the classical
bounded search tree algorithms for this problem (see, e.g., [2I13]).

The problem of finding induced cycles in degenerated graphs has been studied
by Cai, Chan and Chan [§]. Our second result in this paper is a randomized
algorithm for finding an induced cycle of fixed size in graphs with an excluded
minor. The algorithm’s expected running time is linear, and its derandomization
is done in an efficient way, answering an open question from [8]. The problem of
finding induced cycles in degenerated graphs is also addressed.

The Dominating Set Problem. The dominating set problem on general
graphs is known to be W{2]-complete [I2]. This means that most likely there
is no f(k)-nc-algorithm for finding a dominating set of size at most k in a graph
of size n for any computable function f : IN — IN and constant c. This suggests
the exploration of specific families of graphs for which this problem is fixed-
parameter tractable. For a general introduction to the field of parameterized
complexity, the reader is referred to [12] and [14].

The method of bounded search trees has been used to give an O(8%n) time
algorithm for the dominating set problem in planar graphs [2] and an O((4g +
40)*n?) time algorithm for the problem in graphs of bounded genus g > 1
[13]. The algorithms for planar graph were improved to O(45V3%p) [1], then
to O(227Vkp) [17], and finally to O(2'513VFE + n3 + k%) [15]. Fixed-parameter
algorithms are now known also for map graphs [9] and for constant powers of H-
minor-free graphs [I0]. The running time given in [I0] for finding a dominating
set of size k in an H-minor-free graph G with n vertices is 20(‘/%)716, where c is
a constant depending only on H. To summarize these results, fixed-parameter
tractable algorithms for the dominating set problem were known for fixed pow-
ers of H-minor-free graphs and for map graphs. Linear time algorithms were
established only for planar graphs.

Finding Paths and Cycles. The foundations for the algorithms for finding
cycles, presented in this paper, have been laid in [4], where the authors intro-
duce the color-coding technique. Two main randomized algorithms are presented
there, as follows. A simple directed or undirected path of length £ —1 in a graph
G = (V, E) that contains such a path can be found in 2°)|E| expected time in
the directed case and in 2°®)|V| expected time in the undirected case. A simple
directed or undirected cycle of size k in a graph G = (V, E) that contains such
a cycle can be found in either 20 |V||E| or 20|V |« expected time, where
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w < 2.376 is the exponent of matrix multiplication. These algorithms can be
derandomized at a cost of an extra log |V| factor. As for the case of even cycles,
it is shown in [23] that for every fixed k > 2, there is an O(|V|?) algorithm
for finding a simple cycle of size 2k in an undirected graph (that contains such
a cycle). Improved algorithms for detecting given length cycles have been pre-
sented in [5] and [24]. The authors of [5] describe fast algorithms for finding
short cycles in d-degenerated graphs. In particular, C3’s and Cy’s can be found
in O(|E| - d(G)) time and C5’s in O(|E| - d(G)?) time.

Finding Induced Paths and Cycles. Cai, Chan and Chan have recently intro-
duced a new interesting technique they call random separation for solving fixed-
cardinality optimization problems on graphs [§]. They combine this technique to-
gether with color-coding to give the following algorithms for finding an induced
graph within a large graph. For fixed constants k and d, if a d-degenerated graph
G with n vertices contains some fixed induced tree T on k vertices, then it can
be found in O(n) expected time and O(n log® n) worst-case time. If such a graph
G contains an induced k-cycle, then it can be found in O(n?) expected time and
O(n? log2 n) worst-case time. Two open problems are raised by the authors of the
paper. First, they ask whether the log2 n factor incurred in the derandomization
can be reduced to logn. A second question is whether there is an O(n) expected
time algorithm for finding an induced k-cycle in a d-degenerated graph with n ver-
tices. In this paper, we show that when combining the techniques of random sep-
aration and color-coding, an improved derandomization with a loss of only logn
is indeed possible. An O(n) expected time algorithm finding an induced k-cycle
in graphs with an excluded minor is presented. We give evidence that establishing
such an algorithm even for 2-degenerated graphs has far-reaching consequences.

Our Results. The main result of the paper is that the dominating set problem
is fixed-parameter tractable for degenerated graphs. The running time is k9(@)n,
for finding a dominating set of size k in a d-degenerated graph with n vertices.
The algorithm is linear in the number of vertices of the graph, and we further
improve the dependence on k for the following specific families of degenerated
graphs. For graphs that do not contain K, as a topological minor, an improved
algorithm for the problem with running time (O(h))"*n is established. For graphs
which are Kj,-minor-free, the running time obtained is (O(log h))"*/2n. We show
that all the algorithms can be generalized to the weighted case in the following
sense. A dominating set of size at most k£ having minimum weight can be found
within the same time bounds.

We address two open questions raised by Cai, Chan and Chan in [8] concerning
linear time algorithms for finding an induced cycle in degenerated graphs. An
O(n) expected time algorithm for finding an induced k-cycle in graphs with an
excluded minor is presented. The derandomization performed in [] is improved
and we get a deterministic O(nlogn) time algorithm for the problem. As for
finding induced cycles in degenerated graphs, we show a deterministic O(n)
time algorithm for finding cycles of size at most 5, and also explain why this is
unlikely to be possible to achieve for longer cycles.
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Techniques. We generalize the known search tree algorithms for the dominating
set problem. This is enabled by proving some combinatorial lemmas, which are
interesting in their own right. For degenerated graphs, we bound the number of
vertices that dominate many elements of a given set, whereas for graphs with an
excluded minor, our interest is in vertices that still need to be dominated and
have a small degree.

The algorithm for finding an induced cycle in non-trivial minor-closed fam-
ilies is based on random separation and color-coding. Its derandomization is
performed using known explicit constructions of families of (generalized) perfect
hash functions.

2 Preliminaries

The paper deals with undirected and simple graphs, unless stated otherwise.
Generally speaking, we will follow the notation used in [7] and [II]. For an
undirected graph G = (V, E) and a vertex v € V, N(v) denotes the set of all
vertices adjacent to v (not including v itself). We say that v dominates the
vertices of N(v) U {v}. The graph obtained from G by deleting v is denoted
G — v. The subgraph of G induced by some set V' C V is denoted by G[V"].

A graph G is d-degenerated if every induced subgraph of G has a vertex of
degree at most d. It is easy and known that every d-degenerated graph G = (V, E)
admits an acyclic orientation such that the outdegree of each vertex is at most
d. Such an orientation can be found in O(|E|) time. A d-degenerated graph with
n vertices has less than dn edges and therefore its average degree is less than 2d.

For a directed graph D = (V, A) and a vertex v € V, the set of out-neighbors
of v is denoted by N*(v). For a set V' C V, the notation N* (V') stands for
the set of all vertices that are out-neighbors of at least one vertex of V’. For a
directed graph D = (V, A) and a vertex v € V, we define N;"(v) = N*(v) and
N (v) = NT(N} | (v)) for i > 2.

An edge is said to be subdivided when it is deleted and replaced by a path
of length two connecting its ends, the internal vertex of this path being a new
vertex. A subdivision of a graph G is a graph that can be obtained from G by
a sequence of edge subdivisions. If a subdivision of a graph H is the subgraph
of another graph G, then H is a topological minor of G. A graph H is called a
minor of a graph G if is can be obtained from a subgraph of G by a series of
edge contractions.

In the parameterized dominating set problem, we are given an undirected
graph G = (V| E), a parameter k, and need to find a set of at most k vertices that
dominate all the other vertices. Following the terminology of [2], the following
generalization of the problem is considered. The input is a black and white graph,
which simply means that the vertex set V' of the graph G has been partitioned
into two disjoint sets B and W of black and white vertices, respectively, i.e.,
V = BWW, where W denotes disjoint set union. Given a black and white graph
G = (BWW,FE) and an integer k, the problem is to find a set of at most k
vertices that dominate the black vertices. More formally, we ask whether there
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is a subset U C BW W, such that |U| < k and every vertex v € B — U satisfies
N(v)NU # . Finally we give a new definition, specific to this paper, for what
it means to be a reduced black and white graph.

Definition 1. A black and white graph G = (BW W, E) is called reduced if it
satisfies the following conditions:

— W is an independent set.
— All the vertices of W have degree at least 2.
— N(w1) # N(wsq) for every two distinct vertices wy,we € W.

3 Algorithms for the Dominating Set Problem

3.1 Degenerated Graphs

The algorithm for degenerated graphs is based on the following combinatorial
lemma.

Lemma 1. Let G = (BWW, E) be a d-degenerated black and white graph. If
|B| > (4d + 2)k, then there are at most (4d + 2)k vertices in G that dominate at
least |B|/k wvertices of B.

Proof. Denote R = {v € BUW||(Ng(v)U{v})NB| > |B|/k}. By contradiction,
assume that |R| > (4d+2)k. The induced subgraph G[RUB] has at most |R|+|B|
vertices and at least @ . (% —1) edges. The average degree of G[RU B] is thus
at least

[R|(IB| — k) _ min{|R],|B|}

—1>2d.
k(|R|+|B|) — 2k

This contradicts the fact that G[R U B] is d-degenerated. O

Theorem 1. There is a k°@)n time algorithm for finding a dominating set
of size at most k in a d-degenerated black and white graph with n vertices that
contains such a set.

Proof. The pseudocode of algorithm DominatingSet Degenerated(G, k) that
solves this problem appears below. If there is indeed a dominating set of size
at most k, then this means that we can split B into k disjoint pieces (some
of them can be empty), so that each piece has a vertex that dominates it. If
|B| < (4d + 2)k, then there are at most k(2% ways to divide the set B into k
disjoint pieces. For each such split, we can check in O(kdn) time whether every
piece is dominated by a vertex. If |B| > (4d + 2)k, then it follows from Lemma
[ that |R| < (4d + 2)k. This means that the search tree can grow to be of size
at most (4d + 2)*k! before possibly reaching the previous case. This gives the
needed time bound. O
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Algorithm 1. DominatingSet Degenerated(G, k)

Input: Black and white d-degenerated graph G = (BW W, E), integers k, d
Output: A set dominating all vertices of B of size at most k or NONFE if no
such set exists
if B=0 then
L return
else if £k =0 then
L return NONE
else if |B| < (4d + 2)k then
forall possible ways of splitting B into k (possibly empty) disjoint pieces

Bl, ceey Bk- do
if each piece B; has a verter v; that dominates it then
| return {vi,... v}

L return NONE
else
R« {ve BUW]||(Na(v) U{v}) N B| > |B|/k}
forall v € R do
Create a new graph G’ from G by marking all the elements of N¢(v) as
white and removing v from the graph
D < DominatingSetDegenerated(G', k — 1)
if D # NONE then
| return DU {v}

L return NONE

3.2 Graphs with an Excluded Minor

Graphs with either an excluded minor or with no topological minor are known
to be degenerated. We will apply the following useful propositions.

Proposition 1. [6[18] There exists a constant ¢ such that, for every h, every
graph that does not contain K, as a topological minor is ch?-degenerated.

Proposition 2. [19]21]22] There exists a constant ¢ such that, for every h,
every graph with no Ky minor is chy/log h-degenerated.

The following lemma gives an upper bound on the number of cliques of a pre-
scribed fixed size in a degenerated graph.

Lemma 2. If a graph G with n vertices is d-degenerated, then for every k > 1,

G contains at most (kfl)n copies of Ky,.

Proof. By induction on n. For n = 1 this is obviously true. In the general case,
let v be a vertex of degree at most d. The number of copies of K} that contain

v is at most (kfl). By the induction hypothesis, the number of copies of K} in
G — v is at most (kfl) (n—1). O

We can now prove our main combinatorial results.
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Theorem 2. There exists a constant ¢ > 0, such that for every reduced black
and white graph G = (BW W, E), if G does not contain Kp as a topological
minor, then there evists a vertex b € B of degree at most (ch)".

Proof. Denote |B| =n > 0 and d = ch? where c is the constant from Proposition
[ Consider the vertices of W in some arbitrary order. For each such vertex
w € W, if there exist two vertices b1,bs € N(w), such that by and be are not
connected, add the edge {b1, b2} and remove the vertex w from the graph. Denote
the resulting graph G’ = (BWW’, E’). Obviously, G’[B] does not contain K, as
a topological minor and therefore has at most dn edges. The number of edges in
the induced subgraph G’[B] is at least the number of white vertices that were
deleted from the graph, which means that at most dn were deleted so far.

We now bound |W’|, the number of white vertices in G’. Tt follows from the
definition of a reduced black and white graph that there are no white vertices
in G’ of degree smaller than 2. The graph G’ cannot contain a white vertex of
degree h —1 or more, since this would mean that the original graph G contained
a subdivision of Kj. Now let w be a white vertex of G’ of degree k, where
2 < k < h—2. The reason why w was not deleted during the process of generating
G’ is because N(w) is a clique of size k in G'[B]. The graph G’ is a reduced black
and white graph, and therefore N(w;1) # N(wz) for every two different white
vertices wy and ws. This means that the neighbors of each white vertex induce
a different clique in G'[B]. By applying Lemma [ to G'[B], we get that the

number of white vertices of degree k in G’ is at most (kfl)n. This means that

W] < [(‘11) + (‘21) 4t (hi3)} n. We know that |W| < |W’|+dn and therefore

|E| < d(|B|+|W]) <d {3d + (g) +-t (hi?))} n. Obviously, there exists a black

vertex of degree at most 2|E|/n. The result now follows by plugging the value

of d and using the fact that (}) < (). O

Theorem 3. There exists a constant ¢ > 0, such that for every reduced black
and white graph G = (BW W, E), if G is Kp-minor-free, then there exists a
verter b € B of degree at most (clog h)h/2.

Proof. We proceed as in the proof of Theorem [2] using Proposition [ instead of
Proposition [ O

Theorem 4. There is an (O(h))**n time algorithm for finding a dominating
set of size at most k in a black and white graph with n vertices and no Ky as a
topological minor.

Proof. The pseudocode of algorithm DominatingSet NoMinor(G, k) that solves
this problem appears below. Let the input be a black and white graph G =
(BWW, E). It is important to notice that the algorithm removes vertices and
edges in order to get a (nearly) reduced black and white graph. This can be done
in time O(] E|) by a careful procedure based on the proof of Theorem [2 combined
with radix sorting. We omit the details which will appear in the full version of
the paper. The time bound for the algorithm now follows from Theorem[2l O
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Algorithm 2. DominatingSetNoMinor(G, k)

Input: Black and white (Kp-minor-free) graph G = (BW W, E), integer k
Output: A set dominating all vertices of B of size at most k or NONFE if no
such set exists
if B =0 then
L return
else if kK =0 then
L return NONFE
else
Remove all edges of G whose two endpoints are in W
Remove all white vertices of G of degree 0 or 1
As long as there are two different vertices w1, w2 € W with
N(wi) = N(wz), |N(wi)|] < h — 1, remove one of them from the graph
Let b € B be a vertex of minimum degree among all vertices in B
forall v € Ng(b) U {b} do
Create a new graph G’ from G by marking all the elements of Ng(v) as
white and removing v from the graph
D «— DominatingSetNoMinor(G', k — 1)
if D # NONE then
| return DU {v}

L return NONFE

Theorem 5. There is an (O(logh))**/2n time algorithm for finding a domi-
nating set of size at most k in a black and white graph with n vertices which is
Ky -minor-free.

Proof. The proof is analogues to that of Theorem [ using Theorem [ instead of
Theorem O

3.3 The Weighted Case

In the weighted dominating set problem, each vertex of the graph has some
positive real weight. The goal is to find a dominating set of size at most k, such
that the sum of the weights of all the vertices of the dominating set is as small
as possible. The algorithms we presented can be generalized to deal with the
weighted case without changing the time bounds. In this case, the whole search
tree needs to be scanned and one cannot settle for the first valid solution found.

Let G = (BWW, E) be the input graph to the algorithm. In algorithm [I for
degenerated graphs, we need to address the case where |B| < (4d + 2)k. In this
case, the algorithm scans all possible ways of splitting B into k disjoint pieces
Bi,..., By, and it has to be modified, so that it will always choose a vertex
with minimum weight that dominates each piece. In algorithm [2] for graphs with
an excluded minor, the criterion for removing white vertices from the graph is
modified so that whenever two vertices wy,wq € W satisfy N(w1) = N(ws), the
vertex with the bigger weight is removed.
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4 Finding Induced Cycles

4.1 Degenerated Graphs

Recall that N;"(v) is the set of all vertices that can be reached from v by a
directed path of length exactly ¢. If the outdegree of every vertex in a directed
graph D = (V, A) is at most d, then obviously |N;" (v)| < d® for every v € V and
1> 1.

Theorem 6. For every fivzed d > 1 and k < 5, there is a deterministic O(n)
time algorithm for finding an induced cycle of length k in a d-degenerated graph
on n vertices.

Proof. Given a d-degenerated graph G = (V, E) with n vertices, we orient the
edges so that the outdegree of all vertices is at most d. This can be done in time
O(]E|). Denote the resulting directed graph D = (V, A). We can further assume
that V' = {1,2,...,n} and that every directed edge {u,v} € A satisfies u < v.
This means that an out-neighbor of a vertex u will always have an index which
is bigger than that of u. We now describe how to find cycles of size at most 5.

To find cycles of size 3 we simply check for each vertex v whether Nt (v) N
N5 (v) # 0. Suppose now that we want to find a cycle vy — vy — v3 — v — v1
of size 4. Without loss of generality, assume that v; < v < vq. We distinguish
between two possible cases.

— v1 < vy < vy < vy: Keep two counters C; and Cs for each pair of vertices.
For every vertex v € V and every unordered pair of distinct vertices u,w €
N*(v), such that u and w are not connected, we raise the counter Cy ({u, w})
by one. In addition to that, for every vertex x € NT(v) such that u,w €
NT(z), the counter Co({u,w}) is incremented. After completing this process,
we check whether there are two vertices for which (Cl({g’“’})) —Cy({u, w}) >
0. This would imply that an induced 4-cycle was found.

— v < vy < w3 < w4 0r v < vy < vg < wz: Check for each vertex v whether
the set {v} U N*(v) UN, (v) UN; (v) contains an induced cycle.

To find an induced cycle of size 5, a more detailed case analysis is needed. It
is easy to verify that such a cycle has one of the following two types.

— There is a vertex v such that {v} UN*(v)U NS (v)UN5 (v) UN; (v) contains
the induced cycle.

— The cycle is of the form v — 2z —u — y — w — v, where z € N*(v), u €
Nt (z) N N*t(y), and w € NT(v) N N*(y). The induced cycle can be found
by defining counters in a similar way to what was done before. We omit the
details. a

The following simple lemma shows that a linear time algorithm for finding an
induced Cg in a 2-degenerated graph would imply that a triangle (a C3) can
be found in a general graph in O(|V| + |E|) < O(|V|?) time. It is a long stan-
ding open question to improve the natural O(|V|“) time algorithm for this prob-
lem [16].
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Lemma 3. Given a linear time algorithm for finding an induced Cg in a 2-
degenerated graph, it is possible to find triangles in general graphs in O(|V|+|E|)
time.

Proof. Given a graph G = (V, E), subdivide all the edges. The new graph ob-
tained G’ is 2-degenerated and has |V| + |E| vertices. A linear time algorithm
for finding an induced Cg in G’ actually finds a triangle in G. By assumption,
the running time is O(|V| + |E]) < O(|V]?). O

4.2 Minor-Closed Families of Graphs

Theorem 7. Suppose that G is a graph with n vertices taken from some non-
trivial minor-closed family of graphs. For every fixed k, if G contains an induced
cycle of size k, then it can be found in O(n) expected time.

Proof. There is some absolute constant d, so that GG is d-degenerated. Orient
the edges so that the maximum outdegree is at most d and denote the resulting
graph D = (V| E). We now use the technique of random separation. Each vertex
v € V of the graph is independently removed with probability 1/2, to get some
new directed graph D’. Now examine some (undirected) induced cycle of size k
in the original directed graph D, and denote its vertices by U. The probability
that all the vertices in U remained in the graph and all vertices in N*(U) — U
were removed from the graph is at least 2-*(d+1)

We employ the color-coding method to the graph D’. Choose a random color-
ing of the vertices of D’ with the k colors {1,2, ..., k}. For each vertex v colored
i, if NT(v) contains a vertex with a color which is neither i —1 nor i+1 (mod k),
then it is removed from the graph. For each induced cycle of size k, its vertices
will receive distinct colors and it will remain in the graph with probability at
least 2k1~F.

We now use the O(n) time algorithm from [] to find a multicolored cycle
of length k in the resulting graph. If such a cycle exists, then it must be an
induced cycle. Since k and d are constants, the algorithm succeeds with some
small constant probability and the expected running time is as needed. O

The next theorem shows how to derandomize this algorithm while incurring a
loss of only O(logn).

Theorem 8. Suppose that G is a graph with n vertices taken from some non-
trivial minor-closed family of graphs. For every fixed k, there is an O(nlogn)
time deterministic algorithm for finding an induced cycle of size k in G.

Proof. Denote G = (V, E) and assume that G is d-degenerated. We derandomize
the algorithm in Theorem [fusing an (n, dk + k)-family of perfect hash functions.
This is a family of functions from [n] to [dk + k]| such that for every S C [n],
|S| = dk + k, there exists a function in the family that is 1-1 on S. Such a
family of size e®™+*(dk 4 k)©Us(@k+k) 1og 1 can be efficiently constructed [20].
We think of each function as a coloring of the vertices with the dk + k colors
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C =1{1,2,...,dk + k}. For every combination of a coloring, a subset L C C of
k colors and a bijection f : L — {1,2,...,k} the following is performed. All the
vertices that got a color from ¢ € L now get the color f(c). The other vertices
are removed from the graph.

The vertices of the resulting graph are colored with the & colors {1,2,..., k}.
Examine some induced cycle of size k in the original graph, and denote its vertices
by U. There exists some coloring ¢ in the family of perfect hash functions for
which all the vertices in U U N (U) received different colors. Now let L be the &
colors of the vertices in the cycle U and let f : L — [k] be the bijection that gives
consecutive colors to vertices along the cycle. This means that for this choice
of ¢, L, and f, the induced cycle U will remain in the graph as a multicolored
cycle, whereas all the vertices in N™(U) — U will be removed from the graph.

We proceed as in the previous algorithm. Better dependence on the parameters
d and k can be obtained using the results in [3]. O

5 Concluding Remarks

— The algorithm for finding a dominating set in graphs with an excluded mi-
nor, presented in this paper, generalizes and improves known algorithms
for planar graphs and graphs with bounded genus. We believe that similar
techniques may be useful in improving and simplifying other known fixed-
parameter algorithms for graphs with an excluded minor.

— An interesting open problem is to decide whether there is a 200V e time
algorithm for finding a dominating set of size k in graphs with n vertices
and an excluded minor, where ¢ is some absolute constant that does not

depend on the excluded graph. Maybe even a 200Ky time algorithm can
be achieved.
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