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Abstract

A disjoint system of type (∀,∃, k, n) is a collection C = {A1, . . . ,Am} of pairwise disjoint

families of k-subsets of an n-element set satisfying the following condition. For every ordered

pair Ai and Aj of distinct members of C and for every A ∈ Ai there exists a B ∈ Aj that does

not intersect A. Let Dn(∀,∃, k) denote the maximum possible cardinality of a disjoint system

of type (∀,∃, k, n). It is shown that for every fixed k ≥ 2,

limn→∞Dn(∀,∃, k)
(
n

k

)−1

=
1
2
.

This settles a problem of Ahlswede, Cai and Zhang. Several related problems are considered as

well.

1 Introduction

In Extremal Finite Set Theory one is usually interested in determining or estimating the maximum

or minimum possible cardinality of a family of subsets of an n element set that satisfies certain

properties. See [5], [7] and [9] for a comprehensive study of problems of this type. In several recent

papers (see [3], [1],[2]), Ahlswede, Cai and Zhang considered various extremal problems that study

the maximum or minimum possible cardinality of a collection of families of subsets of an n-set, that

satisfies certain properties. They observed that many of the classical extremal problems dealing

with families of sets suggest numerous intriguing questions when one replaces the notion of a family

of sets by the more complicated one of a collection of families of sets.
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In the present note we consider several problems of this type that deal with disjoint systems.

Let N = {1, 2, . . . , n} be an n element set, and let C = {A1, . . . ,Am} be a collection of pairwise

disjoint families of k-subsets of N . C is a disjoint system of type (∃,∀, k, n) if for every ordered pair

Ai and Aj of distinct members of C there exists an A ∈ Ai which does not intersect any member of

Aj . Similarly, C is a disjoint system of type (∀,∃, k, n) if for every ordered pair Ai and Aj of distinct

members of C and for every A ∈ Ai there exists a B ∈ Aj that does not intersect A. Finally, C is

a disjoint system of type (∃,∃, k, n) if for every ordered pair Ai and Aj of distinct members of C
there exists an A ∈ Ai and a B ∈ Aj that does not intersect A.

Let Dn(∃,∀, k) denote the maximum possible cardinality of a disjoint system of type (∃,∀, k, n).

Let Dn(∀,∃, k) denote the maximum possible cardinality of a disjoint system of type (∀,∃, k, n)

and let Dn(∃,∃, k) denote the maximum possible cardinality of a disjoint system of type (∃,∃, k, n).

Trivially, for every n,

Dn(∃,∀, 1) = Dn(∀,∃, 1) = Dn(∃,∃, 1) = n.

It is easy to see that every disjoint system of type (∃,∀, k, n) is also a system of type (∀,∃, k, n),

and every system of type (∀,∃, k, n) is also of type (∃,∃, k, n). Therefore, for every n ≥ k

Dn(∃,∀, k) ≤ Dn(∀,∃, k) ≤ Dn(∃,∃, k).

In this note we determine the asymptotic behaviour of these three functions for every fixed k,

as n tends to infinity.

Theorem 1.1 For every k ≥ 2

limn→∞Dn(∃,∀, k)

(
n

k

)−1

=
1

k + 1
.

Theorem 1.2 For every k ≥ 2

limn→∞Dn(∀,∃, k)

(
n

k

)−1

=
1
2
.

Corollary 1.3 For every k ≥ 2

limn→∞Dn(∃,∃, k)

(
n

k

)−1

=
1
2
.

Theorem 1.1 settles a conjecture of Ahlswede, Cai and Zhang [2], who proved it for k = 2 [1].

The main tool in its proof, presented in Section 2, is a result of Frankl and Füredi [8]. The proof

of Theorem 1.2, which settles another question raised in [2] and proved for k = 2 in [1], is more

complicated and combines combinatorial and probabilistic arguments. This proof and the simple

derivation of Corollary 1.3 from its assertion are presented in Section 3.
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2 Hypergraph decomposition and disjoint systems

In this section we prove Theorem 1.1. A k-graph is a hypergraph in which every edge contains

precisely k vertices. We need the following result of Frankl and Füredi.

Lemma 2.1 ([8]) Let H = (U,F) be a fixed k-graph with |F| = f edges. Then one can place

(1− o(1))

(
n

k

)
/f

copies H1 = (U1,F1),H2 = (U2,F2), . . . of H into a complete k-graph on n vertices such that

|Ui ∩ Uj | ≤ k for all i 6= j, and if |Ui ∩ Uj | = k and Ui ∩ Uj = B then B /∈ Fi, B /∈ Fj. Here the

o(1) term tends to zero as n tends to infinity. 2

Proof of Theorem 1.1 The lower bound for Dn(∃,∀, k) is a direct corollary of Lemma 2.1. Let

(U,A) be the k-graph consisting of k + 1 pairwise disjoint edges. By the lemma we can place

(1 − o(1))
(n
k

)
/(k + 1) edge disjoint copies of this graph into a complete k-graph on n vertices, so

that any two copies will have at most k common vertices. Therefore if we take the edges of each

copy as a family, we get (1−o(1))
(n
k

)
/(k+1) pairwise disjoint families which forms a disjoint system.

Let H1 = (U1,A1) and H2 = (U2,A2) be two such families. Since |U1 ∩ U2| ≤ k and the family H1

consists of k + 1 pairwise disjoint sets, there is a set A ∈ A1 which does not contain any point of

U1 ∩ U2. This A does not intersect any set of the family H2. Therefore, our disjoint system is of

type (∃,∀, k, n).

We next establish an upper bound for Dn(∃,∀, k). Let C = {A1,A2, . . .} be a disjoint system of

type (∃,∀ k, n) . We denote by N1, |N1| = n1, the set of all families of C containing one element, by

N2, |N2| = n2, the set of those containing from two up to k elements, and by N3, |N3| = n3, the set

of those containing more than k elements. Since sets in any two one-element families are disjoint

we have n1 ≤ n/k. Let Ai = {A1, . . . , At} be a family with 2 ≤ t ≤ k elements. By the definition

of a system of type (∃,∀, k, n) we conclude that any set B with the properties :

|B| = k ; B ⊂ ∪tj=1Aj ; B ∩Aj 6= ∅ ∀j (1)

cannot be used as an element of any other family. We next bound the number of such sets B

from below. Choose not necessarily distinct aj ∈ Aj for 2 ≤ j ≤ t such that aj /∈ A1. Put

L = {a2, . . . , at}, then |L| ≤ k − 1. Let L be the family of all sets of the form Lr = L ∪ Yr where

Yr ranges over all (k− |L|) element subsets of A1. Clearly each such Lr satisfies the properties (1).

Moreover Lr 6= A1 and |L| ≥ k.

We claim that no k-set can satisfy the properties (1) for two or more families from C. Indeed as-

sume this is false. Let B be a set which satisfies the properties (1) for two families A = {A1, . . . , Al}
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and F = {F1, . . . , Fm}. By the definition of a disjoint system of type (∃,∀, k, n) there exists a set

Ai ∈ A, 1 ≤ i ≤ l such that Ai ∩ Fj = ∅ for all j. Since by (1) B ⊆ ∪mj=1Fj we conclude that

B ∩Ai = ∅, contradicting (1) and proving our claim.

Therefore with each family Ai in N2 we can associate k+1 sets ( k-sets of the form Lr as above

together with the set A1) which cannot be associated with any other family and are not members

of any other family. In addition each family in N3 contains at least k + 1 k-sets. This implies that

(k + 1)n2 + (k + 1)n3 ≤
(
n

k

)
.

Therefore (n2 + n3) ≤
(n
k

)
/(k + 1). Together with the fact that n1 ≤ n/k we conclude that

Dn(∃,∀, k, n) ≤ n
k +

(n
k

)
/(k + 1) completing the proof. 2

3 Random graphs and disjoint systems

In this section we prove Theorem 1.2. We need the following two probabilistic lemmas.

Lemma 3.1 (Chernoff, see e.g. [4], Appendix A) Let X be a random variable with the bino-

mial distribution B(n, p). Then for every a > 0 we have

Pr(|x− np| > a) < 2e−2a2/n. 2

Let L be a graph-theoretic function. L satisfies the Lipschitz condition if for any two graphs

H,H ′ on the same set of vertices that differ only in one edge we have |L(H) − L(H ′)| ≤ 1. Let

G(n, p) denote, as usual, the random graph on n labeled vertices in which every pair, randomly

and independently, is chosen to be an edge with probability p. (See, e.g., [6].)

Lemma 3.2 ([4], Chapter 7) Let L be a graph-theoretic function satisfying the Lipschitz condi-

tion and let µ = E[L(G)] be the expectation of L(G), where G = G(n, p). Then for any λ > 0

Pr(|L(G)− µ| > λ
√
m] < 2e−λ

2/2

where m =
(n

2

)
. 2

Proof of Theorem 1.2 Let n1 be the number of families containing only one element. The same

argument as in the proof of Theorem 1.1 shows that n1 ≤ n/k. This settles the required upper

bound for Dn(∀,∃, k), since all other families contain at least 2 sets.

We prove the lower bound using probabilistic arguments. We show that for any ε > 0 there are

at least 1
2(1−ε)

(n
k

)
families which form a disjoint system of type (∀,∃, k, n), provided n is sufficiently
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large (as a function of ε and k). We first outline the main idea in the (probabilistic) construction

and then describe the details. Let G = G(n, p) be a random graph, where p is a constant, to be

specified later, which is very close to 1. We use this graph to build another random graph G1,

whose vertices are all k-cliques in G. Two vertices of G1 are adjacent if and only if the induced

subgraph on the corresponding k-cliques in G is the union of two vertex disjoint k-cliques with no

edges between them. Following the standard terminology in the study of random graphs we say

that an event holds almost surely if the probability it holds tends to 1 as n tends to infinity. We

will prove that almost surely the following two events happen. First, the number of vertices in G1

is greater than (1−ε/2)
(n
k

)
. Second, G1 is almost regular, i.e., for every (small) δ > 0 there exists a

(large) number d such that the degree d(x) of any vertex x of G1 satisfies (1−δ)d < d(x) < (1+δ)d,

provided n is sufficiently large.

Suppose G1 = (V,E) satisfies these properties. By Vizing’s Theorem [10], the chromatic index

χ′(G1) of G1 satisfies χ′(G1) ≤ (1 + δ)d + 1. Since for any x ∈ G1 we have d(x) ≥ (1 − δ)d, the

number of edges |E| of G1 is at least (1−δ)d|V |
2 . Hence there exists a matching in G1 which contains

at least (1−δ)d|V |
2 /χ′(G1) ∼ (1−δ)|V |

2(1+δ) edges. This matching covers almost all vertices of G1, as δ is

small, providing a system of pairs of k-sets covering almost all the
(n
k

)
k-sets. Taking each pair as

a family we have a disjoint system of size at least 1
2(1− ε)

(n
k

)
and ε can be made arbitrarily small

for all n sufficiently large.

We next show that the resulting system is a disjoint system of type (∀,∃, k, n). Assume this is

false and let A = {A1, A2} and B = {B1, B2} be two pairs where A1 ∩Bi 6= ∅ for i = 1, 2. Choose

x1 ∈ A1 ∩ B1 and x2 ∈ A1 ∩ B2. Since x1 and x2 belong to A1 they are adjacent in G = G(n, p).

However, x1 ∈ B1, x2 ∈ B2 and this contradicts the fact that the subgraph of G induced on B1∪B2

has no edges between B1 and B2. Thus the system is indeed of type (∀,∃, k, n) and

Dn(∀,∃, k) >
1
2

(1− ε)
(
n

k

)

for every ε > 0, provided n > n0(k, ε1), as needed.

The proof that indeed G1 has the required properties almost surely will be deduced from the

following two statements.

Fact 1. G = G(n, p) satisfies the following condition almost surely. For every set X of k vertices

of G, the number of vertices which do not have any neighbor in X is

(1 + o(1))(1− p)k(n− k),

where here the o(1) term tends to zero as n tends to infinity.
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Fact 2. For any c > 0, if n is sufficently large, G = G(n, p) satisfies the following condition almost

surely. For every set Y of n1 vertices of G, where cn ≤ n1 ≤ n, the number of k-cliques of the

induced subgraph of G on Y is close to its expectation, i.e., is

(1 + o(1))

(
n1

k

)
p(
k
2),

where the o(1) term tends to zero as n tends to infinity.

The proof of Fact 1 is a standard application of Lemma 3.1 and is thus left to the reader.

Proof of Fact 2. Let H(Y, p) denote the induced subgraph of G = G(n, p) on a fixed set Y of

vertices, where |Y | = n1. Let L be the graph-theoretic function given by

L(H ′) =
1( n1

k−2

)N(H ′),

where H ′ is a graph on Y and N(H ′) denotes the number of k-cliques in H ′.

The expected value of L(H(Y, p)) is easily seen to be µ(L) = 1

( n1
k−2)

(n1

k

)
p(
k
2), and the expected

value of N = N(H(Y, p)) is µ(N) =
(n1

k

)
p(
k
2). By the definition of L, if H1 and H2 are two graphs

on Y which differ only in one edge than |L(H1) − L(H2)| ≤ 1, since the number of k-cliques of

H(Y, p) containing an edge is at most
( n1

k−2

)
. Thus, by Lemma 3.2

Pr[ |L(H(Y, p))− µ(L)| > n
3
4

√√√√(n1

2

)
] < 2e−

n
3
2
2 .

Consequently,

Pr[ |N(H(Y, p))− µ(N)| > n
3
4

(
n1

k − 2

)√√√√(n1

2

)
] < 2e−

n
3
2
2 .

Since k and p are constants, and n1 ≥ cn we conclude that

n
3
4

(
n1

k − 2

)√√√√(n1

2

)
= γ

(
n1

k

)
p(
k
2) = γµ(N),

where γ = γ(n, n1, k, p) tends to 0 as n tends to infinity.

The total number of possible sets Y is clearly less than 2n. Hence, the probability that for some

Y , N(H(Y, p)) deviates by more than γµ(N(H(Y, p)) from its expectation is less than 2n+1e−
n

3
2
2 ,

which tends to zero as n tends to infinity. This completes the proof of Fact 2.

Returning to the proof of the theorem consider a k-clique X in G. The degree d of X as a

vertex of G1 is the number of k-cliques in the induced subgraph of G on the set of all vertices which

have no neighbors in X. By Facts 1 and 2 each such degree is almost surely

(1 + o(1))

(
n1

k

)
p(
k
2)
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where n1 = (1+o(1))(1−p)k(n−k). Therefore, almost surely G1 is almost regular and the degrees

of its vertices tend to infinity with n.

In a similar manner, Fact 2 applied to the set Y of all vertices of G implies that the number of

k-cliques in G = G(n, p) (which is the number of vertices of G1) is almost surely

(1 + o(1))

(
n

k

)
p(
k
2).

Fix p < 1 so that p(
k
2) > 1− ε

4 for the required ε. With this p, almost surely the number of vertices

in G1 is more than

(1− ε/2)

(
n

k

)
,

as needed. Therefore, our procedure produces, with high probability, a disjoint system of the

required type with at least 1
2(1− ε)

(n
k

)
pairs, completing the proof. 2

Remark. By combining our method here with the technique of [8] we can prove the following

extension of Lemma 2.1, which may be useful in further applications. Since the proof is similar to

the last one, we omit the details.

Proposition 3.3 Let H = (U,F) be a fixed k-graph with |F| = f edges and let g denote the

maximum cardinality of an intersection of two distinct edges of H. Then one can place

(1− o(1))

(
n

k

)
/f

pairwise edge-disjoint copies H1 = (U1,F1),H2 = (U2,F2), . . . of H into a complete k-graph on n

vertices such that |Ui ∩ Uj | ≤ k for all i 6= j, and such that if for some i 6= j there is an Fj ∈ Fj
so that |Fj ∩Ui| ≥ g+ 2 then there is an Fi ∈ Fi so that Fj ∩Ui ⊂ Fi. Here the o(1) term tends to

zero as n tends to infinity.

Proof of Corollary 1.3 Let n1 be the number of one element families in a disjoint system of type

(∃,∃, k, n). The trivial argument used in the proofs of Theorems 1.1 and 1.2 shows that n1 ≤ n/k

and thus implies that

Dn(∃,∃, k) ≤ n

k
+

1
2

(
n

k

)
.

As observed in Section 1, Dn(∀,∃, k) ≤ Dn(∃,∃, k) and hence, by Theorem 1.2, the desired result

follows. 2
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