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Abstract

We say that two hypergraphs H1 and H2 with v vertices each can be packed if there are edge

disjoint hypergraphs H ′1 and H ′2 on the same set V of v vertices, where H ′i is isomorphic to Hi.

It is shown that for every fixed integers k and t, where t ≤ k ≤ 2t − 2 and for all sufficiently

large v there are two (t, k, v) partial designs that cannot be packed. Moreover, there are two

isomorphic partial (t, k, v)-designs that cannot be packed. It is also shown that for every fixed

k ≥ 2t − 1 and for all sufficiently large v there is a (λ1, t, k, v) partial design and a (λ2, t, k, v)

partial design that cannot be packed, where λ1λ2 ≤ O(vk−2t+1 log v). Both results are nearly

optimal asymptotically and answer questions of Teirlinck. The proofs are probabilistic.

1 Introduction

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs, where |V1| = |V2| = v. We say that

H1 and H2 can be packed if there are edge disjoint hypergraphs H ′1 and H ′2 on the same set of v

vertices, where H ′i is isomorphic to Hi for i = 1, 2.

For integers λ, t, k and v, where v ≥ k ≥ t ≥ 1, a (λ, t, k, v) partial design is a k-uniform

hypergraph H on v vertices so that no set of t vertices lies in more than λ edges of H. For brevity,

a (1, t, k, v) partial design is also called a (t, k, v) partial design. A (λ, t, k, v) partial design H is a

design if every set of t vertices lies in precisely λ edges of H.

Various reasearchers studied the possibility of packing two given designs or partial designs as

a function of their parameters. When k = 1 the problem is trivial. The case of (λ, 1, 2, v) partial
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designs (which are just graphs on v vertices with maximum degree at most λ) is considered in

various papers including [2], [4] and [8] (see also [3] and its references) and much is known here,

although the main conjecture of [2] is still open. Much less is known for k ≥ 3. Answering a

problem of Doyen [5], Teirlinck showed in [10] that for v ≥ 7 every two (2, 3, v)-designs (usually

known as Steiner Triple Systems) can be packed. His proof can be easily modified to yield the same

result for partial (2, 3, v) designs as well. In [6] it is shown that if k ≥ 2t then every two (t, k, v)

partial designs can be packed. The proof, by a simple probabilistic argument, proceeds as follows.

If H1 = (V1, E1) and H2 = (V2, E2) are such designs, then the number of edges in each Hi is at

most
(v
t

)
/
(k
t

)
. It is easy to check that the expected number of common edges of a random copy of

H1 and a random copy of H2 in the complete hypergraph on v vertices is |E1| · |E2|/
(v
k

)
< 1 and

hence there are two edge disjoint copies providing the required packing.

Our first result shows that the assumption that k ≥ 2t is almost tight.

Theorem 1.1 For every fixed integers k and t where t ≤ k ≤ 2t − 2, there is a v0 = v0(k, t) so

that for all v > v0 there are two (t, k, v)-partial designs that cannot be packed. Moreover, there is

a single (t, k, v)-partial design so that two isomorphic copies of it cannot be packed.

This answers a problem of Teirlinck [11]. Note that the case k = 2t − 1 for t > 2 remains open,

and it seems plausible, in view of [10], that for this case a packing is always possible, provided v is

sufficiently large.

For v ≥ k ≥ t ≥ 1 let c(t, k, v) denote the maximum integer c such that whenever λ1 · λ2 ≤ c

then every partial (λ1, t, k, v) and (λ2, t, k, v) designs can be packed. The probabilistic argument of

[6] sketched above easily implies that for every fixed k ≥ 2t there is a constant b = b(k, t) > 0 so

that

c(t, k, v) ≥ bvk−2t. (1)

Teirlinck ([11]) observed that for every k ≥ t there is a b′ = b′(k, t) > 0 so that

c(t, k, v) ≤ b′vk−t

and raised the problem of estimating the best possible power of v in the asymptotic behaviour of

c(t, k, v) for fixed k and t more accurately. Here we prove the following result that determines this

power almost precisely.
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Theorem 1.2 For every fixed k ≥ 2t− 1, there is a positive constant b” = b”(k, t) > 0 so that for

all v

c(t, k, v) ≤ b”vk−2t+1 log v.

Note that Theorem 1.1 implies that for k ≤ 2t−2, c(t, k, v) = 0. It would be interesting to close the

gap between the upper bound for c(t, k, v) given in the last theorem, and the lower bound provided

by (1). By the result in [8] (see also [4]) one can easily show that c(1, 2, v) = Θ(v) but the cases of

larger t and k seem much more difficult.

The proofs of the two theorems above are probabilistic. The proof of Theorem 1.1 is more

subtle and is given in Section 2. The (easier) proof of Theorem 1.2 is presented in Section 3.

2 Partial designs

In this section we prove Theorem 1.1. For simplicity of presentation we first prove that there are

two partial (not necessarily isomorphic) designs that cannot be packed and then briefly comment on

the modifications required in the proof in order to establish the stronger assertion dealing with two

copies of the same partial design. The proof is probabilistic and applies the following correlation

inequality of Suen ([9]). Let Bi, i ∈ I be a finite family of events in an arbitrary probability

space. Let pi denote the probability of Bi and define M = Πi∈I(1 − pi). Note that if the events

Bi are independent then M is simply the probability that no Bi holds. The inequality of Suen

shows that M supplies a reasonable estimate for this probability even when the events are ”mostly

independent”. More precisely, let us call a graph G on the set of vertices I a superdependency graph

for the events Bi if the following condition holds. For any two disjoint subsets J1 and J2 of I, so

that there are no edges of G between J1 and J2,

Prob(
∧

i∈J1∪J2

Bi) = Prob(
∧
i∈J1

Bi) · Prob(
∧
j∈J2

Bj).

For i, j ∈ I let NG(i, j) denote the set of all vertices of G adjacent to either i or j (or both).

Theorem 2.1 (Suen ([9]) If Bi, i ∈ I are events in a probability space, pi = Prob(Bi), M =

Πi∈I(1 − pi) and G = (I, E(G)) is a superdependency graph for these events then the probability
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that no event Bi holds deviates from M by at most

M(exp (
∑

ij∈E(G)

y(i, j))− 1),

where

y(i, j) = 2(Prob(Bi ∧Bj) + pipj) Πl∈NG(i,j)(1− pl)−1.

Proof of Theorem 1.1 Let k and t be fixed positive integers, t ≤ k ≤ 2t − 2. Throughout the

proof we assume, whenever this is needed, that v is a sufficiently large integer (as a function of k

and t). Let V1 and V2 be two sets of v vertices each and put

p = v−
3k−2t−1

4 .

Let H1 = (V1, E1) be a random (t, k, v) partial design obtained as follows. For each k-subset K of

V1, randomly and independently, mark K with probability p. E1 is the set of all marked subsets of

V1 such that there is no other marked subset that intersects K by at least t elements. This is clearly

a (t, k, v) partial design. Let H2 = (V2, E2) be another random (t, k, v) partial design obtained by

applying the above marking procedure to the k-subsets of V2.

To complete the proof it suffices to show that with positive probability H1 and H2 cannot be

packed. For simplicity, denote V = V1. We must show that with positive probability, for every

bijection π : V2 7→ V , the two sets E1 and π(E2) intersect, where here π(E2) = {π(e) : e ∈ E2},

and π(e) = {π(v); v ∈ e}.

To do so, we consider a fixed bijection π as above and estimate the probability that E1 and

π(E2) are disjoint. For each subset K of cardinality k of V , let BK denote the event that K is in

E1∩π(E2). Note that this event occurs if and only if in the random marking process applied in the

definition of H1 and H2, both K ⊂ V and π−1(K) ⊂ V2 have been marked, and no other k-subset

that intersects K or π−1(K) by at least t elements have been marked. By letting

s =
k−1∑
j=t

(
k

j

)(
v − k
k − j

)
= O(vk−t)

denote the number of k-subsets of a v-element set that intersect a given k-subset by at least t

elements we conclude that for each K

Prob(BK) = p2(1− p)2s.

3



By the definition of p, and since (3k − 2t − 1)/4 > k − t we conclude that (1 − p)2s = 1 + o(1).

Therefore,

Prob(BK) ∼ p2, (2)

where here and from now on we write f ∼ g for two functions f and g of v if the ratio f/g tends

to 1 as v tends to infinity.

Our objective is to apply Theorem 2.1 in order to estimate the probability that π provides a

packing ofH1 andH2, i.e., that none of the eventsBK occurs. To this end, define a superdependency

graph G = (V (G), E(G)) on the events BK as follows. The set of vertices of G is the set V (G) =

{K ⊂ V : |K| = k} and two vertices K and K ′ are adjacent if and only if |K ∩K ′| ≥ 2t− k. (Note

that this last inequality must hold if there is a k-subset that intersects both K and K ′ by at least

t elements.)

We claim that G is a superdependency graph for the above events BK . Indeed, if J1 and J2

are two disjoint subsets of V (G) and there are no edges of G between J1 and J2 then there is no

k-subset of V that intersects a member of J1 and a member of J2 by at least t elements each.

Similarly, there is no k-subset of V2 that intersects a member of π−1(J1) and a member of π−1(J2)

by at least t elements each. However, this means that even if we know all the randomly chosen

marks of the k-subsets that affect any of the events BK , K ∈ J1, this does not have any effect

on the conditional probability of any Boolean function of the events BK′ ,K ′ ∈ J2, and hence G

is indeed a superdependency graph, as claimed. Observe that the degree of every vertex of G is

O(vk−(2t−k)) = O(v2k−2t).

By Theorem 2.1 we thus conclude that the probability that π provides a packing of H1 and H2

is at most

ΠK∈V (G)(1− Prob(BK)) exp(
∑

KK′∈E(G)

y(K,K ′)),

where

y(K,K ′) = 2(Prob(BK ∧BK′) + Prob(Bk)Prob(BK′))ΠK”∈NG(K,K′)(1− Prob(BK”))−1.

By (2), and since the maximum degree of G is O(v2k−2t) we conclude that

y(K,K ′) ≤ O(p4),
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where here we used the easy fact that for distinct K and K ′, Prob(BK ∧BK′) ∼ p4. Therefore

Prob(
∧

K∈V (G)

BK) ≤ exp(−(1 + o(1))p2 ·
(
v

k

)
+O(p4)O(v3k−2t))

≤ exp(−Ω(v(2t+1−k)/2) +O(v)) ≤ exp(−Ω(v3/2)).

We have thus proved that the probability that a fixed bijection π provides a packing of H1 and

H2 is at most

exp(−Ω(v3/2)).

Since the total number of bijections is only v! = exp(O(v log v)), the probability that there exists

a bijection that provides a packing is at most

v! · exp(−Ω(v3/2)) = o(1),

and hence almost surely, (i.e., with probability that tends to 1 as v tends to infinity), H1 and

H2 cannot be packed. In particular, there exists a choice of partial (t, k, v)-designs H1 and H2

that cannot be packed, completing the proof of the theorem for the case of two (not necessarily

isomorphic) partial designs.

The proof of the stronger assertion, that there is a single partial (t, k, v) design so that two

copies of it cannot be packed is similar but requires a little more care. Here is a brief description.

To simplify notation we omit all floor and ceiling signs when these are not crucial. Let p be the same

probability as before and let H1 = (V,E1) be the random partial design defined by the marking

process described above. We claim that with high probability one cannot pack two copis of H1.

To prove this claim we first observe that the expected number of pairs of k-subsets of V that share

at least t common elements and have both been marked is p2O(v2k−t) = o(pvk) and hence almost

surely there are only o(pvk) such pairs. On the other hand, by the standard estimates for Binomial

distributions (cf., e.g., [1], Appendix A), for a fixed subset of v/2 vertices, the probability that

the number of marked k-subsets of this subset is less than, say, half its expectation (i.e., less then

0.5p
(v/2
k

)
) is exponentially small in this expectation, i.e., it is much smaller than 2−v. Thus almost

surely in every subset of v/2 vertices there are at least Ω(pvk) marked k-subsets, and since every

pair among the o(pvk) ones mentioned above can cause the deletion of at most 2 marked k-subsets

in the definition of H1 we have proved the following:
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Claim Almost surely every set of v/2 vertices of H1 contains an edge.

We can thus assume that H1 satisfies the property in the last claim. Consider, now, a fixed

bijection π : V 7→ V . If π has at least v/2 fixed points then since H1 satisfies the above property

π fixes at least one edge of H1 (pointwise) and hence does not provide a packing of two copies of

H1. It remains to consider the bijections π that fix less than v/2 points. It is easy to see that

for each such π there are two disjoint subsets U and W of V such that |U | = |W | = v/6 and

π maps U onto W . Let HU denote the induced subhypergraph of H1 on U and let HW be the

induced subhypergraph on W . Observe that the k-subsets of W differ from these of U . Moreover,

no k-subset of V intersects by at least t elements a k-subset of W and a k-subset of U . It follows

that all the random choices in the marking process that generates HU are independent of those

in the process that generates HW , and these are thus essentially two independent random partial

(t, k, v/6)-designs. We can thus repeat the argument in the first part of the proof and conclude

that for every fixed π, U and W as above, the probability that the restriction of π to a bijection

from U to W packs HU and HW is at most exp(−Ω(v3/2)). As the total number of choices for π,U

and W is less than 4vv! we conclude that almost surely there is no such π. Hence there is a partial

(t, k, v) design that cannot be packed with a copy of itself, completing the proof of the theorem. 2

3 Designs with multiplicities

In this section we present the proof of Theorem 1.2. Let k and t be positive integers, k ≥ 2t − 1.

Observe that the case k = t = 1 is trivial as c(1, 1, v) = 0 for all v so suppose k > 1. As before

assume, whenever this is needed, that v is sufficiently large. Throughout the proof we let b1, b2, . . .

denote various positive constants that may depend on k and t but are independent of v.

Let V and V2 be two sets of v vertices each and let H1 = (V,E1) be an arbitrary partial

(t, k, v)-design, where |E1| ≥ b1vt. (The fact that such a partial design with

b1 = (1 + o(1))
1

t!
(k
t

)
exists is proved in [7]. However, if one does not need such a precise estimate of b1 then this fact

can be proved directly by a simple probabilistic argument which we omit).
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Note that H1 is a (1, t, k, v) partial design. Define

p = b2
log v
vt−1

,

where b2 = b2(k, t) will be chosen later, and let H2 = (V2, E2) be a random k-uniform hypergraph

obtained by choosing each k-subset K of V2, randomly and independently with probability p, to be

an edge of H2. To complete the proof we establish the following two claims.

Claim 1 For sufficiently large b2, almost surely no t-subset of V2 is contained in more than

2p
(v−t
k−t
)
≤ 2b2vk−2t+1 log v edges of H2. Thus H2 is almost surely a (λ2, t, k, v) partial design

with λ2 = 2b2vk−2t+1 log v.

Claim 2 For sufficiently large b2, almost surely H1 and H2 cannot be packed.

Since H1 is a (1, t, k, v) partial design, these two claims clearly imply that c(t, k, v) < 1 · λ2 =

O(vk−2t+1 log v) completing the proof of Theorem 1.2. It thus remains to prove the two claims.

Proof of Claim 1 Let T be a fixed t-subset of V2. The number of k-subsets of H2 that contain

T is a Binomial random variable with parameters
(v−t
k−t
)

and p, and hence its expectation is p
(v−t
k−t
)
.

By the standard estimates for Binomial distributions (cf., e.g., [1], Appendix A), the probability

that T is contained is more than 2p
(v−t
k−t
)

edges of H2 is at most

exp(−b3p
(
v − t
k − t

)
) ≤ exp(−b4b2vk−2t+1 log v).

Here b4 is some constant dependning only on k and t, and hence, by choosing, e.g., b2 = b2(k, t) ≥

2t/b4, and since k − 2t+ 1 ≥ 0, the last quantity is at most v−2t.

Since there are
(v
t

)
≤ vt subsets of cardianlity t of V2, the probability that there is one contained

in more than 2p
(v−t
k−t
)

edges of H2 is at most vtv−2t = o(1), completing the proof of the claim. 2

Proof of Claim 2 Let π : V2 7→ V be a fixed bijection between V2 and V and let us estimate the

probability that π supplies a packing of H1 and H2. This probability is precisely the probability

that there is no edge K of H1 so that π−1(K) ∈ E2. Since each k-subset of V2 is an edge of H2

with probability p and all these choices are independent, the above probabilty is precisely

(1− p)|E1| ≤ exp(−p · b1vt) ≤ exp(−b1b2v log v).

If b2 = b2(k, t) > 1/b1 the last quantity is smaller than v−v. Since the number of possible bijections

is v!, the probability that there exists a bijection which provides a packing of H1 and H2 is at most

v! · v−v = o(1), completing the proof of the claim, and implying the assertion of Theorem 1.2. 2
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