
Explicit Constructions of Depth-2 Majority Circuits for

Comparison and Addition

Noga Alon ∗

IBM Research Division

Almaden Research Center

650 Harry Road

San Jose, CA 95120-6099

and Sackler Faculty of Exact Sciences

Tel Aviv University, Tel Aviv, Israel

Jehoshua Bruck

IBM Research Division

Almaden Research Center

650 Harry Road

San Jose, CA 95120-6099

Abstract

All Boolean variables here range over the two element set {−1, 1}. Given n Boolean variables

x1, . . . , xn, a non-monotone MAJORITY gate (in the variables xi) is a Boolean function whose

value is the sign of
∑n
i=1 εixi, where each εi is either 1 or −1. The COMPARISON function

is the Boolean function of two n-bits integers X and Y whose value is −1 iff X ≥ Y . We

construct an explicit sparse polynomial whose sign computes this function. Similar polynomials

are constructed for computing all the bits of the summation of the two numbers X and Y . This

supplies explicit constructions of depth-2 polynomial-size circuits computing these functions,

which use only non-monotone MAJORITY gates. These constructions are optimal in terms

of the depth and can be used to obtain the best known explicit constructions of MAJORITY

circuits for other functions like the product of two n-bit numbers and the maximum of n n-

bit numbers. A crucial ingredient is the construction of a discrete version of a sparse “delta

polynomial”—one that has a large absolute value for a single assignment and extremely small

absolute values for all other assignments.

∗Research supported in part by the Fund for Basic Research administered by the Israel Academy of Sciences

1

1 Introduction

In this paper we address the problem of computing the COMPARISON and ADDITION func-

tions of two n-bit numbers using circuits of (non-monotone) MAJORITY gates. Throughout this

paper, a Boolean function will be defined as f : {1,−1}n → {1,−1}; namely, logical 0 and logical

1 are represented by 1 and -1, respectively.

We first define a few concepts.

1.1 Definitions

Definition 1 A linear threshold function f(X) is a Boolean function such that

f(X) = sgn(F (X)) =

 1 if F (X) ≥ 0

−1 if F (X) < 0

where

F (X) = w0 +
n∑
i=1

wixi.

The coefficients wi are called the weights of the threshold function. We denote the class of linear

threshold functions by LT1. Notice that the weights can be arbitrary real numbers. It is more

interesting to consider the subclass of LT1, which we call L̂T 1 of functions that can be written with

”small” weights. Each function

f(X) = sgn(w0 +
n∑
i=1

wixi)

in L̂T 1 is characterized by the property that the weights, wi, are integers bounded by a polynomial

in n. Namely, |wi| ≤ nc for some constant c > 0.

Notice that when we say that a Boolean function belongs to a certain complexity class (like LT1)

we actually mean that the family of Boolean functions (as defined for all n) belong to that class.

In this paper we will be mostly interested in linear threshold functions in which the weights are

either 1 or -1. Clearly, the elements that compute those functions are non-monotone analogues of

usual MAJORITY gates, which we call here , for short, MAJ gates.

Definition 2 A MAJ gate computes a linear threshold function with weights which are either 1

or -1.

2

We will be interested in circuits that consist of MAJ gates. Define MAJk to be the class of

Boolean functions that can be computed by a polynomial size depth-k circuit of MAJ gates, where

the depth of the circuit is the number of gates on the longest path from the input to the output.

Note that MAJk is equivalent to the class L̂T k, which is the class of Boolean functions that can

be computed by a depth-k polynomial size circuits of linear threshold elements with polynomial

weights.

After presenting the computational model, let us introduce the functions that we would like to

compute.

Let X = (xn, xn−1, . . . , x1) and Y = (yn, yn−1, . . . , y1) be two vectors in {1,−1}n. Let a and b

be the integers that correspond to X and Y , respectively. Since our convention is that a logical 0

is represented by 1 and a logical 1 is represented by −1 this means that a =
∑n
i=1

1−xi
2 2i−1 and

b =
∑n
i=1

1−yi
2 2i−1.

Definition 3 The COMPARISON function, C(X,Y), is the Boolean function which is -1 iff a ≥ b.

Definition 4 Let c = a+ b and let Z = (zn+1, zn, . . . , z1) be the binary representation of c. Then

the ADDITION function is ADD(X,Y) = Z.

1.2 Motivation and known results

Why is it interesting to consider these two functions?

1. It was proved in [15] that the PRODUCT of two n-bit numbers is in MAJ4. However, the

proof is non-constructive. Our construction for the ADDITION function can be used to

describe explicitly a depth-4 MAJ circuit for PRODUCT . A different way of obtaining such

an explicit depth-4 circuit has been recently found, independently, in [10].

2. It was proved in [15] that any LT1 function (one that can have large weights) is in MAJ3.

This proof is also non-constructive. Our construction for COMPARISON can be used to

construct explicitly a depth-3 MAJ circuit for any LT1 function.

3. The construction for COMPARISON can be used also as a building block for a depth-3

circuit that sorts n n-bits numbers (see [8, 16, 17]).

3

It is known [8, 17] that COMPARISON ∈MAJ3 and ADDITION ∈MAJ4. It was also observed

in [15] that COMPARISON ∈ LT1, namely, the COMPARISON function can be computed by

a single linear threshold element. However, this linear threshold element has exponentially big

weights. As shown in [15] COMPARISON 6∈ L̂T 1. On the other hand, using the results in [7],

it was proved in [15] that both COMPARISON and ADDITION are in MAJ2. The proofs in

[15] are existence proofs, while finding explicit constructions was left as an open problem, which

we solve here.

1.3 The main contribution

Our main contributions in this paper are explicit constructions of depth-2 polynomial size circuits

of MAJ gates that compute the COMPARISON and ADDITION functions. Actually, we

show that the COMPARISON and ADDITION functions can be computed as sign functions

of explicit sparse polynomials (i.e., polynomials with nO(1) monomials and with 1,−1-coefficients).

In [6] it is proved that any function that can be computed as a sign of such a polynomial is also

in MAJ2. Hence, COMPARISON and ADDITION are in MAJ2. The key to the construction

is the idea that we can construct sparse polynomials that have the property of a “discrete delta

function” in the sense that the value of the polynomial is very large for X being the all-1 vector

and extremely small for all other values. The construction of these polynomials, that we call delta

polynomials, is presented in the next section. In Section 3 we use the delta polynomials as a building

block in the construction of depth-2 MAJ circuits for COMPARISON and ADDITION . These

constructions can be practical, as they may be used in the actual design of small depth circuits for

addition and multiplication based on MAJ gates. The final Section 4 contains some concluding

remarks, extensions and open problems.

2 Character Sums, Linear Codes and Delta Polynomials

Let x1, . . . , xn be n variables, where each xi ranges over the two-element set {−1, 1}. Since x2
i = 1

for all i, every polynomial in the variables xi can be represented as a multilinear polynomial. We

thus define a monomial in the variables xi to be a product of a subset of the set of variables with a

coefficient +1 or −1, i.e., a product of the form εj
∏
i∈A xi, where εj ∈ {−1, 1} and A ⊆ {1, . . . , n}.

4

A polynomial in the variables xi above is called t-sparse if it is the sum of at most t monomials.

We are mainly interested in the case that t is at most nO(1).

For a vector ε = {ε1, . . . , εn}, where εi ∈ {−1, 1}, and for a positive real c, we call a polynomial

P (x1, . . . , xn) a delta polynomial for ε and c if there are two positive constants a and b satisfying
a
b ≥ c such that:

(i) P (ε1, . . . , εn) = a and

(ii) For all (x1, . . . , xn) ∈ {−1, 1}n which satisfies (x1, . . . , xn) 6= ε, |P (x1, . . . , xn)| ≤ b.

Therefore, P is a delta polynomial for ε and c if it attains a positive value at ε and the absolute

value of P on any other point in {−1, 1}n is smaller by at least a factor of c.

Observe that the polynomial
∏n
i=1(1+xi) is a delta polynomial for (1, 1, . . . , 1) and any positive

c. However, this polynomial is a sum of exponentially many monomials. Our objective in this

section is to construct explicitly relatively sparse delta polynomials. A probabilistic construction

follows from the techniques presented in [7, 15]; however, their explicit construction seems to be

more difficult.

One can easily check that if P (x1, . . . , xn) is a delta polynomial for (1, 1, . . . , 1) and c then for

any vector (ε1, . . . , εn) ∈ {−1, 1}n, P (ε1x1, . . . , εnxn) is a delta polynomial for ε and c, which has

exactly the same number of monomials as P . Thus we may restrict our attention to the construction

of sparse delta polynomials for (1, 1, . . . , 1).

Our construction can be obtained by using linear error-correcting codes over GF (2) that have

certain distance properties. We discuss this general approach at the end of the section. Now we

present in more detail one such construction which is based on the properties of the quadratic

residue character which are proved using Weil’s famous theorem known as the Riemann hypothesis

for curves over finite fields [18]. These properties have been used before to derive the pseudo-

random properties of Paley graphs and quadratic tournaments ([9], see also [5],[2]), and have also

been used in the analysis of certain randomized algorithms for various number-theoretic problems,

(see [4], [13]). Other constructions can be given based on some of the ideas of [1] and [12] together

with the known constructions of expander-graphs, or based on the results of [3]. For our purposes

here the quadratic residue construction suffices and we thus describe only this construction in

detail, and only comment briefly in the end of the section on the ways to obtain additional similar

constructions.

5

Let q be an odd prime power and let χ be the quadratic residue character defined on the elements

of the finite field GF (q) by χ(y) = y(q−1)/2. Equivalently, χ(y) is 1 if y is a nonzero square, 0 if y

is 0 and −1 otherwise. Suppose q ≥ n and let B = {b1, . . . bn} be an arbitrary subset of cardinality

n of GF (q). Consider the following polynomial in the n variables x1, . . . , xn;

PB(x1, . . . , xn) =
∑

y∈GF (q)\B

n∏
i=1

1 + χ(y − bi) + xi(1− χ(y − bi))
2

.

Observe that PB is a sum of exactly q − n monomials, since for each fixed y in GF (q) \ B, the

quantity 1+χ(y−bi)+xi(1−χ(y−bi))
2 is either 1 or xi.

Theorem 1 For every odd prime power q and for every subset B of cardinality n of GF (q) the

polynomial PB defined above satisfies:

(i) PB(1, 1, . . . , 1) = q − n, and

(ii) For every (x1, . . . xn) ∈ {−1, 1}n which is not (1, 1, . . . , 1),

|PB(x1, . . . , xn)| ≤ (n− 1)q1/2.

Therefore, PB is a (q − n)-sparse delta polynomial for (1, 1, . . . , 1) and c = q−n
(n−1)q1/2 .

Notice that when q is a prime and B is simply the set {1, 2, . . . n} the expression for the

polynomial PB is relatively simple.

In order to prove theorem 1 we need the following known estimate for character sums, due to

Weil [18], (see also [14], page 43, Theorem 2C; the lemma stated below is a special case).

Lemma 1 Let q be an odd prime power and let F be the field GF (q). Let f(y) be a non-constant

polynomial over F which decomposes into the product of m distinct linear factors. Then, for the

quadratic character χ,

|
∑
y∈F

χ(f(y))| ≤ (m− 1)q1/2.

Proof of Theorem 1 Since PB is a sum of q − n monomials it is (q − n)-sparse. Moreover,

since the coefficient of every monomial is 1 it follows that PB(1, 1, . . . , 1) = q − n. Suppose, now,

that (x1, . . . , xn) 6= (1, 1, . . . , 1) is a vector in {−1, 1}n. Put I = {i : 1 ≤ i ≤ n, xi = −1},

J = {bi : i ∈ I}. By substituting the values of the variables xi and by the fact that the quadratic

character is multiplicative we obtain:
n∏
i=1

1 + χ(y − bi) + xi(1− χ(y − bi))
2

=
∏
i∈I

χ(y − bi) = χ(
∏
i∈I

(y − bi)).

6

Define f(y) =
∏
i∈I(y− bi). Observe that for the quadratic character χ, χ(f(y)) = 0 whenever y is

equal to one of the elements bi for i ∈ I. Therefore:

PB(x1, . . . , xn) =
∑

y∈GF (q)\B

n∏
i=1

1 + χ(y − bi) + xi(1− χ(y − bi))
2

=
∑

y∈GF (q)\B
χ(f(y))

=
∑

y∈GF (q)\(B\J)

χ(f(y))

=
∑

y∈GF (q)

χ(f(y))−
∑

y∈B\J
χ(f(y)).

Observe that since I is not empty and since the elements bi are distinct we can apply Lemma 1 to

f(y) and obtain, by the triangle inequality:

|PB(x1, . . . , xn)| ≤ |
∑

y∈GF (q)

χ(f(y))|+ |
∑

y∈B\J
χ(f(y))| ≤ (|I| − 1)q1/2 + n− |I|.

The quantity (|I| − 1)q1/2 + n − |I| is clearly an increasing function of |I|, and since |I| ≤ n this

quantity is at most (n− 1)q1/2. This completes the proof. 2

Linear Codes and Delta Polynomials

The argument above can be modified to obtain a similar construction of a delta polynomial from

any linear error-correcting code over GF (2) with length which is polynomial in the dimension and

with the property that the Hamming weight of any non-zero codeword is sufficiently close to half the

length. Here is a sketch of the argument. Let A = (aij)1≤i≤n,1≤j≤t be the generating 0, 1-matrix of

a linear error-correcting code of length t and dimension n, and suppose that the Hamming weight

of each non-zero codeword is between (1 − ε) t2 and (1 + ε) t2 . Let PA = PA(x1, . . . , xn) be the

polynomial defined by

PA(x1, . . . , xn) =
t∑

j=1

∏
i;aij=1

xi.

Clearly PA(1, . . . , 1) = t, and it is not difficult to check that for every (x1, . . . , xn) ∈ {−1, 1}n which

is not (1, . . . , 1),

|PA(x1, . . . , xn)| ≤ εt,

since PA(x1, . . . , xn) is precisely the difference between the number of 0’s and the number of 1’s in

the codeword defined by the sum (in GF (2)) of all rows i of A such that xi = −1.

7

The polynomial PB described in Theorem 1 is a special case of the above construction, which

corresponds to a linear error-correcting code of dimension n and length q−n, in which the Hamming

weight of any non-zero codeword is between q−n
2 −

(n−1)q1/2

2 and q−n
2 + (n−1)q1/2

2 . Three additional

simple constructions of linear codes whose parameters are asymptotically comparable to this one

(up to some polylogarithmic factors) are given in [3], and any of these can be used for constructing

a sparse delta polynomial in the manner described above.

3 The Constructions

In this section we prove that the COMPARISON and ADDITION functions can be computed as

sign functions of (explicit) sparse polynomials. From a (simple) result in [6] this implies that both

functions can be computed by an explicit depth-2, polynomial size circuit of MAJ elements. Both

constructions apply the delta polynomials described in the previous section.

First we note that the following is an equivalent description of the COMPARISON function:

For X,Y ∈ {1,−1}n, C(X,Y) = −1 iff either X = Y or there exists an i, 1 ≤ i ≤ n such that

xi = −1 and yi = 1 and also xj = yj for all j, such that i < j ≤ n. The following theorem gives

the construction for COMPARISON.

Theorem 2 Let mk(X,Y) = P (xnyn, xn−1yn−1, · · · , xk+1yk+1) and let mn(X,Y) = q − n, where

P (·) is the delta polynomial described in Theorem 1 with q ≥ n4 an odd prime power. Define

Ĉ(X,Y) = m0(X,Y) +
n∑
i=1

(yi − xi)mi(X,Y).

Then C(X,Y) = sgn(−Ĉ(X,Y)).

Proof: We consider the two cases (X ≥ Y or X < Y) and prove that C(X,Y) = sgn(−Ĉ(X,Y))

in both cases.

First assume that X is strictly greater than Y . Hence, there is an i such that xi = −1 and yi = 1

and also xj = yj for all j, i < j ≤ n. Hence, (yi − xi)mi ≥ 2(q − n) and

Ĉ(X,Y) ≥ 2(q − n)− 2n(n− 1)
√
q > 0.

IfX = Y then clearly Ĉ(X,Y) = q−n > 0. Hence, ifX ≥ Y then−1 = C(X,Y) = sgn(−Ĉ(X,Y)).

8

Similarly, if X < Y then Ĉ(X,Y) ≤ −2(q − n) + 2n(n − 1)
√
q < 0. Hence, C(X,Y) =

sgn(−Ĉ(X,Y)) in this case as well, completing the proof. 2

Next we consider the ADDITION function. In order to compute the bits of the sum of the two

n-bit numbers X and Y as signs of sparse polynomials it suffices to construct a sparse polynomial

for each of the carry bits. This is because the ith bit in the result of the addition is xiyici where

ci is the corresponding carry bit. If we can compute ci as a sign of a sparse polynomial, say

ci = sgn(p(X,Y)), then we can also compute xiyici = sgn(xiyip(X,Y)) as a sign function of a

sparse polynomial. From now on we will concentrate, without loss of generality, on proving that

the carry to the last bit (i.e. cn) can be computed as a sign of a sparse polynomial. We denote the

carry function to the last bit as CAR(X,Y) and prove that it can be computed as a sign function

of a sparse polynomial.

Theorem 3 Let lk(X,Y) = P (−xn−1yn−1,−xn−2yn−2, · · · ,−xk+1yk+1) and let ln−1(X,Y) = q−n,

where P (·) is the delta polynomial described in Theorem 1 with q ≥ 4n4 an odd prime power. Let

f1(w1, w2) = (1− w1 − w2 + w1w2). Let

ĈAR(X,Y) =
n−1∑
i=1

f1(xi, yi)li(X,Y).

Then CAR(X,Y) = sgn(2q − ĈAR(X,Y)).

Proof: Note that f1(−1,−1) = 4 and f1(1, 1) = f1(1,−1) = f1(−1, 1) = 0.

First assume that there is carry to bit n in the addition of X and Y , namely that CAR(X,Y) = −1.

In such a case we have carry generation and propagation. Namely, there is an i < n such that

xi = −1 and yi = −1 in which the carry is generated, and in addition xj 6= yj for all j, i < j < n (so

that the carry will propagate). Note that the carry will propagate also in the case xj = yj = −1.

However, without loss of generality we can consider the leftmost place i in which the carry was

generated. Since f1(xi, yi)li ≥ 4(q − n) then, by the properties of the delta polynomials,

ĈAR(X,Y) ≥ 4(q − n)− 4(n− 2)(n− 1)
√
q > 2q

Hence, if there is carry then CAR(X,Y) = sgn(2q − ĈAR(X,Y)).

9

Next we consider the case in which there is no carry. The reason for not having a carry is that

for each index i either there is no carry generation (and then f1(xi, yi) = 0) or there is a carry

generation but there is no carry propagation. In the latter case |li(X,Y)| ≤ (n− 1)
√
q. Hence, for

this case

ĈAR(X,Y) ≤ 4(n− 1)2√q < 2q.

Hence, if there is no carry then CAR(X,Y) = sgn(2q − ĈAR(X,Y)), completing the proof. 2

4 Concluding remarks and extensions

• A family of vectors F in {−1, 1}n is a linear subspace if for every x = (x1, . . . , xn) and y =

(y1, . . . , yn) in F , the vector x∗y = (x1y1, . . . , xnyn) is also in F . (This is the usual definition

of a subspace together with our mapping that replaces 0 and 1 by 1 and −1 respectively.)

Similarly, A is an affine subspace if it is the set of all vectors of the form x ∗ y for some

fixed vector x as y ranges over all vectors of a linear subspace. Generalizing the notion of

a delta polynomial we can construct, for every affine subspace a sparse polynomial whose

value on the members of the subspace is much larger than whose value on vectors outside the

subspace. (The delta polynomials correspond to the case that the subspace contains only one

point). This enables us, among other things, to express explicitly every function which is the

characteristic function of a union of polynomially many affine subspaces as a sign of a sparse

polynomial. In order to construct the generalized delta polynomials we observe first that it

suffices to construct those for linear subspaces. For every linear subspace of co-dimension

k in {−1, 1}n there are k monomials in x1, . . . , xn such that a vector (x1, . . . , xn) is in the

subspace iff all these monomials evaluated in the coordinates of the above vector are 1. We

can thus simply substitute these monomials in the delta polynomial of Section 2 and obtain

the desired generalized sparse polynomial. We omit the details.

• The delta polynomials can be used to construct a sparse polynomial for the MAXIMUM

function, that gets as input n integers (n bits each) and outputs -1 iff the first integer is the

maximum. The construction for MAXIMUM is a simple generalization of the one for the

10

COMPARISON function.

• By a non-constructive argument one can prove that there is a (q − n)-sparse polynomial

P (x1, . . . , xn) satisfying somewhat stronger properties than those given by Theorem 1; namely

(i) P (1, 1, . . . , 1) = q − n, and

(ii) For every (x1, . . . xn) ∈ {−1, 1}n which is not (1, 1, . . . , 1),

|P (x1, . . . , xn)| ≤ O(n1/2q1/2).

It would be interesting to find an explicit construction of such polynomials. (This will supply,

of course, smaller depth-2 MAJ-circuits for the functions considered in Section 3).

11

References

[1] M. Ajtai, J. Komlós and E. Szemerédi, Deterministic simulation in LOGSPACE, Proc. 19th

Annual ACM STOC, ACM Press, New York, 1987, 132-140.

[2] N. Alon, Tools from higher algebra, to appear in: Handbook of Combinatorics, R. L. Graham,

M. Grotschel and L. Lovász, eds., North Holland.

[3] N. Alon, O. Goldreich, J. Hastad and R. Peralta, Simple constructions of almost k-wise inde-

pendent random variables, Proc. 31st IEEE FOCS, St. Louis, Missouri, IEEE (1990), 544-553.

Also: Random Structures and Algorithms 3 (1992), 289-304.

[4] E. Bach, Realistic analysis of some randomized algorithms, Proc. 19th Annual ACM STOC,

ACM Press, New York, 1987, 453-461.

[5] B. Bollobás, Random Graphs, Academic Press, London 1985.

[6] J. Bruck, Harmonic analysis of polynomial threshold functions, SIAM J. on Disc. Math. 3

(1990), 168-177.

[7] J. Bruck and R. Smolensky, Polynomial threshold functions, AC0 functions and spectral norms,

SIAM J. on Comput. 21 (1992), 33-42.

[8] A. K. Chandra, L. Stockmeyer and U. Vishkin, Constant depth reducibility, SIAM J. on Com-

put. 13 (1984), 423-439.

[9] R. L. Graham and J. H. Spencer, A constructive solution to a tournament problem, Canad.

Math. Bull. 14 (1971), 45-48.

[10] T. Hofmeister, T. Hohberg and S. Kohling, Some notes on threshold circuits and multiplication

in depth 4, Information Processing Letters, 39 (year?), 219-225.

[11] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy and G. Turan, Threshold circuits of bounded

depth, Proc. 28th IEEE FOCS, 1987, 99–110.

[12] J. Naor and M. Naor, Small-bias probability spaces: efficient constructions and applications,

Proc. 22nd Annual ACM STOC, 1990, ACM Press, 213-223.

12

[13] R. Peralta, On the randomness complexity of algorithms, University of Wisconsin, Milwaukee,

CS Research Report TR 90-1.

[14] W. M. Schmidt, Equations Over Finite Fields, An Elementary Approach, Springer Lecture

Notes in Mathematics, vol. 536, Springer Verlag, Berlin 1976.

[15] K. Y. Siu and J. Bruck, On the power of threshold circuits with small weights, SIAM J. on

Disc. Math. 4 (1991), 423-435.

[16] K. Y. Siu, J. Bruck, T. Kailath and T. Hofmeister, Depth efficient Neural Networks for division

and related problems, IBM Research Report, RJ 7946, 1991.

[17] I. Wegener, The Complexity of Boolean Functions, John Wiley & Sons, page 322, 1987,

[18] A. Weil, Sur les courbes algébriques et les variéstés qui sèn déduisent, Actualités Sci. Ind. No.

1041 (1948).

13

