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Abstract

Consider the following communication problem, that leads to a new notion of edge coloring.
The communication network is represented by a bipartite multigraph, where the nodes on one
side are the transmitters and the nodes on the other side are the receivers. The edges correspond
to messages, and every edge e is associated with an integer c(e), corresponding to the time it
takes the message to reach its destination. A proper k-edge-coloring with delays is a function
f from the edges to {0, 1, ..., k − 1}, such that for every two edges e1 and e2 with the same
transmitter, f(e1) 6= f(e2), and for every two edges e1 and e2 with the same receiver, f(e1) +
c(e1) 6≡ f(e2) + c(e2) (mod k). Haxell, Wilfong and Winkler [10] conjectured that there always
exists a proper edge coloring with delays using k = ∆+1 colors, where ∆ is the maximum degree
of the graph. We prove that the conjecture asymptotically holds for simple bipartite graphs, using
a probabilistic approach, and further show that it holds for some multigraphs, applying algebraic
tools. The probabilistic proof provides an efficient algorithm for the corresponding algorithmic
problem, whereas the algebraic method does not.

1 Introduction

Motivated by the study of optical networks, Haxell, Wilfong and Winkler considered in [10] a commu-
nication network in which there are two groups of nodes: transmitters and receivers. Each transmitter
has to send a set of messages, each of which should reach one receiver (more than one message per
receiver is allowed). Each message has an associated delay, which is the time from the moment it
is sent until it reaches its destination. The network is timed by a clock, so all times are integers.
We wish to find a periodic setup of message sending for all transmitters, such that in each cycle all
messages of all transmitters are sent, where each transmitter sends at most one message and each
receiver gets at most one message, at any given time unit. The objective is to find such a cycle of
minimal length.

We can formalize this problem as follows: we represent the network by a bipartite multigraph
G = (V,E) with sides A and B, where the vertices of A are the transmitters and the vertices of B are

∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Research supported in part by a USA-Israeli BSF grant, by the Israel Science Foundation and by the

Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. Email: nogaa@post.tau.ac.il.
†Department of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv, Israel. Email: veraa@post.tau.ac.il.

1



the receivers. The edges correspond to the messages that are to be sent, and a function c : E → N

associates each edge with its delay. The aim is to find the smallest number k for which there exists
an edge coloring f : E → {0, 1, . . . , k − 1}, such that for every two edges e1 and e2 that have a
common vertex in A, f(e1) 6= f(e2), and for every two edges e1 and e2 that have a common vertex
in B, f(e1) + c(e1) 6≡ f(e2) + c(e2) (mod k).

The minimum number of colors is, clearly, at least ∆, where ∆ is the maximum degree in
G. Furthermore, there are simple examples in which ∆ + 1 colors are required, for example, any
∆-regular graph in which all delays but one are 0. Haxell, Wilfong and Winkler [10] raised the
following conjecture.

Conjecture 1.1 Let G = (V,E) be a bipartite multigraph with sides A and B and with maximum
degree ∆, and let c : E → N be a delay function. Then there is a coloring f : E → {0, 1, . . . ,∆},
such that for every two edges e1 and e2 that have a common vertex in A, f(e1) 6= f(e2), and for every
two edges e1 and e2 that have a common vertex in B, f(e1) + c(e1) 6≡ f(e2) + c(e2) (mod (∆ + 1)).

In this paper, we show that the conjecture asymptotically holds for simple graphs. More precisely,
we prove that if G is a simple bipartite graph with maximum degree ∆, then ∆+ o(∆) colors suffice.
Our proof uses a random coloring procedure, following the result of Kahn [12] and its extensions and
variants by Häggkvist and Janssen [11] and Molloy and Reed [14, 15] on list edge coloring.

Using algebraic techniques, based on [3, 7], we also show that the conjecture holds for some
families of bipartite multigraphs such as all even length regular multi-cycles where the degree of
regularity plus one is a prime. We further describe a generalization of the problem to non-bipartite
multigraphs, and prove the conjecture in some cases.

In section 2 we prove the asymptotic result for simple bipartite graphs, in section 3 we present
the algebraic proofs for some families of multigraphs. The final section 4 contains some concluding
remarks.

2 Simple Bipartite Graphs

In this section we show that if G is a simple bipartite graph with maximum degree ∆, then there
is a coloring with the required properties using (1 + o(1))∆ colors. Throughout the section we omit
all floor and ceiling signs, whenever these are not crucial. We will use the notation Õ(x) to denote,
as usual, O(x(log x)O(1)). Let G = (V,E) be a simple bipartite graph with sides A and B, and
assume without loss of generality that G is ∆-regular. Let c : E → N be the delay function, and let
k = (1 + ε)∆, where ε > 0 is an arbitrarily small constant. We show that if ∆ is sufficiently large,
then there is a coloring with the desired properties using k colors.

We present a coloring procedure with three stages:

1. Choose a small set of reserved colors for every edge.

2. Iteratively color the edges as follows. In each iteration, assign every uncolored edge a random
color from the unreserved colors that are still available for it. An edge retains the color assigned
to it only if no adjacent edge is assigned a conflicting color.
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3. Complete the coloring from the lists of reserved colors.

In the rest of this section we describe the details of each stage, and prove that, with positive
probability, the procedure finds a coloring with the required properties.

2.1 Notation

To simplify the description of the procedure, we extend the function c by defining for all e = (u, v) ∈ E

with u ∈ A and v ∈ B, c(e, u) = 0 and c(e, v) = c(e). Now the coloring f should satisfy the condition
that for every two edges e1, e2 ∈ E with a common vertex u, f(e1)+c(e1, u) 6= f(e2)+c(e2, u), where
all the operations on the colors are done modulo k.

During the iterative procedure, we denote by Le ⊆ {0, 1, . . . , k−1} the set of all unreserved colors
still available for e, for all e ∈ E. For all v ∈ V let Lv = { c+c((u, v), v) | c ∈ L(u,v), (u, v) ∈ E }. For
a set of colors C and a color c, let C − c = { c′ − c | c′ ∈ C }. Clearly, L(u,v) ⊆ (Lu − c((u, v), u)) ∩
(Lv − c((u, v), v)), for all (u, v) ∈ E. Thus, every time a color c is removed from a list Lv, then
c− c(e, v) is removed from the lists Le, for all edges e incident with v.

For all v ∈ V and c ∈ Lv, denote by Tv,c the set of all uncolored edges e incident with v, for
which the color c− c(e, v) is still available, i.e.

Tv,c = { e = (u, v) ∈ E | c− c(e, v) ∈ Le and e is uncolored }.

In the first stage we choose a set of reserved colors for every edge. We do it by choosing a set
of reserved colors Reservev for all v ∈ V , and then by defining for every edge e = (u, v) ∈ E,
Reservee = (Reserveu− c(e, u))∩ (Reservev − c(e, v)). During the iterative procedure, for all v ∈ V

and color c, we denote by Rv,c the set of all uncolored edges e = (u, v) incident with v, such that the
color c− c(e, v) + c(e, u) is reserved for u, i.e.

Rv,c = { e = (u, v) ∈ E | c− c(e, v) + c(e, u) ∈ Reserveu and (u, v) is uncolored}.

For all i, e ∈ E, v ∈ V and color c, let lie, liv, tiv,c and ri
v,c denote the sizes of the sets Le, Lv, Tv,c

and Rv,c, respectively, after i iterations. If after i iterations c /∈ Lv we define tiv,c = 0. For all the
above, i = 0 refers to the time before the first iteration, but after the first stage of the procedure, in
which the reserved colors are chosen.

2.2 Coloring Scheme Overview

We now describe our coloring procedure. We start by choosing a small set of reserved colors Reservev

for all v ∈ V , and by defining for all e = (u, v) ∈ E, Reservee = (Reserveu − c(e, u)) ∩ (Reservev −
c(e, v)). We would like these colors to be available for e at the final stage, and hence we remove
from the initial set Le of every edge e = (u, v) ∈ E, all the colors that conflict with the colors
reserved for u and v. Therefore, for all e = (u, v) ∈ E, the initial set Le is defined by Le =
{0, 1, . . . , k− 1} \ ((Reserveu− c(e, u))∪ (Reservev − c(e, v))). We choose the reserved colors so that
for all e ∈ E, l0e ≥ (1 + ε

2)∆, but we also make sure that for all e ∈ E, |Reservee| ≥ ε2

200∆, and for
all v ∈ V and color c, r0

v,c ≤ ε
5∆, so the coloring can be completed at the final stage.
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The second stage consists of a constant t = t(ε) number of iterations. In each iteration, we assign
to each edge e ∈ E a color c chosen randomly from Le. If there is a conflict, i.e. if there is an
adjacent edge e′ to which we assigned a color c′ such that c + c(e, v) = c′ + c(e′, v), where v is the
common vertex of e and e′, we uncolor e. If an edge e = (u, v) retains the color c it was assigned,
then adjacent edges cannot be colored with conflicting colors. Thus we remove c + c(e, u) from Lu,
c + c(e, v) from Lv, and the corresponding colors from the lists Le′ of the edges e′ incident with u

and v.
We start with l0e ≥ (1 + ε

2)∆, for all e ∈ E, t0v,c ≤ ∆ and r0
v,c ≤ ε

5∆ for all v ∈ V and color c. We
show that the sizes of the sets Le and Tv,c decrease at roughly the same rate, and hence, for every i,
the sizes tiv,c are slightly smaller than the sizes lie.

The i-th iteration is carried out as follows. We first remove colors from the sets Le so that they
all have the same size, which we denote by li−1. Now, for all e = (u, v) ∈ E assign e a color c chosen
randomly from Le. The color c is removed from e if an adjacent edge is assigned a conflicting color,
i.e. if there is an edge e1 incident with u that is assigned c + c(e, u)− c(e1, u), or an edge e2 incident
with v that is assigned c + c(e, v)− c(e2, v). Therefore, the probability that e retains c is

(1− 1
li−1

)ti−1
u,c+c(e,u)

+ti−1
v,c+c(e,v)

−2 ≈ e−2.

For every color c ∈ Lv, the edges e incident with v that may retain c − c(e, v) are the edges in
Tv,c. For every e ∈ Tv,c, the probability that e is assigned the color c and retains it is roughly 1

li−1e2 .
There is at most one edge e ∈ Tv,c that retains c− c(e, v). Therefore, these events are disjoint, and if
one of them occurs we remove c from Lv. Hence, the probability that we remove c from Lv is roughly

ti−1
v,c

li−1e2
≈ e−2.

For an edge e = (u, v) and a color c ∈ Le, we remove c from Le if we remove c + c(e, u) from Lu

or c + c(e, v) from Lv. If these events were independent, the probability that we do not remove c

from Le would have been roughly (1− e−2)2. We later show that although there is some dependence
between those events, the probability that we do not remove c from Le is still close to (1 − e−2)2.
Hence,

E[lie] ≈ (1− e−2)2li−1
e .

For every v ∈ V and c ∈ Lv, if e = (u, v) ∈ Tv,c, we remove e from Tv,c if e retains the color it is
assigned, or if e cannot be colored with c − c(e, v) anymore, since c − c(e, v) + c(e, u) was removed
from Lu. If these events were independent, the probability that e remains in Tv,c would have been
roughly (1− e−2)2, since the probability of each of these events is about e−2. We show later that the
dependence between the above events does not change this probability much. Therefore,

E[tiv,c] ≈ (1− e−2)2ti−1
v,c .

As for the sets Rv,c, we remove an edge e from Rv,c only if it retains the color it was assigned.
Therefore,

E[ri
v,c] ≈ (1− e−2)ri−1

v,c .
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We execute the iterative procedure for t iterations, where we choose t so that with positive
probability rt

v,c ≤ ε2

3200∆ for all v ∈ V and color c. We later prove, using the local lemma (see, e.g.,
[4] chapter 5), or the results in [16, 17, 9], that in this case the coloring can be completed with the
reserved colors.

In the rest of this section we describe in detail the different stages of our scheme, and prove its
correctness.

2.3 Choosing the reserved colors

We begin our coloring with choosing a set of colors Reservev for all v ∈ V . Then we define for all
e = (u, v) ∈ E, Reservee = (Reserveu− c(e, u))∩ (Reservev− c(e, v)). We also initialize the sets Lv,
Le, Tv,c and Rv,c as follows. For all v ∈ V , Lv = {0, 1, . . . , k − 1} \Reservev. For all e = (u, v) ∈ E,
Le = {0, 1, . . . , k − 1} \ ((Reserveu − c(e, u)) ∪ (Reservev − c(e, v))). For all v ∈ V and color c,
Rv,c = { e = (u, v) ∈ E | c− c(e, v) + c(e, u) ∈ Reserveu }, and Tv,c = { e = (u, v) ∈ E | e /∈ Rv,c }.

Lemma 2.1 We can choose a set of colors Reservev for each vertex v, such that the following hold:

1. For all e = (u, v) ∈ E, |(Reserveu − c(e, u)) ∪ (Reservev − c(e, v))| ≤ ε
2∆.

2. For all e ∈ E, |Reservee| ≥ ε2

200∆.

3. For all v ∈ V and color c, r0
v,c ≤ ε

5∆.

Proof: For every vertex v and color c, we place c into Reservev with probability p = ε
10 . Then for

all e = (u, v) ∈ E,

E[|(Reserveu − c(e, u)) ∪ (Reservev − c(e, v))|] ≤ 2pk =
ε

5
(1 + ε)∆ ≤ ε

4
∆

(assuming ε ≤ 1
4),

E[|Reservee|] = E[|(Reserveu − c(e, u)) ∩ (Reservev − c(e, v))|] = p2k =
ε2

100
(1 + ε)∆ >

ε2

100
∆,

and for all v ∈ V and color c,
E[r0

v,c] = p∆ =
ε

10
∆.

Let Ae be the event that e violates the first condition, Be the event that e violates the second
condition, and Cv,c the event that v, c violate the third condition. The sizes of the above sets are
distributed binomially, and hence, by the Chernoff bound, the probability of each of these events is
much less than e− log2 ∆. Each event Ae or Be is mutually independent of all other events except for
the events Ae′ and Be′ for the adjacent edges e′ and for e′ = e, and the events Cv,c such that e is
incident with v or a neighbour of v. There are less than 2∆ adjacent edges, 2∆ vertices v such that
e is incident with v or a neighbour of v, and O(∆) colors. Therefore, every Ae and Be is mutually
independent of all but O(∆2) of the other events. An event Cv,c is mutually independent of all other
events except for the events Ae and Be for edges e incident with v or a neighbour of v, and the events
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Cv′,c′ such that v′ = v, v′ is a neighbour of v, or v and v′ share a common neighbour. There are
O(∆2) edges incident with v or a neighbour of v, O(∆2) vertices v′ such that v′ = v, v′ is a neighbour
of v, or v and v′ share a common neighbour, and O(∆) colors. Therefore, every Cv,c is mutually
independent of all but O(∆3) of the other events. Hence, the result follows from the local lemma. 2

2.4 The iterative procedure

In each iteration, we assign every edge e a color c chosen randomly from Le. We let e retain c only if
it causes no conflicts, i.e. no adjacent edge e′ is assigned c+ c(e, u)− c(e′, u), where u is the common
vertex of e and e′. If an edge e = (u, v) retains a color c, we remove c+c(e, u) from Lu and c+c(e, v)
from Lv. To simplify the proof, we remove some colors from some of the lists Le at the beginning of
each iteration, so that all the lists have the same size, and we sometimes remove colors from edges
and from the lists Lv even when there is no conflict, in order to equalize all the probabilities. The
details are explained below.

We show that the size of each Le and of each Tv,c decreases by a factor of approximately (1−e−2)2

in each iteration, and the size of each Rv,c by a factor of approximately 1− e−2. Each Tv,c is initially
slightly smaller than each Le, and since these sizes decrease at approximately the same rate, the
above holds at the beginning of every iteration.

Consider the i-th iteration, and assume li−1
e ≥ li−1 for all e ∈ E, and ti−1

v,c ≤ li−1 for all v ∈ V and
color c. We first remove colors from some of the lists Le so that they all have size exactly li−1. For
each edge e = (u, v) and color c ∈ Le, the probability that no adjacent edge is assigned a conflicting
color, if e is assigned c, i.e. that no edge e1 incident with u is assigned c+ c(e, u)− c(e1, u), and that
no edge e2 incident with v is assigned c + c(e, v)− c(e2, v), is

P (e, c) =
(

1− 1
li−1

)ti−1
u,c+c(e,u)

+ti−1
v,c+c(e,v)

−2

≥
(

1− 1
li−1

)2li−1−2

> e−2.

We now use an equalizing coin flip, so that if e is assigned c and no adjacent edge is assigned a
conflicting color, we still remove c from e with probability

Eq(e, c) = 1− 1
e2P (e, c)

> 0.

This ensures that the probability that e retains c, conditional of e receiving c, is precisely

P (e, c)(1− Eq(e, c)) = e−2.

For every v ∈ V and c ∈ Lv, there is at most one edge e ∈ Tv,c that retains c− c(e, v). Therefore, the
events that e retains c− c(e, v) for all e ∈ Tv,c are pairwise disjoint, and hence the probability that
we do not have to remove c from Lv, i.e. the probability that no edge e ∈ Tv,c retains c− c(e, v) is

Q(v, c) = 1−
ti−1
v,c

li−1e2
≥ 1− e−2.
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If we do not have to remove c from Lv, we still remove it with probability

V q(v, c) = 1− 1− e−2

Q(v, c)
.

This ensures that the probability that c remains in Lv is precisely

Q(v, c)(1− V q(v, c)) = 1− e−2.

Lemma 2.2 For every v ∈ V and color c, E[ri
v,c] = (1− e−2)ri−1

v,c .

Proof: An edge is removed from Rv,c if and only if it retains the color it is assigned. This happens
with probability e−2. Therefore, E[ri

v,c] = (1− e−2)ri−1
v,c . 2

Lemma 2.3 For each e ∈ E, E[lie] ≥ (1− e−2)2li−1.

Proof: Let e = (u, v) ∈ E and let c ∈ Le be a color that was not removed at the first stage of the
iteration, when the size of all lists was reduced to li−1. c remains in Le if and only if c + c(e, u)
remains in Lu and c+ c(e, v) remains in Lv. Let Au be the event that no edge e1 ∈ Tu,c+c(e,u) retains
c+ c(e, u)− c(e1, u), and let Av be the event that no edge e2 ∈ Tv,c+c(e,v) retains c+ c(e, v)− c(e2, v),
where we refer to the sets Tu,c+c(e,u) and Tv,c+c(e,v) at the beginning of the i-th iteration. Thus, the
probability that c remains in Le is

Pr(Au ∩Av)[1− V q(u, c + c(e, u))][1− V q(v, c + c(e, v))].

To calculate Pr(Au ∩Av), we use the fact that

Pr(Au ∩Av) = 1− Pr(Āu)− Pr(Āv) + Pr(Āu ∩ Āv).

Clearly, Pr(Āu) =
ti−1
u,c+c(e,u)

li−1e2 , and Pr(Āv) =
ti−1
v,c+c(e,v)

li−1e2 . Let e1 = (u, x) ∈ Tu,c+c(e,u) \ {e} and
e2 = (v, y) ∈ Tv,c+c(e,v) \ {e}, and let Be1,e2 be the event that e1 retains c + c(e, u) − c(e1, u) and
e2 retains c + c(e, v) − c(e2, v). This event occurs if and only if e1 is assigned c + c(e, u) − c(e1, u),
e2 is assigned c + c(e, v)− c(e2, v), no adjacent edge is assigned a conflicting color, and these colors
are not removed from e1 and e2 by the equalizing coin flips. Denote W = Tu,c+c(e,u), X = Tv,c+c(e,v)

Y = Tx,c+c(e,u)−c(e1,u)+c(e1,x) and Z = Ty,c+c(e,v)−c(e2,v)+c(e2,y). Note that the only edges that might
be assigned conflicting colors are the edges of (W ∪X∪Y ∪Z)\{e1, e2}. Note also that W ∩Y = {e1},
X ∩ Z = {e2}, W ∩X = {e}, and there might be an edge in Y ∩ Z. All other intersections refer to
vertices from the same side, and hence they are empty. If there is an edge in Y ∩Z, then this is the only
edge for which there might be two conflicting colors. For all other edges of (W ∪X ∪Y ∪Z)\{e1, e2}
there is one conflicting color. Thus,

Pr(Be1,e2) ≥ 1
l2i−1

(
1− 2

li−1

)|Y ∩Z| (
1− 1

li−1

)|((W∪X∪Y ∪Z)\{e1,e2})\(Y ∩Z)|

·[1− Eq(e1, c + c(e, u)− c(e1, u))][1− Eq(e2, c + c(e, v)− c(e2, v))]
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≥ 1
l2i−1

(
1− 2

li−1

)(
1− 1

li−1

)|((W∪X∪Y ∪Z)\{e1,e2})|−2

·[1− Eq(e1, c + c(e, u)− c(e1, u))][1− Eq(e2, c + c(e, v)− c(e2, v))]

=
1

l2i−1

(
1− 2

li−1

)(
1− 1

li−1

)|W |+|X|+|Y |+|Z|−7

·[1− Eq(e1, c + c(e, u)− c(e1, u))][1− Eq(e2, c + c(e, v)− c(e2, v))]

If ∆ is sufficiently large then li−1 ≥ 3 and hence (1− 2
li−1

)(1− 1
li−1

)3 ≥ 1. Therefore,

Pr(Be1,e2) ≥ 1
l2i−1

(
1− 1

li−1

)|W |+|X|+|Y |+|Z|−4

·[1− Eq(e1, c + c(e, u)− c(e1, u))][1− Eq(e2, c + c(e, v)− c(e2, v))]

=
1

l2i−1

(
1− 1

li−1

)|W |+|Y |−2 (
1− 1

li−1

)|X|+|Z|−2

·[1− Eq(e1, c + c(e, u)− c(e1, u))][1− Eq(e2, c + c(e, v)− c(e2, v))]

=
1

l2i−1

P (e1, c + c(e, u)− c(e1, u))P (e2, c + c(e, v)− c(e2, v)))

·[1− Eq(e1, c + c(e, u)− c(e1, u))][1− Eq(e2, c + c(e, v)− c(e2, v))]

=
1

l2i−1e
4
.

Let Be be the event that e retains c.

Pr(Be) =
1

li−1e2
.

The events Be and Be1,e2 for all e1 ∈ Tu,c+c(e,u) \ {e} and e2 ∈ Tv,c+c(e,v) \ {e} are pairwise disjoint.
Therefore,

Pr(Āu ∩ Āv) =
∑
e1,e2

Pr(Be1,e2) + Pr(Be)

≥
(ti−1

u,c+c(e,u) − 1)(ti−1
v,c+c(e,v) − 1)

l2i−1e
4

+
1

li−1e2

=
ti−1
u,c+c(e,u)t

i−1
v,c+c(e,v) − ti−1

u,c+c(e,u) − ti−1
v,c+c(e,v) + 1 + li−1e

2

l2i−1e
4

≥
ti−1
u,c+c(e,u)t

i−1
v,c+c(e,v) − 2li−1 + 1 + li−1e

2

l2i−1e
4

≥
ti−1
u,c+c(e,u)t

i−1
v,c+c(e,v)

l2i−1e
4

,
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and hence

Pr(Au ∩Av) = 1− Pr(Āu)− Pr(Āv) + Pr(Āu ∩ Āv)

≥ 1−
ti−1
u,c+c(e,u)

li−1e2
−

ti−1
v,c+c(e,v)

li−1e2
+

ti−1
u,c+c(e,u)t

i−1
v,c+c(e,v)

l2i−1e
4

=

1−
ti−1
u,c+c(e,u)

li−1e2

1−
ti−1
v,c+c(e,v)

li−1e2


= Q(u, c + c(e, u))Q(v, c + c(e, v)).

Thus, the probability that c remains in Le is

Pr(Au ∩Av)[1− V q(u, c + c(e, u))][1− V q(v, c + c(e, v))]

≥ Q(u, c + c(e, u))Q(v, c + c(e, v))[1− V q(u, c + c(e, u))][1− V q(v, c + c(e, v))]

=
(
1− e−2

)2
,

and hence E[lie] ≥ (1− e−2)2li−1. 2

Lemma 2.4 For every v ∈ V and color c ∈ Lv, E[tiv,c] ≤ (1− e−2)2ti−1
v,c + e−2.

Proof: For all v ∈ V and color c, denote by T ′
v,c the set of all edges e = (u, v) ∈ E for which, at the

end of the i-th iteration, e is uncolored and c − c(e, v) + c(e, u) ∈ Lu. Note that for all v ∈ V and
color c, tiv,c ≤ |T ′

v,c|, since if at the end of the i-th iteration c /∈ Lv then tiv,c = 0, and if c ∈ Lv then
for all e = (u, v) ∈ Tv,c, e is still uncolored and c− c(e, v) ∈ Le, hence c− c(e, v) + c(e, u) ∈ Lu, and
therefore e ∈ T ′

v,c.
Let e = (u, v) be an edge that belongs to Tv,c at the beginning of the i-th iteration, and let

ĉ = c − c(e, v) + c(e, u). Let R be the event that e does not retain the color it is assigned, and let
S be the event that no edge e′ that belongs to Tu,ĉ at the beginning of the i-th iteration retains
ĉ− c(e′, u). e ∈ T ′

v,c if and only if R and S both hold and ĉ is not removed from Lu by the equalizing
coin flip. Thus,

Pr(e ∈ T ′
v,c) = Pr(R ∩ S)[1− V q(u, ĉ)].

To calculate Pr(R ∩ S) we use the fact that Pr(R ∩ S) = Pr(R)− Pr(S̄) + Pr(R̄ ∩ S̄). As we have

already shown, Pr(R) = 1− e−2, and Pr(S̄) =
ti−1
u,ĉ

li−1e2 .
For every color c′ ∈ Le and edge e′ = (u, w) that belongs to Tu,ĉ at the beginning of the i-th

iteration, let Zc′,e′ be the event that e retains c′ and e′ retains ĉ − c(e′, u). If c′ + c(e, u) 6= ĉ then
e′ 6= e, and Zc′,e′ occurs if and only if e is assigned c′, e′ is assigned ĉ− c(e′, u), no adjacent edge is
assigned a conflicting color and these colors are not removed from e and e′ by the equalizing coin
flips. Let W = Tv,c′+c(e,v), X = Tu,c′+c(e,u), Y = Tu,ĉ and Z = Tw,ĉ−c(e′,u)+c(e′,w). The only edges
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that might be assigned conflicting colors are the edges of (W ∪ X ∪ Y ∪ Z) \ {e, e′}, and the only
edges for which there are two conflicting colors are the edges of X ∩ Y . Thus,

Pr(Zc′,e′) =
1

l2i−1

(
1− 2

li−1

)|(X∩Y )\{e,e′}| (
1− 1

li−1

)|(X\Y )|+|(Y \X)\{e′}|+|W\{e}|+|Z\{e′}|

·[1− Eq(e, c′)][1− Eq(e′, ĉ− c(e′, u))]

≤ 1
l2i−1

(
1− 1

li−1

)2|(X∩Y )\{e,e′}|+|(X\Y )|+|(Y \X)\{e′}|+|W |+|Z|−2

·[1− Eq(e, c′)][1− Eq(e′, ĉ− c(e′, u))]

≤ 1
l2i−1

(
1− 1

li−1

)|W |+|X|+|Y |+|Z|−6

·[1− Eq(e, c′)][1− Eq(e′, ĉ− c(e′, u))]

=
1

l2i−1

(
1− 1

li−1

)−2 (
1− 1

li−1

)|W |+|X|−2 (
1− 1

li−1

)|Y |+|Z|−2

·[1− Eq(e, c′)][1− Eq(e′, ĉ− c(e′, u))]

=
1

(li−1 − 1)2
P (e, c′)P (e′, ĉ− c(e′, u))

·[1− Eq(e, c′)][1− Eq(e′, ĉ− c(e′, u))]

=
1

(li−1 − 1)2e4
.

If c′ = ĉ then e′ = e, and Zc′,e′ is the event that e retains ĉ, and its probability is 1
li−1e2 . Thus,

Pr(R̄ ∩ S̄) ≤
(li−1 − 1)(ti−1

u,ĉ − 1)
(li−1 − 1)2e4

+
1

li−1e2
≤

ti−1
u,ĉ

li−1e4
+

1
li−1e2

.

Therefore,

Pr(R ∩ S) ≤ 1− 1
e2
−

ti−1
u,ĉ

li−1e2
+

ti−1
u,ĉ

li−1e4
+

1
li−1e2

= (1− e−2)

(
1−

ti−1
u,ĉ

li−1e2

)
+

1
li−1e2

= (1− e−2)Q(u, ĉ) +
1

li−1e2
,

and hence

Pr(e ∈ T ′
v,c) = Pr(R ∩ S)[1− V q(u, ĉ + c(e, u))]

≤ (1− e−2)Q(u, ĉ)[1− V q(u, ĉ + c(e, u))] +
1

li−1e2

≤ (1− e−2)2 +
1

li−1e2
,
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and

E[tiv,c] ≤ (1− e−2)2ti−1
v,c +

ti−1
v,c

li−1e2
≤ (1− e−2)2ti−1

v,c + e−2.

2

In lemmas 2.2, 2.3 and 2.4, we have shown that the expected size of every Le and Tv,c decreases in
one iteration by a factor of approximately (1− e−2)2, and of every Rv,c by a factor of approximately
1 − e−2. We wish to prove that with positive probability, the sizes of all these sets indeed decrease
by approximately these factors. For this purpose we show that these values are highly concentrated.
More precisely, we prove that there exists a constant β > 0, such that the following hold for all
1 ≤ i ≤ t.

Lemma 2.5 For each e ∈ E,

Pr

[∣∣∣lie − E[lie]
∣∣∣ > log ∆

√
li−1

]
≤ e−β log2 ∆,

where the probability is over the random choices of the i-th iteration.

Lemma 2.6 For each v ∈ V and c ∈ Lv, if ti−1
v,c > li−1

10 then

Pr

[∣∣∣tiv,c − E[tiv,c]
∣∣∣ > log ∆

√
li−1

]
≤ e−β log2 ∆,

where the probability is over the random choices of the i-th iteration.

Lemma 2.7 For each v ∈ V and color c, if ri−1
v,c > ε2

3200∆ then

Pr
[∣∣∣ri

v,c − E[ri
v,c]
∣∣∣ > log ∆

√
ri
v,c

]
≤ e−β log2 ∆,

where the probability is over the random choices of the i-th iteration.

Proof of Lemma 2.7: We prove the lemma using Talagrand’s inequality (see, e.g. [15], page 81).
Fix a vertex v and a color c. ri

v,c is a function of mutually independent random variables: the colors
assigned to the edges and the equalizing coin flips. In order to apply Talagrand’s inequality, we have
to show that there are constants c and d such that:

• Changing the outcome of a single random choice changes ri
v,c by at most c.

• For all s, if ri
v,c ≥ s, then there is a set of at most ds random choices whose outcomes certify

that.

We first show that changing the outcome of a single random choice changes ri
v,c by at most two.

An edge is removed from Rv,c only if it retains the color it is assigned. Hence, the only choices that
can affect the value of ri

v,c are the colors assigned to edges, and the coin flips that determine whether
a color is removed from an edge.

11



Changing the color of an edge incident with v changes ri
v,c by at most two. Indeed, suppose the

color assigned to an edge e = (u, v) is changed from c1 to c2. The only edges incident with v that
might get colored or uncolored due to this change are edges e′ that are assigned c1 + c(e, v)− c(e′, v)
or c2+c(e, v)−c(e′, v). There is at most one edge e1 incident with v that retains c1+c(e, v)−c(e1, v),
and at most one edge e2 incident with v that retains c2 + c(e, v) − c(e1, v). Therefore, at most two
edges might get colored or uncolored because of this change, and thus removed from or added to
Rv,c.

Changing the color of an edge that is not incident with v changes ri
v,c by at most one, since it

has at most one adjacent edge that is incident with v, and this is the only edge incident with v that
might be affected by this change.

Changing the outcome of a coin flip that determines whether a color is removed from an edge
also changes ri

v,c by at most one, since it only affects the corresponding edge.
We now show that if ri

v,c ≥ s, then there is a set of at most 2s outcomes that certifies that.
This set contains, for each of s edges that remain in Rv,c, the color assigned to this edge, and the
conflicting edge or the coin flip that caused the removal of this color. Thus, the lemma follows from
Talagrand’s inequality. 2

Proof of Lemma 2.5: Let e = (u, v) ∈ E. For w ∈ {u, v}, we say that a color c is assigned to or
retained by w, if there is an edge e′ incident with w that is assigned or retains c + c(e, w)− c(e′, w).
Let X be the number of colors c that belong to Le at the beginning of the i-th iteration, were
not removed from Le at the first stage of the iteration, and for which u or v retains c. Note that
such colors are removed from Le, and that the only other reason for which colors are removed from
Le is the equalizing coin flips. For 0 ≤ k ≤ j ≤ 2, let Yj,k be the number of colors that are
assigned to exactly j vertices among u and v, and removed from at least k of them. Similarly, let
Xj,k be the number of colors that are assigned to at least j vertices among u and v, and removed
from at least k of them. Note that Y2,k = X2,k, and for j < 2, Yj,k = Xj,k − Xj+1,k. Thus,
X = Y2,0 − Y2,2 + Y1,0 − Y1,1 = X2,0 −X2,2 + X1,0 −X2,0 −X1,1 + X2,1. We show, using Talagrand’s
inequality, that each Xj,k is highly concentrated, and conclude that X is highly concentrated, as
well.

By the same argument used in the proof of Lemma 2.7, changing a outcome of a single random
choice changes the value of any Xj,k by at most 2. In addition, if Xj,k ≥ s then there is a set of
s(j +k) outcomes which certifies that. This set contains, for every color c among the s corresponding
colors, j edges e′ that are assigned c + c(e, w)− c(e′, w), where w is the common vertex of e and e′,
and k colors assigned to other edges or coin flips that cause the uncoloring of k of the above edges.

It is easy to check that E[X] = Θ(∆) and E[Xj,k] = O(∆) for all j and k. Hence, there is a
constant α such that E[Xj,k] ≤ αE[X] for all j and k. Therefore, by Talagrand’s inequality,

Pr

(
|Xj,k − E[Xj,k]| >

α

6
log ∆

√
E[Xj,k]

)
< e−γ log2 ∆

for some constant γ > 0, and thus,

Pr

(
|X − E[X]| > log ∆

√
E[X]

]
)
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≤ Pr

(
∃j, k |Xj,k − E[Xj,k]| >

1
6

log ∆
√

E[X]
]
)

≤ Pr

(
∃j, k |Xj,k − E[Xj,k]| >

α

6
log ∆

√
E[Xj,k]

]
)

< 6e−γ log2 ∆.

Let X ′ be the number of colors that were removed from Le since the corresponding colors were
removed from Lu or Lv by the equalizing coin flips. These coin flips are mutually independent, and
hence X ′ is highly concentrated by the Chernoff bound. lie = li−1 − (X + X ′), and therefore the
lemma holds for an appropriate choice of the constants. 2

Proof of Lemma 2.6: Let Av,c be the set of edges that belong to Tv,c at the beginning of the
i-th iteration, and which do not retain the colors they are assigned. Let Bv,c be the set of edges
e = (u, v) ∈ Av,c for which there is an edge e′ that belongs to Tu,c−c(e,v)+c(e,u) at the beginning of the
iteration and that retains c− c(e, v)+ c(e, u)− c(e′, u). Let Cv,c be the set of edges e ∈ Av,c \Bv,c for
which c− c(e, v) + c(e, u) is removed from Lu by the equalizing coin flip. We show that |Av,c|, |Bv,c|
and |Cv,c| are highly concentrated, and hence tiv,c = |Av,c|− |Bv,c|− |Cv,c| is also highly concentrated.

The proof that |Av,c| is highly concentrated is identical to the proof of Lemma 2.7. We now prove
that |Bv,c| and |Cv,c| are also highly concentrated.

Fix a vertex v and a color c. Let B1
v,c be the set of edges e = (u, v) ∈ Av,c for which there is

an edge e′ that belongs to Tu,c−c(e,v)+c(e,u) at the beginning of the iteration, and which is assigned
c − c(e, v) + c(e, u) − c(e′, u). Let B2

v,c be the set of such edges for which the color c − c(e, v) +
c(e, u) − c(e′, u) is removed from e′. Then, |Bv,c| = |B1

v,c| − |B2
v,c|. We first show that changing the

outcome of a single random choice changes the size of B1
v,c and B2

v,c by at most two. Clearly, the
only choices that can affect the size of B1

v,c and B2
v,c are the colors assigned to edges, and the coin

flips that determine whether a color is removed from an edge.
Suppose we change the color of an edge e = (u, v) from c1 to c2. As we have shown, at most

two edges might be added to or removed from Av,c because of this change. These edges might be
added to or removed from B1

v,c and B2
v,c as well. The above change might also affect the edges of

Tu,c−c(e,v)+c(e,u), and the only edge which might be added to or removed from B1
v,c or B2

v,c because
of that is e itself. However, if the size of B1

v,c or B2
v,c is changed by two, then e is anyway one of the

edges being added or removed. Therefore, changing the coloring of e changes the size of B1
v,c and

B2
v,c by at most two.

Changing the color of an edge that is not incident with v can change the size of B1
v,c and B2

v,c

by at most one, since it has at most one adjacent edge incident with v, and this is the only edge
that might be affected by this change. Changing the outcome of a coin flip that determines whether
a color is removed from an edge can also change the size of B1

v,c and B2
v,c by at most one, since it

affects only the corresponding edge, if it is incident with v, or its adjacent edge that is incident with
v, if the corresponding edge is adjacent to an edge which is incident with v.

If |B1
v,c| ≥ s, then there is a set of 3s outcomes that certifies that, consisting of the 2s outcomes
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that certify that the edges of B1
v,c are in Av,c, and for every edge e among those, an edge e′ ∈

Tu,c−c(e,v)+c(e,u) that is assigned c− c(e, v) + c(e, u)− c(e′, u). If |B2
v,c| ≥ s, then there is a set of 4s

outcomes that certifies that, consisting of the 3s outcomes that certify that the edges of B2
v,c are in

B1
v,c, and for every e′ as above, a conflicting edge or a coin flip that caused the removal of that color

from e′. Thus, by Talagrand’s inequality, |B1
v,c| and |B2

v,c| are highly concentrated.
Clearly, the expected size of all the above sets is Θ(∆). Therefore, we can conclude that |Bv,c| =

|B1
v,c| − |B2

v,c| is highly concentrated, too, and so is the size of Av,c \ Bv,c. As for Cv,c, the edges
of Cv,c are edges e = (u, v) ∈ Av,c \ Bv,c for which c − c(e, v) + c(e, u) was removed from Lu by
the equalizing coin flip. These coin flips are mutually independent, and therefore, by the Chernoff
bound, the size of Cv,c is highly concentrated. To complete the proof of the lemma, we combine all
the above, similarly to the proof of Lemma 2.5. 2

To complete the proof we apply the local lemma to each iteration, to show that with positive
probability, the size of every set is within a small error of the expected size.

Lemma 2.8 With positive probability, the following hold after i iterations, for all 0 ≤ i ≤ t:

1. For all e ∈ E

lie ≥ (1− e−2)2i
(

1 +
ε

2

)
∆− Õ(

√
∆).

2. For all v ∈ V and color c, if c ∈ Lv after the i-th iteration then

tiv,c ≤ (1− e−2)2i∆ + Õ(
√

∆).

3. For all v ∈ V and color c

ri
v,c ≤ (1− e−2)i ε

5
∆ + Õ(

√
∆).

Proof: We prove the lemma by induction on i. Suppose the claim holds after i− 1 iterations. Note
that by the induction hypothesis, ti−1

v,c ≤ li−1. Thus, we can apply all the lemmas that were proved
in this section. For all v ∈ V and color c, if ti−1

v,c ≤ (1 − e−2)2i∆ or ri−1
v,c ≤ (1 − e−2)i ε

5∆ then the
corresponding condition after i iterations trivially holds. Otherwise, we can apply Lemmas 2.6 and
2.7.

For all e ∈ E, let Ae be the event that lie violates the first condition, and for all v ∈ V and
color c, let Bv,c and Cv,c be the events that tiv,c and ri

v,c violate the second and third conditions,
respectively. By Lemmas 2.5, 2.6 and 2.7, the probability of each one of these events is less than
e−β log2 ∆ for some constant β. Every event Ae is mutually independent of all other events except
for those that correspond to the vertices incident with e and their neighbours, and to edges incident
with these vertices. Thus, it is mutually independent of all but O(∆2) of the other events. Every
event Bv,c or Cv,c is mutually independent of all other events except for those that correspond to
the edges incident with v, to the vertices incident with them and to the neighbours of these vertices.
Thus, it is mutually independent of all but O(∆3) of the other events. Thus, by the local lemma, all
the conditions hold with positive probability.

To complete the proof of the lemma we use the bounds on l0e , t0v,c and r0
v,c given by Lemma 2.1.

2
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2.5 Completing the coloring

By Lemma 2.8, at the end of the iterative procedure we have for all v ∈ V and color c, |Rv,c| ≤ ε2

3200∆.
Since |Reservee| ≥ ε2

200∆ for all e ∈ E, we can complete the coloring by the reserved colors, using
the results in [4], [16], [17] or [9]. For the sake of completeness, we describe a short proof. Let
l = ε2

200∆. If ∆ is sufficiently large, then for every edge e = (u, v) and color c, at the end of the
iterative procedure, |Ru,c+c(e,u)|+ |Rv,c+c(e,v)| ≤ ε

1600∆ = l
8 . We now prove that we can complete the

coloring. Assign any edge e a color chosen uniformly from Reservee. For any two edges e1 and e2

whose common vertex is u, and color c such that c−c(e1, u) ∈ Reservee1 and c−c(e2, u) ∈ Reservee2 ,
let Ae1,e2,c denote the event that e1 was colored in c− c(e1, u) and e2 in c− c(e2, u). The probability
of any of these events is at most 1

l2
. Ae1,e2,c is mutually independent of all other events but those

that involve e1 or e2, and there are at most l2

4 such events. Hence, the local lemma implies that the
desired coloring exists.

3 Algebraic Methods

In this section we prove Conjecture 1.1 for several families of graphs using algebraic methods. The
relevance of results from additive number theory to this conjecture appears already in [10], where
the authors apply the main result of Hall [8] to prove their conjecture for the multigraph with two
vertices and d parallel edges between them. Here we consider several more complicated cases.

3.1 Even Multi-cycles

Consider the case where the graph G is a d-regular multigraph whose underlying simple graph is a
simple cycle of even length. We show that if d + 1 is a prime then there exists a coloring with the
required properties using d + 1 colors.

In our proof, we use the following theorem proved in [3]:

Theorem 3.1 (Combinatorial Nullstellensatz)
Let F be an arbitrary field, and let P = P (x1, . . . , xn) be a polynomial in F [x1, ..., xn]. Suppose

that the degree of P is
∑n

i=1 ti, where each ti is a non-negative integer, and suppose the coefficient of∏n
i=1 xti

i in P is nonzero. Then, if S1, ..., Sn are subsets of F with |Si| > ti, there are s1 ∈ S1, s2 ∈
S2, ..., sn ∈ Sn so that P (s1, ..., sn) 6= 0.

Let G = (V,E) be a simple even cycle with, possibly, multiple edges. Let A and B be the sides
of G, and denote the vertices of A by a1, a2, . . . , an, and the vertices of B by b1, b2, . . . , bn, such that
there are edges between ai and bi for all 1 ≤ i ≤ n, between bi and ai+1 for all 1 ≤ i ≤ n − 1, and
between bn and a1. Since G is d regular, all the edges (ai, bi) have the same multiplicity s, and hence
all the other edges have multiplicity t = d− s.

We now associate a polynomial P with the graph G. For every edge e, we have a variable xe. For
every two edges e1 and e2 which have a common vertex in A we have a term (xe1−xe2), and for every
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two edges e1 and e2 which have a common vertex in B we have a term (xe1 + c(e1) − xe2 − c(e2)).
Thus, the polynomial P is defined by

P =

 ∏
e1∩e2∩A6=∅

(xe1 − xe2)

 ∏
e1∩e2∩B 6=∅

(xe1 + c(e1)− xe2 − c(e2))

 .

Since the graph is d-regular, every edge has d− 1 terms for each one of its vertices. Hence, the total
degree of P is nd(d− 1).

Proposition 3.2 If d+1 is a prime then the coefficient of the monomial
∏

e∈E xd−1
e in P is nonzero

modulo d + 1.

Proof: The monomial
∏

e∈E xd−1
e is of maximum degree, and thus its coefficient in P is equal to its

coefficient in the polynomial

Q =

 ∏
e1∩e2∩A6=∅

(xe1 − xe2)

 ∏
e1∩e2∩B 6=∅

(xe1 − xe2)

 .

In [7] (see also [2]) it is shown that, for any d-regular planar multigraph, the absolute value of this
coefficient is equal to the number of proper d-edge-colorings. Every d-edge-coloring of G is obtained
by partitioning the colors into a subset of size s and a subset of size t, and for every two connected
vertices, choosing a permutation of the appropriate set. Thus the number of edge colorings with d

colors is
(d
s

)
(s!)n(t!)n = d!(s!)n−1(t!)n−1, which is nonzero modulo d + 1 since d + 1 is a prime. 2

Corollary 3.3 Let G = (V,E) be an even length d-regular multi-cycle, where d + 1 is a prime, and
let (A,B) be a bipartition of G. Then, there is a coloring f : E → {0, 1, . . . , d} such that if e1 and e2

have a common vertex in A then f(e1) 6= f(e2), and if e1 and e2 have a common vertex in B then
f(e1) + c(e1) 6≡ f(e2) + c(e2) (mod (d + 1)).

Proof: By Theorem 3.1, with Se = {0, 1, . . . , d} and te = d− 1 for every e ∈ E, there is a function
f : E → {0, 1, . . . , d} such that the value of P , when every xe is assigned the value f(e), is nonzero
modulo d + 1. Thus, for every two edges e1 and e2 that have a common vertex in A, f(e1) 6= f(e2)
since we have a term (xe1 − xe2) in P , and for every two edges e1 and e2 that have a common vertex
in B, f(e1) + c(e1) 6≡ f(e2) + c(e2) (mod (d + 1)) since we have a term (xe1 + c(e1)− xe2 − c(e2)) in
P . 2

3.2 Multi-K4

The problem can be generalized to non-bipartite multigraphs. In this case, we specify for every edge
which endpoint is the transmitter and which is the receiver. Following the notations used in section
2, for every edge e = (u, v), where u is the transmitter and v is the receiver, we define c(e, u) = 0,
and c(e, v) to be the delay associated with e.
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We can further generalize the problem as follows. Given a multigraph G = (V,E), where every
edge e = (u, v) ∈ E is associated with two integers c(e, u) and c(e, v), we aim to find the smallest
number k such that there is a coloring f : E → {0, 1, . . . , k − 1}, satisfying the following. For every
vertex v and every two edges e1 6= e2 incident with v, f(e1) + c(e1, v) 6≡ f(e2) + c(e2, v) (mod k). In
this case, ∆ + 1 colors do not always suffice, simply because χ′(G) may be as large as b3

2∆c, where
χ′(G) is the edge chromatic number of G. The following conjecture seems plausible for this case.

Conjecture 3.4 Let G = (V,E) be a multigraph, and suppose that every edge e = (u, v) ∈ E is
associated with two integers c(e, u) and c(e, v). Let k = χ′(G) + 1. Then there exists a coloring
f : E → {0, 1, . . . , k − 1} such that for every vertex v and every two edges e1 6= e2 incident with v,
f(e1) + c(e1, v) 6≡ f(e2) + c(e2, v) (mod k).

Proposition 3.5 Let G = (V,E) be a d-regular multi-K4, where every edge e = (u, v) ∈ E is
associated with two integers c(e, u) and c(e, v), and suppose d + 1 is a prime. Then there is a
coloring f : E → {0, 1, . . . , d}, satisfying the condition that for every vertex v and every two edges
e1 6= e2 incident with v, f(e1) + c(e1, v) 6≡ f(e2) + c(e2, v) (mod (d + 1)).

The proof is similar to the proof of the result for even cycles.
Proof: First, note that if G is d-regular, then every pair of non-adjacent edges of K4 have the same
multiplicity in G. Denote these multiplicities by a, b and c. We associate the following polynomial
with G:

P =
∏
v∈V

∏
e1 6=e2∈E : v∈e1∩e2

(xe1 + c(e1, v)− xe2 − c(e2, v)).

P is a polynomial in 2d variables, with total degree 2d(d−1). Hence, by Theorem 3.1, if the coefficient
of
∏

e∈E xd−1
e is nonzero modulo d + 1, then there is a function f : E → {0, 1, . . . , d}, such that if

every variable xe is assigned f(e) then the value of P is nonzero modulo d + 1, and therefore f

satisfies the required properties.
The coefficient of

∏
e∈E xd−1

e in P is equal to its coefficient in

Q =
∏
v∈V

∏
e1 6=e2∈E : v∈e1∩e2

(xe1 − xe2),

which is, by [7], the number of proper d-edge-colorings of G. Such a coloring is obtained as follows.
First, choose a permutation of the colors and color the edges incident to a vertex u accordingly. Now
for every pair of other vertices v and w, the set of colors that may be used to color the edges between
v and w is the same set used for the edges between u and the forth vertex, and we only choose the
permutation of this set. Thus, the number of proper d-edge-colorings is d!a!b!c! 6≡ 0 (mod (d + 1)),
since d + 1 is a prime. 2

4 Concluding Remarks

In section 3 we proved Conjecture 1.1 for some graphs using algebraic techniques. This method can
be used to prove the conjecture for several other graphs. However, it seems that in order to prove
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the conjecture for the general case, more ideas are needed. In the graphs for which we used Theorem
3.1, the theorem implies that there is a proper edge coloring with delays using ∆ + 1 colors, even if
there is one forbidden color for every edge.

In section 2 we showed that Conjecture 1.1 asymptotically holds for simple bipartite graphs. It
would be interesting to extend this proof to multigraphs as well.

In the probabilistic proof presented in section 2, we proved that ∆ + o(∆) colors suffice, and
did not make any effort to minimize the o(∆) term. By modifying our proof slightly, we can show
that ∆ + Õ(∆2/3) colors suffice, and it seems plausible that a more careful analysis, following the
discussion in [14], can even imply that ∆ + Õ(

√
∆) colors suffice.

The probabilistic proof can be extended to other variations of edge coloring. Instead of the delays,
one can associate with every edge e and an endpoint v of e an injective function ge,v on the colors.
Then, by our proof, there is an edge coloring f using ∆ + o(∆) colors such that for every vertex v

and any two edges e1 6= e2 incident with v, ge1,v(f(e1)) 6= ge2,v(f(e2)).
The algebraic proofs provide no algorithm that finds an edge coloring with delays.
The known results about the algorithmic version of the local lemma, initiated by Beck ([5], see

also [1],[13], [6]), can be combined with our probabilistic proof in Section 2 to design a polynomial
time algorithm that solves the corresponding algorithmic problem. In contrast, the algebraic proofs
of Section 3 supply no efficient procedures for the corresponding problems, and it will be interesting
to find such algorithms.
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[11] R. Häggkvist and J. Janssen, New bounds on the list chromatic index of the complete graph
and other simple graphs, Combinatorics, Probability and Computing, 6 (1997), 273-295.

[12] J. Kahn, Asymptotically good list-colorings, Journal of Combinatorial Theory Series A, 73
(1996), 1-59.

[13] M. Molloy and B. Reed, Further Algorithmic Aspects of the Local Lemma, Proceedings of the
30th Annual ACM Symposium on Theory of Computing, May 1998, 524-529.

[14] M. Molloy and B. Reed, Near-optimal list colorings, Random Structures and Algorithms, 17
(2000), 376-402.

[15] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method, Springer (2001).

[16] B. Reed, The list colouring constants, Journal of Graph Theory, 31 (1999), 149-153.

[17] B. Reed and B. Sudakov, Asymptotically the list colouring constants are 1, Journal of Combi-
natorial Theory Series B, 86 (2002), 27-37.

19


