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Abstract

A graph G is called spectrally d-degenerate if the largest eigenvalue of each subgraph of it with
maximum degree D is at most

√
dD. We prove that for every constant M there is a graph with

minimum degree M which is spectrally 50-degenerate. This settles a problem of Dvořák and Mohar.

1 Introduction

The spectral radius ρ(G) of a (finite, simple) graph G is the largest eigenvalue of its adjacency matrix.
A graph is d-degenerate if any subgraph of it contains a vertex of degree at most d. A result of Hayes
[5] asserts that any d-degenerate graph with maximum degree at most D has spectral radius at most
2
√
dD. In fact, the result is a bit stronger, as follows.

Proposition 1.1 ([5]) Let G be a graph having an orientation in which every outdegree is at most d
and every indegree is at most D. Then ρ(G) ≤ 2

√
dD.

For completeness we include a simple proof (which is somewhat shorter than the one given in [5]).
Proof: Denote the vertices of G by {1, 2, . . . , n}, and let d+

i and d−i be the indegree and outdegree
of vertex i in an orientation of G in which every outdegree is at most d and every indegree is at most
D. The spectral radius of G is the maximum possible value of the sum

∑
ij∈E 2xixj where E denotes

the set of oriented edges of G and the maximum is taken over all vectors (x1, x2, . . . , xn) satisfying∑
i x

2
i = 1. For each oriented edge ij ∈ E,

2xixj√
dD
≤ 2xixj√

d+
i · d

−
j

≤ x2
i

d+
i

+
x2
j

d−j
.

The desired result now follows by summing over all oriented edges. 2

Following Dvořák and Mohar [3], call a graph G spectrally d-degenerate, if for every subgraph
H of G, ρ(H) ≤

√
dD(H), where D(H) is the maximum degree of H. Thus, by Proposition 1.1,
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every d-degenerate graph is spectrally 4d-degenerate. The authors of [3] proved the following rough
converse:

(*) Any spectrally d-degenerate graph with maximum degree at most D ≥ 2d contains a vertex of
degree at most 4d log2(D/d).

They further showed that the dependence on D cannot be eliminated if the dependence on d is
subexponential and asked whether there is a function f mapping positive integers to positive integers
such that for every d, any spectrally d-degenerate graph contains a vertex of degree at most f(d).

In this note we settle this problem and show that there is no such function by proving the following.

Theorem 1.2 For every positive integer M there is a spectrally 50-degenerate graph G in which every
degree is at least M .

Our proof combines the approach of [3], which is based on a construction of [6], with some additional
probabilistic arguments.

The constant 50 can be reduced, and we make no attempt to optimize it, or the other absolute
constants that appear in the proof. To simplify the presentation, we omit all floor and ceiling signs
whenever these are not crucial.

2 Spectrally degenerate graphs of high degree

2.1 A probabilistic construction

In this subsection we describe a probabilistic construction which is similar to the one given in [6].

Theorem 2.1 For every positive integer M and all sufficiently large n > n0(M) there exists a bipartite
graph G with vertex classes A and B, satisfying the following properties.

(i) |B| ≤ |A| = n.

(ii) Every vertex of A has degree M and every vertex of B has degree larger than 1000M .

(iii) Every subgraph of G with average degree at least 10 contains a vertex of degree at least 1000M .

Proof: Fix ε > 0, ε < 4−2M . Let B be a disjoint union of M sets B1, . . . , BM , where |Bi| = n1−4iε.
The graph G is a random graph constructed as follows. For each i, 1 ≤ i ≤ M , let Gi be a bipartite
graph on the vertex classes A and Bi consisting of a random set of |A| edges obtained by picking, for
each a ∈ A, a uniform random b ∈ Bi, taking ab to be an edge of Gi. The graph G consist of all
edges of all graphs Gi. Note that the degree of every vertex of G that lies in A is exactly M , and that
if n is sufficiently large then the degree of every vertex of G that lies in B is, asymptotically almost
surely (a.a.s., for short), at least n4ε/2 > 1000M , provided n is sufficiently large. Here we say that a
property holds a.a.s. if the probability it holds tends to 1 as n tends to infinity, and the claim about
the degrees follows easily from the known estimates for binomial distributions, as the degree of each
vertex in Bi is a binomial random variable with parameters n and 1/|Bi| whose expectation is n4iε.
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Therefore the graph G satisfies the properties (i) and (ii) a.a.s. It remains to show that it satisfies
property (iii) as well a.a.s.

Let H be a subgraph of G with average degree at least 10, and let s (≥ 20) denote the number of
its vertices. We consider three possible cases.

Case 1: s ≤ |BM | = n1−4M ε.
We show that in this case, a.a.s., the graph G contains no subgraph on s vertices with average degree
at least 10. Indeed, such a subgraph can contain at most s edges incident with vertices of BM (as
each A-vertex has only one neighbor in BM ) and hence there are at least 4s edges of H incident with
vertices in ∪i<MBi. But the probability that there is such a collection of 4s edges is at most

∑
s≤n1−4Mε

(
2n
s

)((s
2

)
4s

)
(

1
|BM−1|

)4s

≤
∑

s≤n1−4Mε

(
2en
s

)s(
es

8
)4s(

1
|BM−1|

)4s

≤
∑

s≤n1−4Mε

csnss3s(
1

|BM−1|
)4s,

where c = (2e)(e/8)4 is an absolute constant. The last quantity is at most∑
s≤n1−4Mε

csns(n1−4M ε)3s(n−(1−4M−1ε)4s =
∑

s≤n1−4Mε

csn(−3·4M+4M )εs < n−ε.

Therefore, a.a.s., there is no such H.

Case 2: s ≥ |B1| = n1−4ε.

In this case the graph has at least 4s edges incident with vertices in ∪i≥2Bi. As the total size of these
sets is smaller than 2s

n12ε the graph must have degrees at least 2n12ε > 1000M , as needed.

Case 3: There is an i, 1 ≤ i < M , so that

n1−4i+1ε = |Bi+1| ≤ s < |Bi| = n1−4iε.

In this case the graph H has at most 2s edges incident with vertices in Bi ∪ Bi+1. If its maximum
degree does not exceed 1000M , it has at most 1000M | ∪j≥i+2 Bj | = o(s) edges incident with vertices
in ∪j≥i+2Bj . It thus has at least (3 − o(1))s edges incident with vertices in ∪j<iBj . The probability
P that there is such a collection of edges can be bounded as in the first case. Indeed, P is at most the
following, where in all sums over s, the parameter s ranges over all values between |Bi+1| and |Bi|.

P ≤
∑
s

(
2n
s

)( (
s
2

)
(3− o(1))s

)
(

1
|Bi−1|

)3s−o(s)
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≤
∑
s

csnss(2−o(1))s(
1

(n1−4i−1ε)(3−o(1))s
,

for an appropriate absolute constant c. As s ≤ |Bi| in the above range, the last quantity is at most∑
s

cs( n1+(1−4iε)(2−o(1))−(1−4i−1ε)(3−o(1)) )s =
∑
s

csn(o(1)−2·4iε+3·4i−1ε)s < n−ε.

This shows that the event in Case 3 also does not occur a.a.s., and completes the proof of the theorem.
2

2.2 Bounding the spectral degeneracy

In order to prove Theorem 1.2 we need the following lemma, which is a bit stronger than a similar
lemma proved in [3].

Lemma 2.2 Suppose M ≥ M0, where M0 is a large integer. Let H be a bipartite graph with vertex
classes A and B in which every vertex of A has degree at least 10 and at most M , and every vertex
of B has degree at least D/100 and at most D, where D ≥ 1000M . Then there is a subset A′ ⊂ A

so that the induced subgraph of H on A′ ∪ B has minimum degree at least 10 and maximum degree
smaller than 1000M .

Proof: It suffices to show that H contains an induced subgraph on A′∪B, where A′ ⊂ A, in which the
degree of every vertex of A′ is at least 10, and the degree of every vertex of B is at least 2M ( > 10)
and at most 800M . We proceed to prove this statement using the Lovás Local Lemma proved in [4]
(c.f. also, e.g., [2]). Our approach follows the one in [1]. Starting with H0 = H , construct a sequence
Hi = (Vi, Ei) of induced subgraph of H, where for each i ≥ 1, Hi is a random induced subgraph of
Hi−1 with vertex classes Ai and B, where Ai is obtained by picking each vertex in Ai−1, randomly
and independently, to lie in Ai, with probability 1/2.

Note that by construction, the degree of each vertex of Ai in Hi is exactly its degree in H, which,
by assumption, is at least 10. For each vertex v ∈ B, let di(v) denote the degree of v in Hi. We claim
that with positive probability, as long as D/2i ≥ 300M , then di(v) is close to d0(v)/2i. More precisely,
let j be the maximum value of i so that D/2i ≥ 300M . Note that D/2j < 600M . Define a sequence
a0(v) = d0(v) and ai(v) = ai−1(v)

2 + ai−1(v)2/3

2 for all i, 0 < i ≤ j, and similarly a sequence b0(v) = d0(v)

and bi(v) = bi−1(v)
2 − bi−1(v)2/3

2 . Then, with positive probability

D

100 · 2i
0.9 ≤ b0(v)

2i
∏
r≤i−1

(1− 1
br(v)1/3

) = bi(v) ≤ di(v) ≤ ai(v) =
a0(v)

2i
∏
r≤i−1

(1 +
1

ar(v)1/3
) ≤ D

2i
1.2

for all i ≤ j and all v ∈ B.
Indeed, the above statement is proved by induction on i. For i = 0 there is nothing to prove.

Assuming the above holds for i− 1, we establish the assertion for i using the Local Lemma. To do so
consider, for each vertex v ∈ B, the event Fv that di(v) fails to satisfy

di−1(v)
2

− di−1(v)2/3

2
≤ di(v) ≤ di−1(v)

2
+
di−1(v)2/3

2
.
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Each event Fv is mutually independent of all other events Fu besides those for which u and v have a
common neighbor in Hi−1. There are clearly at most di−1(v)M < di−1(v)2 such vertices u, and hence
the fact that di−1(v) > M , the known standard estimates of Binomial distributions (c.f., e.g., [2]) and
the Local Lemma imply that with positive probability none of the events Fv holds. The graph Hj

satisfies the conclusion of the lemma, completing its proof. 2

We are now ready to prove the following result, which clearly implies Theorem 1.2.

Theorem 2.3 Let G be a graph satisfying the assertion of Theorem 2.1, where M > M0 and M0 is
as in Lemma 2.2. Then G is spectrally 50-degenerate and has minimum degree M .

Proof: Assume this is false and let H be a subgraph of G with maximum degree D and spectral
radius ρ(H) >

√
50D, where D is as small as possible. Clearly H cannot be 10-degenerate, since

otherwise ρ(H) < 2
√

10D <
√

50D and thus it contains a subgraph with minimum degree exceeding
10, implying, by Theorem 2.1, part (iii), that its maximum degree, and hence also D, are at least
1000M .

We claim that there is a coloring of the edges of H by 2 colors, red and green, so that the following
holds:

(a) In the graph Hr consisting of all red edges, the degree of every vertex of A is at most 10.

(b) In the graph Hg consisting of all green edges, the degree of every vertex of B is at most D/100.
To prove the claim, consider the following process of coloring vertices and edges of H by red and

green. Starting with no colored vertex or edge, repeat the following two steps as long as it is possible
to apply any of them:

(1) If there is a yet uncolored vertex v of B incident with at most D/100 uncolored edges, color it
green, and color all uncolored edges incident with it green.

(2) If there is a yet uncolored vertex u of A incident with at most 10 uncolored edges, color it red,
and color all uncolored edges incident with it red.

Note that only vertices of B can be green, and only vertices of A can be red. Moreover, once a
vertex is colored, all edges incident with it get colors as well. In addition, a vertex of B has no green
edges incident with it before it is colored, and a vertex of A has no red edges incident with it before
it is colored. The construction thus implies that the degree of every vertex of B in the green graph is
at most D/100, whereas the degree of every vertex of A in the red graph is at most 10.

The process terminates when either all edges are colored, or there are yet uncolored edges (and
hence also vertices) and we cannot apply the rules (1) and (2) anymore. But if this is the case then
in the induced subgraph on the yet uncolored vertices every vertex of B has degree exceeding D/100
(and at most D) and every vertex of A has degree exceeding 10 (and at most M). By Lemma 2.2 this
contradicts the fact that G satisfies Theorem 2.1. Thus we have colored all edges, as claimed.

By the minimality of D, the graph Hg whose maximum degree is at most D/100 is spectrally 50-
degenerate, and by Proposition 1.1 the graph HR, which is 10-degenerate, has maximum eigenvalue
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at most 2
√

10D. It follows that the spectral radius of H is at most
√

50D/100 + 2
√

10D <
√

50D,
contradicting the choice of H. This completes the proof. 2
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