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Abstract

A copy of a graph H in an edge colored graph G is called rainbow if all edges of H have distinct

colors. The size anti-Ramsey number of H, denoted by ARs(H), is the smallest number of

edges in a graph G such that any of its proper edge-colorings contains a rainbow copy of H. We

show that ARs(Kk) = Θ(k6/ log2 k). This settles a problem of Axenovich, Knauer, Stumpp and

Ueckerdt. The proof is probabilistic and suggests the investigation of a related notion, which we

call the degree anti-Ramsey number of a graph.
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1 The main result

A copy of a graph H in an edge colored graph G is called rainbow if all edges of H have distinct

colors. Following [3] define the size anti-Ramsey number of a graph H, denoted by ARs(H), to

be the smallest number of edges in a graph G such that any proper edge-coloring of G contains a

rainbow copy of H.

This notion is related to the anti-Ramsey number of H, denoted AR(H), which is the smallest

n such that any proper edge coloring of the complete graph Kn on n vertices contains a rainbow

copy of Kk. This was introduced by Erdős, Simonovits and Sós [5], and has been studied by several

researchers. In particular, Babai [4] and Alon, Lefmann, and Rödl [1] determined the order of

magnitude of AR(Kk), showing that

AR(Kk) = Θ(k3/ log k). (1)

This clearly implies that

ARs(Kk) = O(k6/ log2 k). (2)

In [3] Axenovich, Knauer, Stumpp and Ueckerdt proved that ARs(Kk) = Ω(k5/ log k) and raised

the problem of closing the gap between the upper and lower bounds. This is done in the following

theorem.
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Theorem 1.1. There exists an absolute constant c so that ARs(Kk) ≥ ck6/ log2 k. Therefore,

ARs(Kk) = Θ(k6/ log2 k).

To prove the lower bound one has to show that any graph G with fewer than ck6/ log2 k edges

admits a proper coloring with no rainbow copy of Kk. The proof proceeds, like the proof in [3], by

splitting the graph into two induced parts, one on the vertices of high degree and the other on the

vertices of low degree. The induced subgraph on the high degree vertices can be colored by applying

(1). The induced subgraph on the low degree vertices is colored by a probabilistic argument whose

analysis relies on several interesting ideas. This is the main novelty in the proof here, improving the

argument in [3] in which this induced subgraph is colored deterministically using Vizing’s Theorem.

The details are presented in the next section. The final section contains a brief discussion of the

notion of degree anti-Ramsey numbers, which is motivated by the main argument.

2 The proof

Throughout the proofs we make no attempt to optimize the absolute constants. To simplify the

presentation we omit all floor and ceiling signs whenever these are not crucial. We also assume,

whenever this is needed, that k is sufficiently large. The main part of the proof is the following

result, showing that any graph in which the maximum degree is not too large has a proper edge

coloring with no rainbow copy of Kk. Note that the total number of edges of the graph can be

arbitrarily large.

Theorem 2.1. There exists an absolute constant c1 so that any graph G with maximum degree at

most c1k
3/ log k admits a proper edge coloring with no rainbow copy of Kk.

This easily implies the assertion of Theorem 1.1, as shown next.

Proof of Theorem 1.1 assuming Theorem 2.1: In view of (2) it suffices to prove the lower

bound. To do so, we need to show that the edges of any graph G with fewer than ck6/ log2 k edges

can be properly colored avoiding a rainbow Kk.

Consider such a graph G, let V0 be the set of all vertices of G of degree at least d = c2k
3/ log k,

and let V1 = V (G)− V0 be the set of all remaining vertices. Here c2 = c1/8 where c1 is the constant

from Theorem 2.1. Clearly,

|V0| ≤
2|E(G)|

d
≤ 2ck3

c2 log k
,

and thus, for an appropriate choice of c, 2c/c2 is sufficiently small and it follows from (1) that the

induced subgraph G[V0] of G on V0 can be properly colored without creating a rainbow copy of Kk/2.

Put G1 = G[V1]. The maximum degree of G1 satisfies ∆(G1) ≤ d ≤ c1(k/2)3/ log(k/2). There-

fore, by Theorem 2.1 there exists a proper edge coloring of the induced subgraph G[V1] of G on

V1 that avoids rainbow copies of Kk/2 as well. Coloring the edges between V0 and V1 arbitrarily,

ensuring that the coloring is proper, gives a proper coloring of G without a rainbow Kk. �

We proceed with the proof of Theorem 2.1, which is the main technical part of this note.
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Proof of Theorem 2.1: Let G = (V,E) be a graph with maximum degree at most d = c1k
3/ log k,

where c1 is an absolute constant to be chosen later. Define a (random) edge-coloring of G in two

steps as follows. First, let C = [10d] = {1, 2, . . . , 10d} be a palette of 10d colors and let f : E → C

be a random coloring of the edges of G obtained by picking, for each edge e of G, randomly and

independently, a uniformly chosen color in C. Call f the initial coloring of G. This coloring will be

used for most of the argument.

Let C ′ = N− C be another (infinite) palette of colors. In the second step, any edge e for which

f(e) = f(e′) for some edge e′ incident with e is recolored with a new color from C ′ which is used

only once in our coloring. This modified coloring is the final coloring of G.

The final coloring is clearly a proper edge coloring of G. Our objective is to show that with

positive probability this coloring contains no rainbow copy of Kk.

Fix a copy K of Kk in G. We next show that the probability that this copy is rainbow in our final

coloring is very small. This, together with the local lemma will suffice to show that with positive

probability no copy of Kk is rainbow. To bound the probability that K is rainbow we prove the

following lemma.

Lemma 2.2. The probability that K is rainbow is smaller than

e−10−10k4/d = e−(10−10/c1)k log k.

Proof: Split the vertices of K into two disjoint sets V1 and V2, where |V1| = 0.9k and |V2| = 0.1k.

Let K1 = (V1, E1) be the clique on V1 and let K2 = (V2, E2) be the clique on V2. Expose, now, the

value of f(e) for all edges of G besides those in E1 ∪ E2. Given these values define, for each edge

e ∈ E1 ∪ E2, the set S(e) of all colors in C that differ from all values f(e′) for e′ ∈ E − (E1 ∪ E2)

that is incident with e. That is:

S(e) = {c ∈ C : for all e′ ∈ E − (E1 ∪ E2) satisfying e ∩ e′ 6= ∅, f(e′) 6= c}.

We now expose the random values of f(e1) for each e1 ∈ E1. For each edge e2 ∈ E2, let F (e2) ⊂ S(e2)

denote the set of all colors c in S(e2) so that

(i) there is exactly one edge e1 ∈ E1 for which f(e1) = c, and

(ii) f(e1) = c ∈ S(e1).

Note that if c ∈ F (e2) and e1 ∈ E1 is the unique edge of E1 satisfying (i) and (ii), then in the

final coloring the color of e1 stays c. Therefore, if in the final coloring the color of e2 belongs to

F (e2), then the copy of K is not rainbow.

Let B(e2) denote the event that |F (e2)| ≤ k2/10.

Claim 2.3. For each e2 ∈ E2, the probability of B(e2) is at most e−Θ(k2).

Proof of claim: Given the fixed values of f(e) for all e ∈ E− (E1∪E2), let g denote the restriction

of the random function f to the edges of E1. For this random function g : E1 → C = [10d], let L(g)

be the random variable given by L(g) = |F (e2)|. We first claim that the expectation of L(g) satisfies

E[L(g)] ≥ |E1|0.6
(

1− 1

10d

)|E1|−1

> 0.5

(
0.9k

2

)
> 0.2k2. (3)
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Indeed, for each fixed edge e1 ∈ E1, the probability that f(e1) ∈ S(e1)∩S(e2) is at least 0.6, as each

S(ei) is of size at least 8d and hence the cardinality of S(e1) ∩ S(e2) is at least 6d. Given the value

of f(e1), the conditional probability that f(e′) 6= f(e1) for each e′ ∈ E1, e′ 6= e1, is(
1− 1

10d

)|E1|−1

> 1− |E1|
10d

> 0.9,

where here we used that d = c1k
3/ log k, |E1| =

(
0.9k

2

)
and k is sufficiently large. It thus follows that

the probability that f(e1) contributes 1 to the expectation of |F (e2)| is bigger than 0.6 · 0.9 > 0.5,

and hence, by linearity of expectation, (3) follows.

Put m = |E1| =
(

0.9k
2

)
and let X0, X1, . . . , Xm be the Doob martingale for the random variable

L(g) defined as follows. Fix an arbitrary ordering h1, h2, . . . , hm of the edges of E1 and define Xi to

be the conditional expectation of L(g) given the values of g(h1), g(h2), . . . , g(hi). Therefore, X0 is a

constant, namely, the expectation of L(g), whereas Xm is the variable L(g) itself. It is not difficult to

check that if two functions g1 and g2 differ on a single edge of E1, then |L(g1)−L(g2)| ≤ 2. Indeed,

by changing the value f(e) of a single edge e in E1 from color c1 to c2, we may add c2 to the set

F (e2), and may also add c1 to F (e2) (in case the color c1 appeared twice among the colors of edges

of E1 before the change). Obviously we cannot add any other color to F (e2). It thus follows, by a

simple consequence of Azuma’s Inequality (see [2], Theorem 7.4.2 and the discussion preceding it),

that the probability that L(g) deviates from its expectation by at least s is at most e−s
2/(8m). In

particular, the probability that L(g) = |F (e2)| is smaller than k2/10 is at most

e−Ω(k4/(8m)) = e−Ω(k2),

completing the proof of the claim. It is worth noting that instead of considering the Doob martingale

as above, one can apply the bounded differences inequality of McDiarmid ([6], Lemma 1.2). �

Returning to the proof of the lemma, as explained in the beginning of its proof, we now expose

all initial colors f(e) for e ∈ E1 (in addition to the already exposed initial colors of the edges

e ∈ E − (E1 ∪ E2)). We further assume that none of the events B(e2) occurs, that is, assume that

|F (e2)| ≥ k2/10 for all e2 ∈ E2. By Claim 2.3 this happens with probability 1− eΘ(k2). Conditioning

on this, we now expose the random values of f(e2) for all e2 ∈ E2 one by one. Recall that each of

them is a uniform random number in C = [10d].

For each edge e2 ∈ E2 independently of all other edges, the probability that f(e2) ∈ F (e2)

is |F (e2)|
10d ≥ k2

100d . Let B1 denote the event that less than s1 = 0.5|E2| k2

100d edges e2 ∈ E2 satisfy

f(e2) ∈ F (e2). The probability that B1 occurs is clearly at most the probability that a binomial

random variable with parameters |E2| and p = k2

100d is at most half its expectation. It follows, by

Chernoff’s Inequality (see, e.g., [2], Theorem A.1.13), that

Prob[B1] ≤ e−|E2|p/8 ≤ e−k
4/(300000d).

While revealing the values of f(e2) for each e2 ∈ E2 one by one according to some fixed order,

let B2 denote the event that there are at least 2|E2| k2

2000d edges e2 ∈ E2 so that f(e2) = f(e′2) for

some edge e′2 ∈ E2 that appears before e2 according to this order. Note that for each e2, given
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any history of the f values of all earlier edges, the conditional probability that f(e2) equals one of

them is smaller than |E2|/(10d) < k2

2000d = p. Therefore, the probability that the event B2 occurs is

at most the probability that a binomial random variable with parameters |E2| and p = k2

2000d gets

a value which is at least twice its expectation. Applying, again, the known estimates for binomial

distributions (see, e.g., [2], Theorem A.1.11) we conclude that

Prob[B2] ≤ e−|E2|p/27 ≤ e−k
4/(109d).

Note, finally, that if both B1 and B2 fail, then there are (many) edges e2 ∈ E2 so that f(e2) ∈ F (e2)

and f(e2) is different than f(e′2) for any other edge e′2 ∈ E2. But in this case f(e2) is also the final

color of e2 and hence K is not rainbow. It thus follows that if none of the events B1, B2 and B(e2)

for e2 ∈ E2, occurs then K is not rainbow, implying, by our estimates above, the assertion of the

lemma. �

We can now complete the proof of the theorem using the Lovász Local Lemma (see, e.g., [2],

Chapter 5). For each copy K of Kk in G, let AK denote the event that K is rainbow in our final

coloring. Construct a dependency graph for the events AK , where AK and AK′ are adjacent if and

only if the distance between K and K ′ in G is at most 1. Since the final coloring of the edges of

a clique is determined completely by the colorings of the edges of the clique and the edges incident

to it, it follows that indeed each event AK is mutually independent of all events AK′ besides those

adjacent to it in the dependency graph. As the maximum degree of G is d, the maximum degree in

the dependency graph is most kd
(
d
k

)
< k4k/4, as for any fixed k-clique K in G there are at most kd

vertices within distance 1 from K, and each such vertex lies in at most
(
d
k

)
cliques. Therefore, by

Lemma 2.2 and by the Local Lemma, if 10−10/c1 ≥ 4, that is, if we choose, say, c1 = 10−10/4, then

with positive probability our random coloring contains no rainbow copy of Kk, completing the proof

of the theorem. �

3 Degree anti-Ramsey numbers

Theorem 2.1 motivates the introduction of a new notion, the degree anti-Ramsey number ARd(H)

of a graph H, as follows.

Definition 3.1. For a graph H, the degree anti-Ramsey number ARd(H) of H is the minimum

value d so that there is a graph G with maximum degree at most d such that any proper edge coloring

of G contains a rainbow copy of H.

It is clear that ARd(H) ≤ AR(H) − 1 for all H. It is also clear that ARd(H) ≥ |E(H)| − 1 for

any graph H, since if the maximum degree of a graph G is at most |E(H)| − 2 it admits, by Vizing’s

Theorem [7], a proper edge coloring with at most |E(H)| − 1 colors. This coloring cannot contain a

rainbow copy of H.

For any tree H this is nearly tight, namely, ARd(H) ≤ |E(H)|. Indeed, if m = |E(H)| and G is

a rooted tree with all internal vertices of degree m and height at least |V (H)|, then in any proper

edge-coloring of G we can find a rainbow copy of H greedily. To see this, let v0, v1, v2, . . . , vm be
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an ordering of the vertices of H so that each vi has a unique neighbor among the previous vertices

v0, . . . , vi−1. Define a bijective homomorphism of V (H) = {v0, . . . , vm} to the vertices of G as follows.

First map v0 to the root of G. Assuming v0, . . . vi−1 have already been mapped so that their image

spans a rainbow tree isomorphic to the induced subtree of H on {v0, . . . vi−1}, map vi maintaining

this property. To do so, let vj , j < i, be the unique neighbor of vi among the previous vertices, and

suppose vj has been mapped to the vertex uj of G. Then vi will be mapped to a child w of uj so that

the color of the edge ujw is different from the colors of all other edges in the image of the partial

tree we have so far. This is always possible, as there are m distinct colors of edges incident with the

vertex uj , and only i− 1 < m of these have already been used. This shows that indeed for every tree

H, |E(H)| − 1 ≤ ARd(H) ≤ |E(H)| and in fact the same bounds hold for any forest H, by a similar

reasoning.

For any matching of m > 2 edges, it is easy to see that ARd(H) = m − 1. This is shown by

taking as the graph G any vertex disjoint union of m graphs, each being an m− 1 regular graph of

class 2 (namely, of chromatic index m).

Our main technical result here (Theorem 2.1) shows that for the complete graph Kk, ARd(Kk) =

Θ(k3/ log k).

It seems interesting to study the function ARd(H) for general graphs H.
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