
Edge-Disjoint Cycles in Regular Directed Graphs

Noga Alon∗ Colin McDiarmid† Michael Molloy‡

February 22, 2002

Abstract

We prove that any k-regular directed graph with no parallel edges
contains a collection of at least Ω(k2) edge-disjoint cycles, conjecture that
in fact any such graph contains a collection of at least

(
k+1

2

)
disjoint cycles,

and note that this holds for k ≤ 3.

In this paper we consider the maximum size of a collection of edge-disjoint

cycles in a directed graph. We pose the following conjecture:

Conjecture 1: If G is a k-regular directed graph with no parallel edges,

then G contains a collection of
(
k+1

2

)
edge-disjoint cycles.

We prove two weaker results:

Theorem 1: If G is a k-regular directed graph with no parallel edges, then

G contains a collection of at least 5k/2− 2 edge-disjoint cycles.

Theorem 2: If G is a k-regular directed graph with no parallel edges, then

G contains a collection of at least εk2 edge-disjoint cycles, where ε = 3
219 .
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Note that Theorem 1 implies that Conjecture 1 is true for k ≤ 3. The proof

of Theorem 2 is probabilistic, and we make no attempt to compute the best

value of ε, as it is clear that our methods will not yield ε near 1
2 .

Before proving Theorems 1 and 2, we note that the bound in Conjecture 1,

if true, is tight. To see this, consider the directed graph Ckn, n ≥ 2k + 1, which

has vertex set {0, . . . , n− 1}, and edge set {(i, i+ j) : 0 ≤ i ≤ n− 1, 1 ≤ j ≤ k},

where the addition is taken mod n. It is easy to see that any cycle in Cnk must

contain one of the
(
k+1

2

)
edges from {n− k, . . . , n− 1} to {0, . . . , k − 1}. (Note

that Ckn does in fact contain
(
k+1

2

)
edge-disjoint cycles, as there are k edge-

disjoint cycles through n− 1, whose deletion, along with the deletion of n− 1,

yields a graph isomorphic to Ck−1
n−1.) Also, the complete directed graph on k+ 1

vertices has 2
(
k+1

2

)
edges, and hence provides another example.

As usual, we use δ+(v) and δ−(v) to denote the outdegree and indegree

repectively, of a vertex v. The maximum (resp. minimum) degree of a graph is

the maximum (resp. minimum) of the indegrees and outdegrees of its vertices.

We say a graph G is Eulerian if δ−(v) = δ+(v) for all v ∈ V (G). The degree of

a vertex v in an Eulerian graph is δ−(v), and an Eulerian graph is k-regular if

each vertex degree is k. Note that here we do not require an Eulerian graph to

be connected.

1 Related Work

When considering Conjecture 1, we are reminded of a few other conjectures and

theorems.

Behzad, Chartrand and Wall [3] have conjectured that every k-regular di-

graph on n vertices has a cycle of length at most dnk e. Caccetta and Häggkvist
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[4] made the stronger conjecture that this is true for every digraph with min-

imum outdegree k. The best results in this direction are due to Chvátal and

Szemerédi [5] who showed that every digraph with minimum outdegree k on n

vertices has a cycle of length at most min( 2n
k+1 , d

n
k e+ 2500). Note that Conjec-

ture 1, if true, implies that any k-regular digraph on n vertices has a cycle of

length at most 2n
k+1 (as proved in [5].)

Bermond and Thomassen [2] conjectured that any digraph with minimum

outdegree k has at least k/2 vertex-disjoint cycles. Thomassen [11] proved that

such a digraph has at least r vertex disjoint cycles if k ≥ (r + 1)!. In Section

3, we improve this to a linear bound for graphs with minimum degree k and

maximum degree 2k.

Let us say that a directed graph G has the cycle-packing property if the

maximum size of a collection of edge-disjoint cycles equals the minimum size of

a set of edges whose removal leaves an acyclic graph. The following proposition

shows that Conjecture 1 is true for any such graph.

Proposition: If G is a directed graph with no parallel edges and minimum

outdegree k, and S ⊆ E(G) meets every cycle in G, then |S| ≥
(
k+1

2

)
.

Proof: Since G−S is acyclic there is an ordering v1, v2, . . . , vn of its vertices

so that for every directed edge vivj of G− S, i < j. It follows that vn−j has at

least k − j outedges in S, for all 0 ≤ j < k, implying the desired result. 2

Lucchesi and Younger [7] showed in 1978 that any planar digraph has the

cycle-packing property. This result has recently been extended for Eulerian flat

digraphs. A graph is flat if it can be embedded in R3 so that each cycle bounds

a disc disjoint from the rest of the graph; and a digraph is flat if the underlying

undirected graph is. Examples of flat graphs include the apex graphs, that is
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graphs G such that G \ v is planar for some vertex v. Seymour [10] shows that

any Eulerian flat digraph has the cycle-packing property.

Unfortunately, these results have limited application for us here. If each

outdegree in G is at least k and G has no 2-cycles, then G is not planar if k > 2,

and G is not flat if k > 3.

Younger has conjectured that for any r ≥ 1 there exist (least) integers f(r)

(resp. g(r)) such that every digraph has either a set of r edge- (resp. vertex-)

disjoint cycles or a set of f(r) (resp. g(r)) edges (resp. vertices) which meets

every cycle. Soares pointed out that if f(r), g(r) exist then they must be equal.

McCuaig [8] showed f(2) = 3. For r > 2, f(r) is not known to exist, but Alon

and Seymour (see [9]) observed that if it exists then f(r) = Ω(r log r), whereas

Seymour proved in [9] that if a digraph does not have a ”fractional” packing of

directed cycles of value greater than k then one can delete O(k log k log log k) of

its edges and obtain an acyclic digraph.

2 A Linear Bound

Proof of Theorem 1: We shall, in fact, show more strongly that if G is an

Eulerian directed graph with no parallel edges and with minimum degree k,

then G contains a collection of 5k/2 − 2 edge-disjoint cycles. Let x be any

vertex of degree k. Clearly we can find k edge-disjoint directed cycles through

x. Choose a set of k such cycles C = C1, . . . , Ck such that the sum of the lengths

is minimum.

Claim: The union of all the arcs not incident with x in C gives an acyclic

graph H, and so generates a partial order P(C). Further, if u < v under P then
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G has no u→ v edge outside of C.

Proof of Claim: Let D be the graph formed from all the arcs in C. D is

Eulerian, and x has degree k in D. Further, any such graph yields a collection of

k edge-disjoint directed cycles through x. Thus by our choice of C to minimize

the number of arcs in the graph D, H must be acyclic, and similarly the second

sentence in the claim follows. 2

Note that any two vertices, other than x, each of which lies in more than

k
2 members of C, are comparable, as they must lie on a common cycle. Hence,

there must be some minimal element x2 of P which is less than all such vertices.

Let G2 be the graph formed by deleting the edges of C from G. As G has no

multiple edges, x2 lies in exactly one member of C, and thus has degree at least

k − 1 in G2. Therefore we can choose a set of k − 1 edge-disjoint cycles in G2,

each passing through x2. Again, choose a set whose total length is minimum,

and let P2 be the partial order that it induces. Remove its edges, leaving G3.

Let x3 be any minimal element in P2, and note that there is an edge from

x2 to x3. By our Claim, G2 has no edges from x2 to any vertex which lies in

more than k
2 members of C, and so x3 has degree at least k

2 in G2. Also, x3 lies

in exactly one of the second set of cycles, and so x3 has degree at least k
2 − 1 in

G3. Thus we can find k
2 − 1 edge-disjoint cycles in G3, proving the theorem. 2

3 A Quadratic Bound

Note that if it were true that any Eulerian directed graph with minimum degree

k has a collection of k vertex-disjoint cycles, then Conjecture 1 would follow.

Unfortunately, this is not the case, for example with Ckn where n is not a multiple
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of k or with the complete directed graph on k + 1 > 2 vertices. However, we

can prove a weaker result which is enough to give us the quadratic bound of

Theorem 2, and which may be interesting in its own right:

Lemma 1: If G is a directed graph with no parallel edges, and with min-

imum degree at least k ≥ 1 and maximum degree at most 2k, then the vertices

of G may be coloured with at least k/216 colours (each used) in such a way that

for each colour, the corresponding induced subgraph H has all vertex indegrees

and outdegrees in an interval [a, 4a] where a ≥ 1.

Before presenting the proof of this lemma, we will see that it implies Theorem

2:

Proof of Theorem 2: We set Gk = G, and recursively define Gj for

dk2 e ≤ j ≤ k. For each j, we can apply Lemma 1 to find a collection Cj of

at least j/216 vertex disjoint cycles in Gj , and then define Gj−1 as the graph

obtained by deleting the edges of Cj from Gj . Now C = ∪k
j=d k2 e

Cj is a collection

of edge-disjoint cycles in G, where:

|C| ≥
k∑

j=d k2 e

j

216

≥ 3
219

k2

2

Note that if the conjecture of Bermond and Thomassen discussed in Section

1 holds, then the value of ε in Theorem 2 can be raised to 1/4.

The proof of Lemma 1 applies a method similar to the one used in [1] and

makes use of the Lovász Local Lemma, which we state here in its symmetric

case.
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The Lovász Local Lemma [6]: Let A1, A2, . . . , An be events in an arbi-

trary probability space, such that Pr(Ai) ≤ p for each 1 ≤ i ≤ n. Suppose that

each event Ai is mutually independent of a set of all other events but at most

d. If ep(d+ 1) ≤ 1, then Pr(∩ni=1Ai) > 0.

We use this to prove:

Lemma 2: Suppose that H is a directed graph with no parallel edges,

and with minimum degree x and maximum degree y, where x ≥ 1000, and

y ≤ 4x. Then the vertices of H can be coloured red and blue such that for

any vertex v ∈ V (H), the number of red outneighbours of v lies in the interval

[δ+
H(v)/2− δ+

H(v)2/3, δ+
H(v)/2 + δ+

H(v)2/3] (and thus so also does the number of

blue ones), and similarly the number of red inneighbours of v lies in the interval

[δ−H(v)/2− δ−H(v)2/3, δ−H(v)/2 + δ−H(v)2/3].

Proof: Colour each vertex of H either red or blue, making each choice

independently and uniformly at random. For each v, let A+
v be the event that

the number of red outneighbours of v does not lie in the interval [δ+
H(v)/2 −

δ+
H(v)2/3, δ+

H(v)/2 + δ+
H(v)2/3], and define A−v similarly.

For each v,

Pr(A+
v ) ≤ 2e−2δ+

H
(v)1/3

Pr(A−v ) ≤ 2e−2δ−
H

(v)1/3
.

Each of these probabilities is bounded above by 2e−2x1/3
.

Furthermore, for each v, A−v is mutually independent of all but at most∑
u∈N−(x)(δ

+(u) + δ−(u)− 1) other events, and A+
v is mutually independent of

all but at most
∑
u∈N+(x)(δ

+(u) + δ−(u) − 1) other events. Both sums are at
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most 32x2 − 1.

Now, for x ≥ 1000, 64x2e1−2x1/3
< 1. Therefore, by the Lovász Local

Lemma, Pr(∩v∈V (H)(A+
i ∩ A

−
i )) > 0, and so there must be at least one satis-

factory 2-colouring. 2

We now use Lemma 2 to prove Lemma 1:

Proof of Lemma 1: Let c = 15 and note that 21−c/3(21/3−1)−1 ≤ ln 4
3 ≤

1
3 ,

and hence 1− 21− c3 (2
1
3 − 1)−1 ≥ 2

3 , and 2
32c ≥ 1000.

We shall see that, if r = blog2 kc − c, then G can be coloured as required

with 2r ≥ 2−(c+1)k colours. Clearly, we can assume k ≥ 216, and so r ≥ 1.

Let f(x) = 1
2x−x

2/3, for x ≥ 1. Let z ≥ k, let x0 = z, and xi+1 = f(xi) for

i = 1, 2, .. while xi ≥ 1. Clearly the xi are decreasing and xi ≤ 2−iz while xi is

defined. Let 1 ≤ j ≤ r be such that xj−1 ≥ 1, so that xj is defined. Then

xj = 2−1xj−1 − x
2
3
j−1

= 2−jz −
j∑
i=1

2−i+1x
2
3
j−i

≥ 2−jz −
j∑
i=1

2−i+1(2−(j−i)z)
2
3

= 2−jz − 2(2−jz)
2
3 (

j∑
i=1

2−i/3)

≥ 2−jz − 2(2−jz)
2
3 (21/3 − 1)−1

= (2−jz)(1− 2(2−jz)−
1
3 (21/3 − 1)−1)

≥ (2−jz)(1− (21− c3 )(21/3 − 1)−1)

≥ 2
3

(2−jz)

≥ 2
3

2c 2r−j
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≥ 1000 2r−j .

Thus each xj for j = 1, .., r is defined, and satisfies xj ≥ 2
3 (2−jz) ≥ 1000 2r−j .

Now let g(x) = 1
2x + x2/3, for x ≥ 0. Let y0 = z, and yi+1 = g(yi) for

i = 1, 2, .. Clearly we have yi ≥ 2−iz. Let 1 ≤ j ≤ r. Then

yj = 2−1yj−1(1 + 2y−1/3
j−1 )

= (2−jz)
j−1∏
i=0

(1 + 2y−1/3
i )

≤ (2−jz) exp(
j−1∑
i=0

2y−1/3
i )

≤ (2−jz) exp(2z−1/3

j−1∑
i=0

2i/3)

≤ (2−jz) exp(2(2−jz)−1/3(21/3 − 1)−1)

≤ (2−jz) exp(21−c/3(21/3 − 1)−1)

≤ 4
3

(2−jz).

Thus each yj for j = 1, .., r satisfies yj ≤ 4
3 (2−jz).

Let us use Lemma 2 to 2-colour G, then to 2-colour each of the subgraphs

induced by the colour classes, and so on. Suppose that we have performed this

for j levels where 0 ≤ j ≤ r, and let H be one of the 2j corresponding induced

subgraphs of G. Let u and v be any two vertices of H. By the above we see

that d+
H(u) ≥ 2

32−jd+
G(u) ≥ 2

32−jk ≥ 1000 2r−j , and d+
H(v) ≤ 4

32−jd+
G(v) ≤

4
32−j(2k); and there is a similar result for indegrees. Thus if H has minimum

degree x and maximum degree y then y ≤ 4x and x ≥ 1000 2r−j . Hence, if

j < r we may continue to apply Lemma 2 to colour for one more level, and the

lemma follows (with a = 2
32−rk). 2
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Remark: Using a more straightforward application of the Lovász Local

Lemma (to repeatedly find vertex disjoint cycles as before, but without the

iterated splitting procedure), one can also get a nearly quadratic bound with a

more reasonable constant:

Theorem 3: If G is a k-regular directed graph with no parallel edges and

with k ≥ 2, then G contains a collection of at least k2/8 ln k edge-disjoint cycles.
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