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Abstract

We calculate the exact number of contours of size n containing a fixed vertex in
d-ary trees and provide sharp estimates for this number for more general trees. We
also obtain a characterization of the locally finite trees with infinitely many contours
of the same size containing a fixed vertex.
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Introduction

After the seminal paper of Rudolf Peierls [14], the standard technique to prove the
existence of phase transitions in spin systems (Ising model type, for instance) goes by a
contour argument. Roughly speaking, we need to define objects usually called contours,
notions of size (length or surface) and interior for these objects. Furthermore, for a fixed
vertex x of a graph G and, for each n ∈ N, we need to estimate the number of contours
of size n in G with x in their interiors.

A standard calculation in this approach is to control expressions as below:

∑
C�x

w(|C|) =
∞∑
n=1

∑
C�x
|C|=n

w(|C|) =
∞∑
n=1

w(n)
∑
C�x
|C|=n

1, (1)
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where |C| denotes the size of the contour C and C � x denotes the fact that x belongs
to the interior of C. Usually the function w : {contours} → R+ depends only on the size
of the contour and not on its position in the graph G. For the standard Ising model on
Z2, the function is given by w(C) = w(|C|) = exp(−2β|C|) where β is the inverse of the
temperature. Then, to control (1) we need to estimate

∑
C�x
|C|=n

1 and for this purpose

generating functions are very powerful tools. We can find similar expressions to (1) in
almost all papers using the Peierls argument. The readers interested in the proof of the
existence of phase transition using the Peierls contours can check standard books on the
field [7, 11, 16, 22]. The original Peierls argument [14] was done for the Ising model
on Z2, but we can define contours for any Zd with d ≥ 3 and the argument works as
well. The estimates of the number of contours help us to give bounds for the critical
temperature of the models, see [8, 13]. These facts show that the mathematical problem
of counting contours on graphs has important consequences in statistical physics and
naturally emerges.

Moreover, the problem of counting finite objects on graphs (subgraphs, paths with
a fixed length, etc) is important for mathematicians and it is a classical problem in
discrete mathematics. The history about the question of counting contours of the same
size containing a fixed unit cube on Zd (d ≥ 2) is the following: David Ruelle proved that
there exist at most 3n contours of size n containing a fixed unit cube; Lebowitz and Mazel
[13] proved that there are between (C1d)n/2d and (C2d)64n/d; and finally, differently
from the previous approaches and using generating functions, Balister and Bollobás [8]
improved these bounds showing that there are between (C3d)n/d and (C4d)2n/d contours
of size n (C1, C2, C3 and C4 are constants).

In the last years, some attention was given to the Ising model on trees instead
of Zd, and there is more than one definition of contour for trees and general graphs
[2, 3, 13, 17, 18, 19, 20]. In our note we consider a definition proposed by Babson
and Benjamini [3], where the contours are edge cuts which cut out exactly one finite
component and they are minimal with this property. We will see that this definition on
trees implies that the number of contours of size n coincides with the number of external
boundaries with n vertices, a standard notion used by the combinatorics community. In
the original paper they used the term cut sets as is usual for combinatorialists, the
context was percolation theory, see also [4]. This definition was later considered in [2]
in the study of bounds for the critical percolation probability pc in general graphs.

Our contribution is to clarify the connection between contours on trees and natural
objects in graph theory. Inspired by Balister and Bollobás [8], we show that in the case
of regular trees (and d-ary trees) we can calculate the exact number of contours of size
n containing a fixed vertex x. We also obtain a characterization for locally finite rooted
trees with infinitely many contours of some fixed size n involving the root. In particular,
we prove that we have infinitely many contours of the same size if and only if the tree
has an infinite independent path. Nonamenable trees are the trees in which the length
of the independent paths is uniformly bounded. In particular, trees which contain an
infinite independent path are amenable trees. On the other hand, for nonamenable
graphs with bounded degree, (in particular, d-ary trees) one possibility for the proof of
the phase transition in Ising models and for the study of ground states is to count the
number of connected components of a fixed size containing a vertex, instead of counting
the number of contours, see [10, 12].

This note is organized as follows: in Section 1 we give some basic definitions of graph



Counting Contours on Trees 3

theory, introduce the precise definition of a contour, and show the connection of these
objects with external boundaries in graphs. In Section 2 we give explicit expressions for
the number of contours of size n in regular and d-ary trees. In addition, we show that
the binary trees are extremal objects with respect to the number of contours of a fixed
size. More precisely, if we fix n, the number of contours of size n containing a fixed
vertex is maximum in binary trees when we consider locally finite trees in which each
vertex has at least two children. In Section 3 we give a geometric characterization of
trees with infinitely many contours of the same size containing a fixed vertex. It turnes
out that this is equivalent to the existence of what’s called an infinite independent path
in the tree.

1 Definitions and Notations

The graphs G = (V,E) considered are always simple, undirected, connected, with count-
ably infinite number of vertices. All the graphs are locally finite, in other words, with
finite degree for each vertex of V . The degree of a vertex x is the number of edges
which are incident to x, denoted by d(x). A path γ is an alternating sequence of vertices
and edges γ = (v0, e1, v1, e2, ..., ek, vk) where ei = vi−1vi =: {vi−1, vi} and all vertices
are distinct, with the possible exception of v0, vk. The vertices v1, v2, ..., vk−1 are called
inner vertices of γ. An independent path γ in a graph G is a path where all inner
vertices of γ have degree two in G. When v0 = vk we say that the path γ is a cycle. We
say that a graph G is a tree if it is connected and has no cycles.

Given a vertex x and a subset of vertices A ⊂ V , let dG(x,A) denote the number
dG(x,A) = min{|γ|; γ is a path in G connecting x to a vertex of A}, where for each path
γ in G, |γ| denotes the number of edges of γ. Thus dG(x,A) is the usual distance in the
graph G between x and A. The set ∂extv A = {x ∈ V \A : dG(x,A) = 1} is the external
boundary of A.

Let G = (V,E) be a graph, we say that a graph G̃ is a minor of G, denoting
by G̃ � G, when G̃ is obtained from G after a sequence of the following operations:
contracting some edges, deleting some edges and/or isolated vertices. We contract an
edge e = xy and obtain a graph that we denote by G/e when we delete the edge e
from E, add to E the collection of edges {az;xz ∈ E or yz ∈ E} where a is a new
vertex replacing the vertices x and y, and remove all resulting parallel edges. Thus
V (G/e) = V (G)\({x, y}) ∪ {a}. We delete an edge e = xy when we remove the edge
from the graph but keep the vertices on it, after the process we obtain a new graph
G \ e = (V,E \ {e}), for a finite collection of edges C the procedure is the same, keeping
the vertices and deleting the edges: G \ C = (V,E \ C).

Definition 1. Given a graph G = (V,E), a finite set C ⊂ E is called a contour
if G \ C has exactly one finite connected component, and it is minimal with respect to
this property. That is, for all edges e ∈ C the graph (V,E \ (C \ e)) does not have a
finite connected component.

If C is a contour in G then we denote by GC = (IC , EC) the unique finite connected
component of G \ C.

This notion was originally defined by Babson and Benjamini in [3] where the authors
used minimal cut set instead of contour. The definition was later used in [2] in the study
of percolation problems on graphs.



Counting Contours on Trees 4

Let FG be the set of all contours of G. We denote by Fn
G the set of all contours of G

of size n; by FG(x) (Fn
G(x)) the set of all contours C ∈ FG (C ∈ Fn

G) such that x ∈ IC .
Let Td be a rooted tree such that all vertices have d children, i.e., the root has

degree d and the other vertices have degree d + 1. The tree Td is called d-ary tree.
A 2-tree is called binary tree. When all the vertices of a tree have the same degree d we
say that the tree is a d-regular tree.

x

Example of a contour of size four in a binary tree T2

We conclude this section showing that in the case of trees there is a one-to-one
correspondence between contours of size n in which the finite component contains the
root and external boundaries of size n of sets containing the root. This proposition will
allow us to conclude that for binary trees the number of contours of size n containing
the root is the n-th Catalan number.

Proposition 1. Let T = (V,E) be a rooted, locally finite and infinite tree. Let x the
root and suppose that T does not have leaves. Let

BnT (x) = {B ⊂ V : B is finite, connected, x ∈ B and |∂extv (B)| = n}

be the set of finite subtrees (induced by the vertices) of T containing x with external
boundary of size n. Then there is a bijection between BnT (x) and Fn

T (x).

Proof. We will prove that for each B ∈ BnT (x) there exists a contour C such that
∂extv (B) = C. We define the function f : Fn

T (x)→ BnT (x) in the following way: let C be
a contour in Fn

T (x). Remove all edges of C from the tree T . By definition of contour,
we get a finite connected component B containing x. Define f(C) = B. To show that
f is well defined, we shall prove that |∂extv (B)| = n. Actually, B = IC .

By definition of contour, each edge in C has one endpoint in B and the other in
V \B. Let Ve(C) be the set of endpoints in C ∩ (V \B). As |C| = n and the graph is a
tree, we have |Ve(C)| = n. Clearly Ve(C) ⊆ ∂extv (B). If some element u of ∂extv (B) does
not belong to Ve(C), the edge connecting u with B does not belong to C, contradicting
the fact that C is a contour. Thus f is well defined. It is not hard to see that f is a
bijective function.

2 Contours on d-ary and regular trees

The main technique in this note is the use of generating functions in the investigation
of counting problems on trees; this approach produces very clean proofs. Classical
references to the technique are the two books of Richard P. Stanley [23, 24].

The well known Catalan numbers Cn−1 = 1
n

(
2n−2
n−1

)
(n ∈ N), have lots of interpreta-

tions in Combinatorics. In particular, see, e.g., [23, 24], these numbers count the number
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of contours in binary trees by Proposition 1. In fact, let T2 be the binary tree with
root x. For all n ≥ 2, we have |Fn

T2
(x)| = 1

n

(
2n−2
n−1

)
.

Here we present a proof where we calculate the exact number of contours in d-ary
trees using generating functions, an alternative derivation can be found in [24]. Let R((z))
be the ring of formal series defined by

R((z)) =

∑
k≥0

akz
k : ak ∈ R

 .

We define the operator [zn] which extracts the coefficient of zn in the series, that is,
[zn](

∑
k≥0 akz

k) = an.
The Lagrange Inversion Theorem states that we can compute exactly the coefficients

of a series under certain conditions. The reader can find a proof of this theorem in [9, 24].

Theorem (Lagrange Inversion Theorem, Lagrange – 1770). Let φ ∈ R((z)) with
φ(0) 6= 0 and f(z) ∈ zR((z)) defined by f(z) = zφ(f(z)), then

[zn]f(z) = [zn−1]
1

n
φ(z)n.

Proposition 2. Let d ≥ 2, n ≥ 1, Td be a d-ary tree with root x. Then |F1
Td

(x)| = 0
and

|Fn
Td

(x)| =

 1
n

( d
d−1

(n−1)
1

d−1
(n−1)

)
, if n ≡ 1 (mod d− 1);

0, otherwise,

when n ≥ 2.

Proof. For each edge with endvertex x, we can either include this edge in the contour or
not. If we do not include it, we carry the root x to the other endvertex of this edge and
apply again the same procedure. Consider f(X) =

∑
n≥1 anX

n the generating function
in which the coefficients are an = |Fn

Td
(x)| for all n ≥ 1. Then we have the following

equation f(X) = (X+f(X))d. Consider h(X) = X+f(X), we have h(X) = X+h(X)d,
so h(X) = X(1−h(X)d−1)−1. Applying Lagrange’s Theorem with φ(X) = (1−Xd−1)−1

we obtain [Xn]h(X) = 1
n [Xn−1]φ(X)n. Now,

φ(X)n = (1−Xd−1)−n =
∑
k≥0

(
n+ k − 1

k

)
X(d−1)k.

Thus, if n− 1 = (d− 1)k for some k, we have

[Xn]h(X) =
1

n

(
n+ k − 1

k

)
=

1

n

( d
d−1(n− 1)
1

d−1(n− 1)

)
.

Remark: There is a geometric interpretation for the equation h(X) = X + h(X)d.
Let Td be a d-ary tree with root x. Add an edge e for which x will be a leaf, and it will
be an endpoint of e. Now we can either include the edge e in the contour or not. If we
do not include it, we carry the root x to the other endvertex of this edge and apply the
same procedure again.
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Corollary 1. Let d ≥ 2, Td be a d-ary tree with root x, and let n ≥ 1 be such that n ≡ 1
(mod d− 1), and k = (n− 1)/(d− 1). We have

1

n
dk ≤ |Fn

Td
(x)| ≤ 1

n
(ed)k.

Proof. This is consequence of the following inequality. For all integers 0 ≤ k ≤ n,(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

Proposition 3. Let d ≥ 2, n ≥ 1, T be a (d + 1)-regular tree, and x be a vertex of T .
Then

|Fn
T (x)| = an−1 +

n−1∑
k=1

akan−k,

where an = |Fn
Td

(x)|.

Proof. Let g(X) =
∑

n≥1 bnX
n be the generating function with coefficients bn = |Fn

T (x)|,
and f(X) =

∑
n≥1 anX

n be the generating function with coefficients an = |Fn
Td

(x)|.
Note that g(X) = (X + f(X))d+1 = Xf(X) + f(X)2. The proof is a direct consequence
of the previous proposition.

A natural question is to compare the number of contours between different infinite
trees. We next show that the binary tree is extremal in the class of all locally finite trees
in which every vertex has at least two children.

Theorem 1. Let T be a locally finite and infinite rooted tree. Let x be the root of T and
suppose that all vertices in T have at least two children. Then, for all n ≥ 1, we have
|Fn

T (x)| ≤ |Fn
T2

(x)|.

Proof. We will construct a binary labeled tree T ′ such that T is a minor of T ′ as follows.
Starting from x we process the vertices of T according to a Breadth-First-Search order,
that is, we start from the root x, then process its neighbors, followed by their neighbors
and so on. When we process a vertex y of T that has s > 2 children, say z1, z2, . . . , zs,
we replace y by s− 1 vertices y1, y2, . . . , ys−1. For each i, the children of yi are yi+1 and
zi, and the children of ys−1 are zs−1 and zs. When a vertex y of T has 2 children, we
keep the vertex y. Clearly T ′ is a binary tree. We call x′ the root of T ′. We will show
that there exists an injective map f which takes each contour C in Fn

T (x) and produces
a contour f(C) in Fn

T ′(x
′). In fact, for each edge of the form yzi in C, we associate the

edge yizi in T ′ (for yzs take ys−1zs) and for y with s = 2 children we keep the edge yzi.
The collection of edges produced by this procedure is defined as f(C). To simplify the
argument let us call the new edges green edges, see the picture below.

We should prove that f : Fn
T (x) → Fn

T ′(x
′), in other words, that f(C) belongs

to Fn
T ′(x). To see that f(C) is a contour observe that, by construction, there are no

green edges in f(C). Suppose by contradiction that T ′\f(C) has no finite connected
component containing the root x′, then there exists an infinite path γ′ in T ′ starting at
the root x′ of T ′. When we contract all the green edges in T ′, in particular in γ′, we
obtain the original tree T and a path γ in T starting in the root x. Since there are no
green edges in the path γ′, we have now an infinite path γ in T starting at the root
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x with E(γ) ∩ C = ∅, a contradiction. To see that f(C) has the minimality property
suppose that there exists an edge e′ ∈ f(C) such that E(T ′)\(f(C)\{e′}) still has a
finite component containing the root x′. When we contract all the green edges and add
the corresponding edge e ∈ C (the edge associated to e′ by f), since C is a contour,
there exists an infinite path α starting at the root x in T such that e ∈ E(α). We will
construct, using the path α, an infinite path α′ in T ′ starting at x′ such that e′ ∈ E(α′),
to get a contradiction. Indeed, consider the process to construct the tree T ′ in the
vertices of α. Starting at the root x, for each edge zy ∈ E(α), where z is the father of
y, after processing z there exists 1 ≤ j ≤ s− 1 such that zjy is an edge of T ′. Add zjy
to E(α′). If j = 1 we add the edge z1y to α, if j > 1 we add the finite path starting in
z1 and ending in zj , (which consists of green edges: z1z2, z2z3, ..., zj−1zj) and the edge
zjy to α′. Since the path α is infinite and e ∈ E(α) we construct an infinite path α′,
starting in x′ such that e′ belongs to α′. This shows that f(C) is indeed a contour.

It is also easy to check that f is injective and that |C| = n implies |f(C)| = n.

x

y z w

x1

y x2

z w

Example first iteration

x

y

u1u2u3

z w

x1

y1

u1 y2

u2 u3

x2

z w

Part of the second iteration

By the theorem above we have an estimate for trees in which each vertex has at
least r children, where r ≥ 2. However, we have a better estimate for these trees. To
prove this we use the inequality below, a classical theorem in extremal combinatorics
proved in [6], see also [1] and its references for several variants and extensions.

Theorem (Bollobás, 1965). Let {(Ai, Bi) : i ∈ I} be a finite collection of pairs of finite
sets such that Ai ∩Bj = ∅ if and only if i = j. Then

∑
i∈I

(
|Ai|+ |Bi|
|Ai|

)−1
≤ 1.
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In particular, if for all i ∈ I we have |Ai| ≤ a and |Bi| ≤ b, then

|I| ≤
(
a+ b

a

)
.

Theorem 2. Let T be a locally finite infinite rooted tree with root x. Suppose that all
vertices of T have at least r children, r ≥ 2. Then, for all n ≥ 1,

|Fn
T (x)| ≤

(
n+ bn−rr−1 c
bn−rr−1 c

)
.

where bxc = max{n ∈ Z : n ≤ x}.

Proof. Let C be a contour of size n in T and let IC be the finite connected component
when we remove C from T . We will find an upper bound for the number of edges
|E(IC)| in IC . Let B be the induced subgraph of T on the union of IC and C. Note
that B = (V,E) is a rooted finite subtree of T with n leaves, and each vertex of B that
is not a leaf has at least r children. Let t be the number of vertices of B and consider
the number k = t− n. Note that k is the number of vertices in IC . Using the fact that
all vertices of T have at least r children, we have

2(t− 1) =
∑
v∈V

d(v) ≥ (k − 1)(r + 1) + r + n.

Thus, k ≤ (n− 1)/(r − 1).
Since IC is a tree, the number of edges in IC is |E(IC)| = k − 1 ≤ (n− r)/(r − 1).
To finish the proof we need the following:
Fact: If C1 and C2 are two distinct contours of a vertex x in T , each of size n, and if

IC1 is the finite connected component when we remove C1 from T , then E(IC1)∩C2 6= ∅.
Proof of fact: Suppose, by contradiction, that there exist two contours C1 and C2 as

above in T , each of size n, such that E(IC1) ∩ C2 = ∅. Let IC2 be the finite connected
component when we remove C2 from T . Then IC1 is a subgraph of IC2 and IC1 6= IC2 .
Since IC1 and IC2 are subtrees of T , and as all vertices in T have at least r children, we
have |∂e(IC1)| < |∂e(IC2)| = n, a contradiction. This proves the fact.

Finally, let us prove the desired result. Let (C,E(IC)) be a pair of a contour C of
size n, where IC is the finite connected component when we remove C from T . We have
|C| = n and |E(IC)| ≤ b(n − r)/(r − 1)c. The set {(C,E(IC)) : C ∈ Fn

T (x)} is finite,
and C1 ∩ E(IC2) = ∅ if and only if C1 = C2. By the theorem above,

|Fn
T (x)| ≤

(
n+ bn−rr−1 c
bn−rr−1 c

)
,

concluding the result.

It is sometimes desirable to consider contours whose edges cover a fixed vertex, see
[18]. We obtain some bounds for this case as well.

Definition 2. Let T be an infinite tree with root x. A rooted contour is a contour C
such that there exists an edge l ∈ C incident with the root x.

We denote by Fn
r,T (x) the set of rooted contours C on T of size n. We can calculate

exactly |Fn
r,T (x)| for d-ary trees and regular trees. Clearly |Fn

r,T (x)| ≤ |Fn
T (x)|.
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Proposition 4. Let Td be a d-ary tree with root x. Then, for all n ≥ d:

|Fn
r,Td

(x)| = an −
∑

m1+...+md=n

am1 . . . amd
;

where an = |Fn
Td

(x)|. (Note that |Fn
r,Td

(x)| = 0 if n < d).

Proof. Let fTd
(X) =

∑
n≥1 anX

n and f(X) =
∑

n≥1 cnX
n be the generating functions

with coefficients an = |Fn
Td

(x)| and cn = |Fn
r,Td

(x)| respectively. For each edge incident
with x we can add it or not to the contour C. Repeating the same process as we did in
Proposition 2, if we do not add an edge we carry the root to the other endpoint of this
edge. By the same proposition we know fTd

(X) = (X + fTd
(X))d. Thus

f(X) = (X + fTd
(X))d − (fTd

(X))d = fTd
(X)− (fTd

(X))d.

Proposition 5. Let T be a (d+ 1)-regular tree with root x. Then, for n ≥ d+ 1:

|Fn
r,T (x)| = bn −

∑
m1+...+md+1=n

am1 . . . amd+1
;

where an = |Fn
Td

(x)| and bn = |Fn
T (x)|.

Proof. Using a similar argument to the one used in the previous proof, let f(X) =∑
n≥1 dnX

n be the generating function with coefficients dn = |Fn
r,T (x)| and let g(X) =∑

n≥1 bnX
n be the generating function from Proposition 3. Then f(X) = g(X) −

(fTd
(X))d+1.

3 Infinitely many contours of size n

A natural question is to study when we have infinitely many contours for some size n
whose finite connected component contains a fixed vertex x. We can characterize the
trees with this property.

Notation 1. Let G = (V,E) be a graph. For each finite independent path γ of G linking
two vertices x and y, remove all the edges (and inner vertices) of γ and add the edge
xy. Denote this new graph that is a minor of G, possibly with fewer edges, by G̃.

In the next lemma and proposition the notation G̃ is used for this special case of
minor.

Lemma 1. Let T be a tree with root x without leaves. Suppose that each independent
path of T has finite length. Then |Fn

T (x)| < +∞ if and only if |Fn
T̃

(x)| < +∞.

Proof. For each contour C = {e1 . . . , en} of T̃ , the contour is associated to a (unique)
family of independent paths {γ1, . . . , γn} of T . Then,∑

C∈Fn
T̃
(x)

n∏
i=1

|γi| = |Fn
T (x)|.

As the sum and the product are finite, we obtain |Fn
T (x)| < +∞. The converse is

analogous.
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Thus we obtain the following characterization:

Theorem 3. Let T be a locally finite rooted tree with a root x and without leaves. Then
there exists n ≥ 1 such that |Fn

T (x)| = +∞ if and only if T has an infinite independent
path.

Proof. If we assume that |Fn
T (x)| = +∞, the above is a consequence of Lemma 1 com-

bined with Theorem 1. For the converse, take an infinite independent path γ. Let C
be a contour of T that contains an edge e of γ. For all edge e′ of γ \ {e}, we have
that C ′ = (C \ {e}) ∪ {e′} is a contour of T and |C| = |C ′|. Therefore, taking n = |C|
we obtain |Fn

T (x)| = +∞.

Proposition 6. Let T be an infinite, locally finite rooted tree with root x without leaves.
Suppose that T has an infinite independent path. Then there exists a sequence (ni)i≥1
such that |Fni

T (x)| = +∞ if and only if there is an infinite number of vertices in T with
degree at least three.

Proof. Suppose that there exist only a finite number of vertices in T with degree at
least three. Take T̃ constructed as in Notation 1. If an independent path is infinite, we
replace this independent path by a leaf. This new tree we denote by T

′
. Since T has an

infinite independent path, T
′

has at least one leaf. Moreover, T
′

is a finite tree because
T has only a finite number of vertices with degree at least three. Let B be a subtree
of T

′
such that x ∈ B and B does not contain any leaf. Let C be the set of external

boundary edges of B. For each C constructed in this way we obtain a family of contours
of T of the same size and any contour in T comes from some external boundary edges for
some such B. As we have a finite number of subtrees of T

′
that do not contain leaves,

there exists n0 ≥ 1 such that for all n ≥ n0 we have |Fn
T (x)| = 0.

For the converse, suppose that there exists an infinite number of vertices in T with
degree at least three. Let Ek be the set of edges whose distance from x is k. Ek is a
contour. Since the number of vertices in T with degree at least three is infinite, the
number of edges in each Ek in tending to infinity when we increase k. Let (ki)i be
an increasing sequence of natural numbers such that ni = |Eki | is also an increasing
sequence. Let γ be an infinite independent path. Note that there exists i0 such that
Eki contains an edge ei of the infinite independent path γ for all i ≥ i0. Then, since we
can replace ei by any other edge of γ and obtain a new contour of the same size ni, we
have infinitely many contours of size ni.

Final Remark

The Peierls strategy to look for contours involving a vertex fails if w in (1) depends
only on the size of the contours when we have infinitely many contours of the same size.
However, in [21] Rozikov studied an example of an Ising model type on Z where we
have infinitely many contours of size 2 involving the vertex 0. He adapted the Peierls
argument to prove the phase transition for the model. In this case w(C) must depend
on the position of the contour C in the graph, this is the usual situation when the
hamiltonian of the model it is not translation invariant, see [5, 15].
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