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Exclusive social groups are ones in which the group members decide whether or not to admit a candidate to
the group. Examples of exclusive social groups include academic departments and fraternal organizations.
In the present paper we introduce an analytic framework for studying the dynamics of exclusive social
groups. In our model, every group member is characterized by his opinion, which is represented as a point
on the real line. The group evolves in discrete time steps through a voting process carried out by the group’s
members. Due to homophily, each member votes for the candidate who is more similar to him (i.e., closer to
him on the line). An admission rule is then applied to determine which candidate, if any, is admitted. We
consider several natural admission rules including majority and consensus.

We ask: how do different admission rules affect the composition of the group in the long term? We study
both growing groups (where new members join old ones) and fixed-size groups (where new members replace
those who quit). Our analysis reveals intriguing phenomena and phase transitions, some of which are quite
counterintuitive.

1. INTRODUCTION
Exclusive social groups (a.k.a. clubs) are those in which group members decide which
new members to admit. Many of the social groups we are part of and are aware of are
in fact exclusive groups. Examples that readily come to mind include academic depart-
ments and the National Academy of Sciences, where current members decide which
members to accept. Additional examples from different areas of life are abundant,
ranging from becoming a Freemason to getting the privilege to live in a condominium
or a Kibbutz.

Some exclusive social groups, like academic departments, grow; others, like condo-
miniums, have a fixed size. But many share a similar admission process: each member
votes for a candidate he wants to admit to the group, and if the candidate receives
sufficient votes he can join. Different groups require candidates to obtain different
fractions of the votes to be admitted, from a simple majority to a consensus. Because
members who join now affect those who will join in the future, different admission
rules can lead to substantially different compositions as the group evolves. In partic-
ular, common wisdom suggests that requiring a greater fraction of group members to
agree on a candidate increases the homogeneity of the group. But is this really so?

The broad question we address here is how different admission rules affect the com-
position of the types of members in the group, and how this composition evolves over
time. The question comes in two flavors: (i) the growing group model, where the size
of the group increases as new members join, and (ii) the fixed-size group model, where
newly admitted members replace those who quit.

To answer this question we need to formalize several aspects of the group members
and the way they vote. As common in the political and sociological literature (e.g.,
[DeGroot 1974; Friedkin and Johnsen 1990; Roemer 2001]), we assume that every
group member and candidate has an “opinion,” which is a real number in the interval
[0, 1]. For example, the opinion can be a political inclination on the spectrum between
left and right or for the academic world how theoretical or applied one’s research is.

The opinions of members and candidates form the basis for modeling the voting pro-
cess. We assume that when making a choice between several candidates, each member
chooses the one who is the most similar to himself. As opinions are real numbers, sim-
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Fig. 1. Different admission rules: (a) for consensus, the intervals in which a new candidate can be accepted
(marked in gray) are determined by the location of x1 and x4. (b) for the majority rule, the candidate closer
to the median, x3, will be accepted.

ilarity can be easily measured by the distance between opinions. This modeling choice
is heavily grounded in the literature on homophily (e.g., [McPherson et al. 2001] and
the references therein), stating that people prefer the company and tend to interact
more with others who are more similar to them. In the words of Aristotle, people “love
those who are like themselves.”

The use of homophily as the driving force behind the members votes ties the present
paper to two large bodies of literature, one on opinion formation ([Ben-Naim et al.
2003; Deffuant et al. 2000; Hegselmann and Krause 2002]), the other on cultural dy-
namics ([Axelrod 1997; Flache and Macy 2011; Kempe et al. 2013]). Both bodies of
work aim to understand the mechanisms by which individuals form their opinions (in
the cultural dynamics literature it can be opinions on several issues) and how different
mechanisms affect the distribution of opinions in society. In both bodies of work it is
common to assume that similar individuals have a greater chance of influencing one
another. Many of these models, however, are quite difficult to analyze, and therefore
most of the literature has restricted its attention to models that operate on a fixed
network that does not evolve over time. In a sense, we bypass this difficulty by de-
emphasizing the network structure, and instead focus on the aggregate effect of group
members choices. This modeling decision enables us to study the evolution of the social
group over time as a function of the admission rule applied.

The present paper explores a variety of admission rules and their effects on the opin-
ion distribution as the group evolves. We begin by presenting our results for growing
groups, then proceed to fixed-size groups.

1.1. Growing Social Groups
Our models fit the following framework: each group member is characterized by his
opinion xi ∈ [0, 1]. A group of size k is denoted by S(k) ∈ [0, 1]k. The admission process
operates in discrete time steps. At each time step two candidates are considered for
admission; their opinions, y1, y2, are drawn from the uniform distribution U [0, 1]. Each
member, i, votes for the candidate that is more similar to him, that is, a candidate j,
minimizing |xi − yj |. Finally, based on the members’ votes, an admission rule is used
to determine which candidate is accepted to the group.

Consensus and majority. Two natural admission rules that come to mind are consen-
sus (used, for example, by the Freemasons) and majority. In the first case, a candidate
is accepted only if he receives the votes of all the members, so that in some steps no
candidate is admitted. In the second case, the candidate preferred by the majority of
members is admitted. As noted, it is natural to expect that requiring a greater fraction
of the members to prefer one candidate over the other can only increase the homo-
geneity of the group. Our work suggests that this is not always the case. Indeed, if
the consensus admission rule is applied, as the group grows only candidates who are
more and more extreme can join. The reason for this is that all group members prefer
the same candidate only when both candidates are close to one of the extremes. This
is illustrated in Figure 1(a), where each member is positioned on the [0, 1] interval ac-
cording to his opinion. In the group depicted in the figure, if a candidate is admitted
then it has to be the case that both candidates lie in one of the gray colored intervals.



Under the majority admission rule, as the group grows, the distribution of opinions
of its members converges to a triangle distribution, with the median located at 1/2.
Convergence to this distribution happens regardless of the starting conditions, that
is, the distribution of opinions in the initial group. Unlike in the case of consensus,
when the majority rule is applied a new candidate joins the group at every step. To
understand who this candidate is, we inspect the mechanics of the majority admission
rule in greater detail. Consider two candidates, y1 and y2, and assume that y1 < y2.
Observe that because each member votes for the candidate who is more similar (closer)
to himself, all the members to the left of (y1+y2)/2 vote for y1, and members to the right
of (y1 + y2)/2 vote for y2. It is easy to see that if (y1 + y2)/2 is located to the right of the
median, the candidate who receives the majority of the votes is y1 (i.e., the candidate
on the left). In this case the candidate closer to the median is y1. Thus, the majority
rule essentially prescribes that the candidate closer to the median is accepted into the
group. This is illustrated in Figure 1(b), where (y1 + y2)/2 is located to the right of the
median (x3) and therefore y1, voted for by x1, x2 and x3, is admitted into the group.

Note that the identity of the admitted candidate in each step is determined entirely
by the location of the median. This means that in order to prove that the distribution
of opinions in the group converges to the triangle distribution with the median at 1/2
it is sufficient to show that the median converges to 1/2. It is quite easy to show that if
the median is located at 1/2 − ε, the probability of accepting a candidate to the left of
the median is less than half, therefore the median should move to the right. The main
challenge lies in the fact that the analyzed process is discrete, which makes analyzing
the magnitude of the move of the median technically more difficult.

Admission rules with special veto. The dichotomy between the composition of opinions
in the group when using consensus as opposed to majority calls for understanding in-
termediate admission rules, where in order to admit a candidate, some given fraction,
greater than half of the group, is required to prefer him. We study this question un-
der a somewhat different model, assuming that the group originates with a founder,
located at 1, who has a special veto power. Whenever two candidates apply, only the
one closer to the founder (i.e., the right one) is considered for admission, and he is ad-
mitted if and only if an r-fraction of the group prefers him over the candidate on the
left (otherwise, no candidate is admitted).

Our results here are quite intriguing: we show that this process exhibits a phase
transition at r = 1/2. In particular, if r < 1/2, regardless of the initial conditions, the
group converges to a continuous distribution. It is a truncated triangle distribution,
characterized by the location of the (1 − r)-quantile. At the same time, for r > 1/2 as
the group grows, only candidates closer and closer to 0 are accepted into the group.
These results resemble those we have presented above for the consensus admission
rule, but are even stronger. Despite the excessive power granted to the founder of the
group, who is located at 1, the group can entirely change its character and become one
that admits only candidates that are close to 0.

Quantile-driven admission rules. Several of the admission rules mentioned above belong
to a family we call “quantile-driven.” Under these rules the decision of which candidate
to accept, if any, is determined solely by the location of the p-quantile for some value
of p. The majority rule, for example, is a quantile-driven rule with p = 1/2. We show
that for quantile-driven admission rules that have two rather natural properties the
p-quantile always converges. This is a convenient tool for showing that in case of the
majority rule, the median of the group converges to 1/2. We also use it as part of the
proof that for veto rules with r < 1/2 the (1− r)-quantile converges.



1.2. Fixed-Size Groups
Many groups have a fixed size and do not grow over time, as in the case of condomini-
ums and committees. Often a committee member serves for a term, after which it is
possible to extend his membership for an additional term. A natural way of doing so
is to place the decision whether or not to extend his membership in the hands of the
other committee members. This can be accomplished, for example, by comparing the
candidate who finished his term with a potential replacement. The one who receives a
p-fraction of the votes (for some given p) is the one who joins (or rejoins) the committee.

The fundamental questions that drive our analysis for fixed-size groups are similar
to the ones we have analyzed for growing groups. Specifically, we are interested in
understanding how the composition of a fixed-size committee can evolve over time,
and how it is influenced by the admission rule.

It turns out that in the fixed-size group model our questions make sense even in an
adversarial setting, that is, when both the member who is up for re-election and the
potential replacement are chosen adversarially. The two aspects of fixed-size groups
we are interested in are: (a) By how much can the opinion of committee members drift
as the committee evolves? and (b) Can a committee member have immunity against
replacement under some admission rules.

As in the case of growing groups, the answers to both questions depend on the value
of p. For the majority rule (i.e., p = 1/2), for every initial configuration, the committee
can move arbitrarily far from its initial location. In contrast, for any admission rule
that requires even a single vote more than the standard majority, the drift becomes
bounded and diminishes with p. In the extreme case, i.e., consensus, every admitted
candidate is at distance of at mostD from either boundary of the original configuration,
where D denotes the diameter of the initial configuration.

Regarding the problem of immunity, our process exhibits an interesting phase tran-
sition. In particular, there exists a committee that grants immunity to one of its mem-
bers (i.e., ensuring that this member can never be replaced) if and only if p > 3/4.
Generally speaking, a committee in which a member has immunity has the following
structure: there are two clusters of points located at the two extremes, and a single
point (the median) located in the middle. We use the bound on the drift of the com-
mittee for any p greater than 1/2 (as noted above) to show that neither of the two
clusters can ever reach the median, so that the median of the committee effectively
enjoys immunity.

2. GROWING GROUPS: CONSENSUS AND MAJORITY
2.1. Consensus
The first admission rule we analyze is consensus. Under this rule, a candidate is ac-
cepted only if all group members agree he is better than the other candidate. Even
though it may initially seem counter intuitive, it is quite easy to see that when the
consensus rule is applied as the group grows only members closer and closer to the
two extremes will join the group:

PROPOSITION 2.1. Consider a group S(k0), then, for any ε with probability 1 there
exists kε such that for any k > kε only candidates in [0, ε] and [1− ε, 1] can be admitted
to the group.

PROOF. Denote the members of the group S(k) ordered from left to right by
x1(k), ..., xk(k). The requirement for all the group members to agree in order to admit a
member implies that only members in the intervals [0, 2x1(k)] and [2xk(k)−1, 1] can be
admitted. The proof is completed by observing that if x1(k) > ε/2 then the probability
of accepting a candidate in [0, ε/2] is at least ε2/4 and hence with probability 1 there ex-



ists a step klε > k0 such that x1(klε) < ε/2. A symmetric argument shows the existence
of krε such that xkrε (krε) > 1−ε/2. Hence, the proposition holds with kε = max{klε, krε}.

2.2. Majority
Under the majority rule a candidate that receives at least half of the votes is accepted
to the group. As discussed in the introduction, the majority rule can be described as a
function of the location of the median.1 Denote the median of the group S(k) bym(S(k),
the majority rule can be defined as follows:

Definition 2.2 (majority). Given two candidates y1, y2, admit to the group S(k) the
candidate yi minimizing |m(S(k))− yi|.

We show that for the majority decision rule, with high probability, the process con-
verges to a distribution given by the triangle density function with a median located
at 1/2:

h(x) =

{
4x for 0 ≤ x ≤ 1/2

4− 4x for 1/2 < x ≤ 1

To prove that the distribution of opinions of the group members converges to the
triangle distribution described above it is sufficient to show that with high probability
the median converges to 1/2. Indeed, if the median is located at 1/2 then a candidate
located at x < 1/2 will be admitted to the group with probability of 2x. The reason for
this is that this candidate is accepted to the group if and only if the other candidate
is located at [0, x) or (1 − x, 1]. Hence, the density function for x ≤ 1/2 is h(x) = 4x.
In a similar way we can compute the value for the density function for x > 1/2. Fur-
thermore, if the median is in the interval [1/2 − ε, 1/2 + ε], with probability 1 − O(ε)
the same candidate will be chosen as in the case the median is exactly 1/2.2 Hence,
if the median converges to 1/2 the opinions distribution of the group converges to the
triangle distribution h(x).

We provide some informal intuition for the convergence of the median to 1/2. Con-
sider a group S(k), such that m(S(k)) = 1/2− ε for ε > 0, and where the initial size of
the group was k0 = 1. (a symmetric argument holds for the case thatm(S(k)) = 1/2+ε).
We observe that by symmetry the probability of accepting a candidate in [0,m(S(k))]
is the same as the probability of accepting a candidate in [m(S(k)), 2m(S(k))]. Also,
the probability of accepting a candidate in [2m(S(k)), 1] is 4ε2. Now, consider adding k
more members to the group. By the previous probability computation the number of
members added to the right-hand side of m(S(k)), in the k steps, exceeds that in its
left side by roughly 4ε2k. This means that the median should move by about 1

2 (2ε)2k
members to the right. Since altogether as the group grew from size 1 to 2k, 4k candi-
dates have attempted to get accepted to the group, we cannot have more than roughly
4kδ points in any interval of length δ. Thus the median will move to the right by at
least a distance of about 2ε2k/(4k) = ε2/2. We have thus shown that when we double
the number of points the median increases from 1/2 − ε to roughly 1/2 − ε + ε2/2. In
particular, this means that after roughly 1/ε doublings, the median will shift to about
1/2− ε/2.

The intuition above is lacking in two main aspects. First, we assumed that the prob-
ability of accepting a candidate in [0,m(S(k))] remains fixed throughout all the k steps.
However, this is not exactly true as in these k steps the median does not remain at the

1In case of a group of an even size any consistent choice of the median will do.
2The formal reason for this is that with probability 1−O(ε), |y1 − y2| > 2ε and |y1 − (1− y2)| > 2ε



same place. A second, more minor, issue is showing that, roughly speaking, it is al-
ways the case that each interval of size δ does not have too many members. Instead
of formalizing this intuition we choose to take a more general approach: in the next
section we define a family of admission rules that includes the majority rule and show
convergence for each one of these rules. This gives us the following theorem for the
majority rule: 3

THEOREM 2.3. Consider a group S(k0). For any ε > 0, with probability 1 − o(1),
there exits kε, such that for any k′ > kε, |m(S(k′))− 1

2 | < ε.

3. GROWING GROUPS: QUANTILE-DRIVEN ADMISSION PROCESSES
In this section we define a quite broad family of admission rules with the common
property that the choice of which candidate to accept (if at all) is determined by the
location of the p-quantile for some value of 0 < p < 1. We denote the p-quantile of a
group S(k) by qp(S(k)) and formally define it as follows:

Definition 3.1. qp(S(k)) ∈ S(k) is a p-quantile of a group S(k) ∈ [0, 1]k if |{i|xi ≤
qp(S(k))}| ≥ p · k and |{i|xi < qp(S(k))}| ≤ p · k. 4

Using this definition we define a quantile-driven admission rule:

Definition 3.2. An admission rule is quantile-driven if there exists a parameter p ∈
[0, 1] such that for every x ∈ [0, 1] the probability of accepting a member below x to the
group S(k) is only a function of x and the p-quantile of S(k).

The majority rule is a quantile-driven rule as it prescribes that the candidate that is
admitted to group is the one closer to the median. However, the consensus admission
rule is not quantile-driven as the choice of which candidate (if at all) is admitted to the
group is determined by both the 0-quantile and the 1-quantile.

We study quantile-driven admission processes which are admission processes in
which candidates are admitted according to a quantile-driven admission rule. For
these general processes we do not make any assumptions on the distribution that the
candidates are drawn from or even on the number of the candidates. Even though,
as earlier discussed for the specific processes we analyze in the present paper we as-
sume that there are only 2 candidates that are drawn from the uniform distribution
U [0, 1]. We denote by fp(qp)5 the probability of accepting a candidate below the current
location of the p-quantile qp. Note, that fp(·) is based both on the admission rule and
the distribution that the candidates are drawn from. For example, for the admission
process with the majority rule we have that:

f1/2(q) =

{
2q − 2q2 for q ≤ 1/2

1− 2q + 2q2 for q > 1/2

An easy way for computing this function applies the same logic behind the intuition
for showing that the median converges to 1/2. For example, if q < 1/2, then with
probability (1−2q)2 a candidate in the interval [2q, 1] joins the committee. Furthermore,
by symmetry the probability of a candidate to join [0, q] is the same as the probability
for joining [q, 2q]. Thus, we have that for q < 1/2, f(q) = (1− (1− 2q)2)/2 = 2q − 2q2.

We now define smooth quantile-driven admission processes and show that the ma-
jority process is smooth:

3In Section A.1 of the appendix we provide a short remark on the convergence rate.
4For groups in which this definition admits more than a single choice for the p-quantile, any consistent
choice will do.
5When p is clear from the context we denote this function simply by f(·).



Definition 3.3. An admission process in which at every step a candidate joins the
group6 is smooth if:

(1) fp(·) is a strictly increasing continuous function.
(2) The probability of accepting a member in any interval of length δ is at least c1 · δ2

and at most c2 · δ for some constants c1 and c2.

CLAIM 3.4. The majority admission process is smooth.

PROOF. Observe that both pieces of the function f1/2(·) are continuous and strictly
increasing for the appropriate range and hence the function is increasing and continu-
ous (for continuity at q = 1/2 observe that for this value of q both pieces of the function
attain the same value). Furthermore, observe that since in the majority rule a candi-
date is accepted at every step the probability of accepting a candidate in an interval
of length δ is at least δ2. On the other hand, the probability of accepting a candidate
in an interval of length δ is upper bounded by the probability that at least one of the
candidates lies in the interval δ which is 2δ.

We show that the location of the p-quantile of a group that uses a smooth admission
rule always converges to unique τp such that f(τp) = p:7

THEOREM 3.5. Consider a group S(k0) that uses a smooth admission process fp(·).
Let τp be the unique value satisfying fp(τp) = p. For any ε > 0, with probability 1− o(1),
there exits k′ε, such that for any k′ > k′ε, |qp(S(k′))− τp| < ε.

We first provide some intuition on why smooth admission processes converge. As-
sume that qp(S(k)) < τp, the assumption that f(·) is strictly increasing implies that
f(qp(S(k))) < p and hence the p-quantile has to move right. The upper bound on the
probability of accepting a candidate in an interval of length δ allows us to show that
the quantile will indeed keep moving right and will not “get stuck” at some cluster of
points. The lower bound on the probability to accept a candidate provides us an as-
surance that the p-quantile cannot move too far when a small number of members is
added.

We now give a taste of the way that the formal proof operates. The proof itself is pro-
vided in Appendix B. First, we let ω(k) = |τp − qp(S(k))|. Then, we define the following
two strictly increasing functions:

— gr(ω) : [0, τp]→ [0, p], gr(ω) = p− fp(τp − ω).
— gl(ω) : [0, 1− τp]→ [0, 1− p], gl(ω) = fp(τp + ω)− p.
The crux of the proof is in the following proposition stated here for qp(S(k)) < τp:

PROPOSITION 3.6. Consider adding t more members to a group S(k), such that
qp(S(k)) < τp. For any σ < τp − qp(S(k)) such that:

(1) gr(ω(k)− σ) > gr(ω(k))/2 > c2 · σ.
(2) Each of the intervals [qp(S(k)) − σ, qp(S(k))] and [qp(S(k)), qp(S(k)) + σ] contain at

least t members.

with probability at least 1−e−Θ(gr(ω(k))2·t), the group S(k+ t) includes at least gr(ω(k))
4 · t

members in the interval [qp(S(k)), qp(S(k + t))]. (this also implies that ω(S(k + t)) ≤
ω(S(k))).

6For processes that do not exhibit this property we can restrict our attention to steps in which a candidate
is accepted and normalize the function fp(·) accordingly
7Such a τp always exists since f(·) is strictly increasing, f(0) = 0 and f(1) = 1.



Informally, for the conditions of the proposition to hold we need the quantile to be in
a relatively small and dense interval, such that we are certain that for a long enough
time the quantile will not leave this interval. When this is the case, we have that the
quantile will move closer to τp by at least gr(ω(k))

4 ·tmembers. To “translate” the number
of points into distance we first provide bounds on the density of each interval by using
Chernoff bounds:

CLAIM 3.7. let δ(k) = k−1/10. Let k ≥ k0
δ(k) , where k0 is the initial size of the group,

for any interval I of length |I| ≥ δ(k) the following holds with probability of at least
1− 2

δ(k) · e−Θ(δ(k)2·k) :

(1) The number of members of S(k) in I is at least c′1 · |I| · δ(k) · k for c′1 < c1.
(2) The number of members of S(k) in I is at most c′2 · |I| · k, for c′2 > c2.

Finally, we combine these bound with careful repeated applications of Proposition 3.6.

4. GROWING GROUPS: SPECIAL VETO POWER
In this section we assume that the group has a founder with opinion 1. This founder
has a special veto power in the sense that if a candidate is admitted to the group it will
always be the candidate that the founder prefers (i.e., the right candidate). We term
such rules veto rules. We study a family of veto rules characterized by a parameter r
(0 < r < 1). Under each such rule if r-fraction of the group members agree that the
right candidate is better than the left one then the right candidate joins the group.
Else, no candidate is accepted in this step. Veto rules are also quantile-driven rules.
To see why observe that, given two candidates located at y1 and y2 (y1 < y2) all the
members to the left of (y1 + y2)/2 vote for y1 while all the members to its right vote
for y2. For veto rules the only candidate who has the potential to be admitted to the
group is y2 and he will be admitted if at least r-fraction of the group will vote for him.
Putting this together we get that y2 is admitted if at least a fraction r of the group is
located to the right of (y1 + y2)/2. In particular this implies that y2 will be accepted to
the group S(k) if (y1 + y2)/2 ≤ q1−r(S(k)). The reason for this is that a fraction greater
than r of the group is located to the right of (y1 + y2)/2 and votes for y2. Hence, the
family of veto rules can be described as follows:

Definition 4.1 (veto rules). Consider two candidates y1 < y2. y2 will be admitted to
the group S(k) if and only if (y1 + y2)/2 < q1−r(S(k)).

Recall that under veto rules, there are many steps in which none of the candidates
joins the group. Since we want to track the changes in the group, we will only reason
about the steps of the process in which a candidate is admitted. Hence, to compute the
probability that the next candidate that is accepted to the group lies in some interval
we will have to first compute the probability that any candidate is accepted when the
(1−r)-quantile is at q(1−r)(S(k)). For simplicity throughout this section we denote 1−r
by p:

CLAIM 4.2. If qp ≤ 1/2, then the probability of accepting any candidate is 2q2
p. If

qp > 1/2, then the probability of accepting any candidate is 1− 2(1− qp)2.

PROOF. An easy method for computing the probability of accepting a candidate is
using the geometric representation depicted in Figure 2. The diagonal line is y1 =
2qp−y2 and the surface below it is the area such that the average of the two candidates
y1 and y2 is below qp. Thus, it includes all pairs of candidates (y1, y2) for which one of
the candidates will be admitted to the group. For qp < 1/2 this surface is a triangle
with an area of 2q2

p. For qp > 1/2 it is easier to compute the surface of the upper white



triangle and subtract this area from the unit square. Thus we have that the area of the
pentagon that includes all pairs of candidates (y1, y2) such that one of the candidates
is admitted to the group is 1− 2(1− qp)2.

2qp

2qp

y1

y2

(a) qp < 1/2

1

1

y1

y2

(2qp − 1, 1)

(1, 2qp − 1)

(b) qp > 1/2

Fig. 2. The probability of accepting a candidate under veto rules: in both pictures the striped area includes
all pairs of candidates (y1, y2) for which one of the candidates will be admitted to the group.

In the two subsections below we analyze the convergence of the (1 − r)-quantile for
different values of r. We establish the following phase transition: when r > 1/2 the
(1 − r)-quantile converges to 0 and when r < 1/2 the (1 − r)-quantile converges to a
specific value 1/2 < τ1−r < 1 to be later determined. In both cases the distribution of
opinions as the group grows is fully determined by the location of the (1− r)-quantile.
Hence, when r > 1/2 we will see that as the group grows only candidates closer and
closer to 0 will be accepted. For r < 1/2 the opinion distribution in the group will
converge to a truncated triangle density distribution with a maximum located at τ1−r
as depicted in Figure 3.

1

2τp
1−2(1−τp)2

τp1/2

Fig. 3. A sketch of the density function that the group converges to for p > 1/2(r < 1/2).

4.1. r > 1/2: Convergence to 0

We show that for p < 1/2 (hence r > 1/2) as the group grows with high probability
qp(S(k)) is converging to 0. This implies that as the group grows only candidates closer
and closer to 0 will be admitted. While the proof itself is somewhat technical the in-
tuition behind it is rather simple: For any group S(k) such that qp(S(k)) < 1/2 the
probability that the next accepted candidate lies in the interval [0, qp(S(k))] is exactly
1/2. Recall that the right candidate is accepted if and only if (y1 + y2)/2 < qp(S(k)).
Thus a candidate located in the interval [0, qp(S(k))] will be chosen with probability
qp(S(k))2. Also, note that in this case by Claim 4.2 the probability of accepting any
candidate at all is 2qp(S(k))2. Thus we have that the probability that the next accepted
candidate lies in [0, qp(S(k))] is 1/2. Recall that qp(S(k)) is the location of the p-quantile



for p < 1/2. Roughly speaking the fact that the probability of accepting members to the
left of qp(S(k)) is greater than p implies that the p-quantile has to move left (towards
0). A similar argument for the case that qp(S(k)) > 1/2 shows that in this case the
probability to accept a candidate in [0, qp(S(k))] is greater than 1/2 and hence the p-
quantile should move left. Note that this is an example for an admission process which
is not smooth (f(·) is not strictly increasing) but still converges.

The formal proof that the p-quantile indeed moves to the left gets more involved by
the discrete nature of the process. This requires us to carefully track the changes in
the location of the p-quantile to show that indeed as the group grows the p-quantile is
moving to the left. As part of the proof, we actually prove a slightly stronger theorem
which is that the (p + η)-quantile (for η = 1−2p

8 ) is converging to 0. The statement of
the formal theorem we prove is the following:

THEOREM 4.3. Consider a group S(k0). For any ε > 0, with probability 1 − o(1),
there exits kε, such that for any k′ > kε, qp(S(k′)) < ε.

4.2. r < 1/2: Convergence to a Continuous Distribution
We show that for p > 1/2 (r < 1/2) as the group grows the p-quantile of the group

is converging to the point τp =
2p+
√

2p2−p
1+2p > 1/2. If the p-quantile is at q > 1/2 the

probability of a candidate x < q to be the next accepted candidate is x
1−2(1−q)2 . As

with probability x a candidate below it appears and by Claim 4.2 for q > 1/2 the
probability of any candidate to be accepted is 1 − 2(1 − q)2. Similarly we can compute
the acceptance probability of a candidate x > q. By multiplying the probabilities by 2
we get the following density function (sketched in Figure 3 for q = τp):

h(x, q) =

{
2x

1−2(1−q)2 for 0 ≤ x ≤ q
4q−2x

1−2(1−q)2 for q < x ≤ 1.

We observe that as q converges to τp the distribution of opinions in the group is
converging to h(x, τp). This is because for values q close to τp the value of the function
h(x, q) is close to that of h(x, τp).

The proof that the p-quantile converges to τp acquires an additional level of complex-
ity by the fact that the probability of the next accepted candidate to be in the interval
[0, qp(S(k))] has a different expression for qp(S(k)) < 1/2 and for qp(S(k)) > 1/2. That
is, in both cases with probability qp(S(k))2 both of the candidates will be in the in-
terval [0, qp(S(k))] and hence a candidate in this interval will be accepted. However,
since we condition on the event that a candidate is actually accepted we have to di-
vide qp(S(k))2 by the probability that a candidate is accepted. Claim 4.2 shows that
the probabilities of accepting a candidate for qp(S(k)) < 1/2 and for qp(S(k)) > 1/2
are different. In particular we have that for qp(S(k)) < 1/2 the probability of the next
accepted candidate to be in [0, qp(S(k))] is 1/2 and for qp(S(k)) > 1/2 this probability is
f(qp(S(k)) =

qp(S(k)2

1−2(1−qp(S(k))2 .
Luckily, the admission process for q > 1/2 (restricted to steps in which a candidate

is admitted) is smooth and hence by Theorem 2.3 the p-quantile converges to τp. This
implies that to show convergence it suffices to show that with high probability there
exists some step k1/2 such that from this step onwards the p-quantile remains above
q > 1/2. This is done similarly to the proof showing that for p > 1/2 the p-quantile
converges to 0. Here, when qp(S(k)) < 1/2 the probability of the next accepted candi-
date to be below qp(S(k)) is 1/2. Since qp(S(k)) denotes the location of the p-quantile



1 − δ

y1

y2

1 − δ

1

Fig. 4. The striped areas are the areas that if the point defined by the two candidates (y1, y2) is in one of
them then a candidate in the interval [1− δ/2, 1] will join the group.

for p > 1/2, qp(S(k)) has to move right, at least until it passes 1/2. Formally, we prove
the following theorem:

THEOREM 4.4. Consider a group S(k0). For any ε > 0, with probability 1 − o(1),
there exits kε > k0, such that for any k′ > kε, |qp(S(k′))− τp| < ε.

PROOF. We begin by observing that for q > 1/2 the admission rule is smooth. First,
recall that for q ≥ 1/2 we have that f(q) = q2

1−2(1−q)2 . Note that due to the normalization
it is indeed the case that each step a candidate is accepted to the group. Also, it is easy
to verify that this is function is increasing and continuous for q ∈ (1/2, 1]. Next, observe
that for q ∈ (1/2, 1] the probability of accepting a candidate in every interval δ is at
most 2δ

1−2(1−q)2 ≤ 4δ and at least δ2. For the lower bound observe that the interval with
the minimal acceptance probability is the last interval [1− δ, 1]. Now, by the geometric
representation depicted in Figure 4 a candidate in [1− δ, 1] will be accepted if the point
defined by the two candidates is in one of the striped triangles in the figure. Hence the
total probability of accepting a candidate in [1− δ, 1] is at least δ2.

Now, by Theorem 2.3 we have that the p-quantile of a smooth admission rule con-

verge to τp =
2p+
√

2p2−p
1+2p with probability 1− o(1). In Theorem 4.5 below we show that

with high probability there exists some value of k starting which the admission rule is
always smooth. Thus, we have that with high probability the p-quantile of the group
converges to τp.

THEOREM 4.5. Consider a group S(k0). There exists a time step k1/2 such that with
probability 1− o(1) for any k′ > k1/2 the admission rule is smooth.

PROOF. Pick η = p−1/2
4 . We will show that with high probability there exists k1/2 >

k0 such that qp−η(S(k1/2)) > 1/2 and for any k′ > k1/2, qp(S(k1/2)) > 1/2. This implies
that the admission rule is smooth for any group of size greater than k1/2.

The proof follows a very similar structure to the proof of Theorem 4.3. We begin by
showing that as we increase the group by ηk members at most (p − 2η) · ηk members
will join the interval [0, qp−η(S(ki)) + η · qp−η(S(ki))

2].

CLAIM 4.6. For a group S(k) such that qp−η(S(k)) < 1/2, consider adding ηk mem-
bers to the group S(k), with probability (1 − e−Θ(η3k)). The number of members that
joined the interval [0, qp−η(S(k)) + η · qp−η(S(k))2] in the ηk steps at most (p− 2η) · ηk.

PROOF. Note that by definition we have that for every step k′ of the ηk steps,
qp(S(k′)) ≥ qp−η(S(k)). We claim that this implies that the probability that the next



accepted candidate is below qp−η(S(k)) + η · qp−η(S(k))2 is at most p − 3η. To see
why this is the case we first observe that with probability qp−η(S(k))2 both can-
didates are below qp−η(S(k)) and hence a candidate below qp−η(S(k)) is accepted.
Also note that with probability at most 2η · qp−η(S(k))2 a member in the interval
[qp−η(S(k)), qp−η(S(k)) + η · qp−η(S(k))2] joins the group, as this is an upper bound on
the probability that a candidate in this interval shows up. Finally, as we only take
into account steps in which a candidate was chosen we should divide the probabilities
above by the probability of accepting a member. It it easy to see that the probability of
accepting a member is minimized when qp(S(k′)) = qp−η(S(k)) and hence the probabil-
ity that the next accepted candidate is in the interval [0, qp−η(S(k)) + η · qp−η(S(k))2] is
at most

qp−η(S(k))2 + 2η · qp−η(S(k))2

2qp−η(S(k))2
=

1

2
+ η = p− 3η.

By taking a Chernoff bound we get that with high probability the number of members
accepted in the ηk steps in the interval [0, qp−η(S(k)) + η · qp−η(S(ki))

2] is at most (p−
2η) ·ηk. Denote by X the number of candidates accepted in the interval [0, qp−η(S(k)) +
η · qp−η(S(ki))

2], then

Pr[X ≥ (1 + η) · (p− 3η) · ηk] ≤ e− η
2(p−3η)·ηk

3 ≤ e−Θ(η3k)

Let k1 ≥ 1
η6 (the larger k1 is, the higher the probability the theorem holds is) and

for any i > 1 let ki+1 = (1 + η)ki. Also let j = dlog1+η
1
η e. We show that with high

probability: qp−η(S(ki+j)) > qp−η(S(ki)) + η · qp−η(S(ki))
2.

CLAIM 4.7. For i > 1, with probability (1−∑j−1
l=1 e

−Θ(η3(1+η)lki)), either there exists
ki < k′ < ki+j such that qp−η(S(k)) > 1/2 or qp−η(S(ki+j)) > qp−η(S(ki))+η·qp−η(S(ki))

2.

PROOF. To prove the claim we apply Claim 4.6 j times. First we observe that with
high probability for every i, qp−η(S(ki+1)) ≥ qp−η(S(ki)). The reason for this is that by
Claim 4.6 we have that the number of members that joined in the ηki steps between ki
and ki+1 in the interval [0, qp−η(S(ki)) + η · qp−η(S(ki))

2] is at most (p − 2η) · ηk. Since
the interval [0, qp−η(S(ki))] is included in this interval we have that at most (p−2η) ·ηk
members were admitted to it. Hence, qp−η(S(ki+1)) ≥ qp−η(S(ki)).

Next, we consider all the members in the ki+j−ki steps. The fact that qp−η(S(ki+1)) ≥
qp−η(S(ki)) implies that in the ki+j−ki steps the number of candidates admitted to the
interval [0, qp−η(S(ki))+η ·qp−η(S(ki))

2] is at most (p−2η)(ki+j−ki). We observe that in
the worst case for the group S(ki) the interval [0, qp−η(S(ki))+η ·qp−η(S(ki))

2] contained
ki points. Thus, to prove the claim, we should show that (p − 2η)(ki+j − ki) + ki <
(p− η)ki+j . Observe that

(p− 2η) · (ki+j − ki) + ki = (p− η)ki+j − ηki+j + (1− p+ 2η)ki

< (p− η)ki+j − ki + (1− p+ 2η)ki

< (p− η)ki+j .

For the second transition we used the fact that ki+j = (1 + η)dlog1+η
1
η eki >

1
ηki.



Thus by taking a union bound over the bad events we get that the claim holds with
probability at least

1−
i+j−1∑
l=i

e−Θ(η3kl).

Lastly, we show that once we reached a step ki such that the (p−η)-quantile is above
1/2, then with high probability the p-quantile of S(ki+1) will also be above 1/2.

CLAIM 4.8. If qp−η(S(ki)) > 1/2, then with probability (1 − e−Θ(η3ki),
qp−η(S(ki+1)) > 1/2

PROOF. Observe that since qp(S(k′)) > 1/2 for all k′ of the ηki steps, the expected
number of members accepted below 1/2 in these ηki steps is at most ηki

2 . By taking

a Chernoff bound, we have that with probability 1 − e− η
3ki
6 the number of candidates

accepted in [0, 1/2] is at most (1/2 + η)ηki < (< p− η)k + i:

Pr[X ≥ (1 + η) · 1

2
ηki] ≤ e−

η2 1
2
ηki

3 = e−
η3ki

6

The proof of Theorem is completed by observing that we can apply Claim 4.7 till we
reach k1/2 such that qp−η(k1/2) > 1/2. Once we reached k1/2 we repeatedly apply Claim
4.8 to get that the (p − η)-quantile stays above 1/2 with high probability. By taking a
(loose) union bound over the bad events we have that the probability of this is at least
1−∑∞i=1 e

−Θ(η3ki).

5. FIXED-SIZE GROUPS
We now turn our attention to groups of fixed size. As committees are a very good exam-
ple for such groups throughout this section we will refer to the group as a committee.
A committee x consisting of n members is represented by the location of its members’
opinions on the real line: (x1, . . . , xn) with the convention that xi ≤ xi+1 for every i.
We consider an iterative process, where in each iteration one of the current committee
members xi can be replaced by a new candidate y. The member xi is replaced by y if
and only if at least d(n−1)/2e+ ` members weakly prefer y over xi. This means that xi
is replaced if for at least d(n− 1)/2e+ ` members xj such that j 6= i, |xj − y| ≤ |xj − xi|.
The case ` = 0 corresponds to standard majority, and ` = b(n − 1)/2c corresponds to
consensus.

We study two aspects of the evolution of fixed-size committees, namely the magni-
tude of drift of the committee (i.e., how far the committee can move from its initial
configuration), and whether there exist committee members who are guaranteed im-
munity against replacement. We are able to answer both questions in the more de-
manding worst case framework. That is, we assume that both the members that might
be replaced and the contender are chosen adversarially.

5.1. Magnitude of drift
It is easy to see that for usual majority (` = 0) the committee can move arbitrarily
far when its initial configuration is an arithmetic progression xi = i (we simply keep
replacing x1 by xn + 1.) More generally, in the next theorem we show that under the
majority rule, any committee with distinct members can be transformed into an arith-
metic progression and hence the drift from the initial configuration is unbounded.



THEOREM 5.1. For every initial configuration in which all xi’s are distinct, the
committee can move arbitrarily far under the majority voting rule.

PROOF. For the proof consider, for simplicity, the case of odd n (the case of even n
is similar). Let the initial configuration be x1 < x2 < . . . < x2k+1 . Let M = xk+1 be
the median and let ε be a small positive real satisfying, say, εk < M − xk = xk+1 − xk
and εk ≤ xk+2 −M = xk+2 − xk+1. Now in step i (1 ≤ i ≤ k), replace xi by M − εi,
and in step k + i (1 ≤ i ≤ k) replace xk+1+i by M + εi. It is easy to verify that these
replacements are legal (in fact, in each of them we have at least k+1 points that prefer
the newcomer). Now we have an arithmetic progression and it can move arbitrarily
far, by the observation above (in these steps we have only k points that prefer the new
one).

In view of the above, it is interesting to show that even if ` is 1, the committee
cannot move too far away. The following proposition establishes an upper bound on
the distance the committee can move, as a function of ` and the diameter of the initial
configuration D = xn − x1:

As before, we assume for simplicity that n is odd. The case of even n is similar (see
remark C.1 in Appendix C).

THEOREM 5.2. If n = 2k + 1, 1 ≤ ` ≤ k, and the initial configuration has diameter
D = xn − x1, for any future configuration x′, it holds that x′k−`+2 ≤ xn + Dk

2`−1 and
x′k+` ≥ x1 − Dk

2`−1 . The term Dk
2`−1 is tight up to a constant factor.

The following lemma (which we prove in Appendix C facilitates the proof of Theo-
rem 5.2.

LEMMA 5.3. Let the configuration before a step be x = (x1, x2, . . . , x2k+1), and the
configuration after a step in which y has been added and xi been dropped be x′ =
(x′1, x

′
2, . . . , x

′
2k+1). If the median moved to the right, then the sum of distances from the

median has decreased by at least 2
∑k
j=k−`+2 d(xj , x

′
j) + d(xk+1, x

′
k+1).

We now prove Theorem 5.2.

PROOF. We show that x′k−`+2 ≤ xn+ Dk
2`−1 . By symmetry the same argument implies

that x′k+` ≥ x1 − Dk
2`−1 . Consider any configuration x′ during the process. We show

that if x′k−`+2 ≥ xn + Dt, then t ≤ k
2`−1 . If x′k−`+2 ≥ xn + Dt, then for every j ∈

{k − ` + 2, . . . , k + 1}, the point xj has moved at least Dt to the right. It is easy to see
that the sum of distances from the median is always bounded by Dbn/2c. Therefore in
the original configuration the sum of distances is at most kD. By Lemma 5.3, it must
hold that 2

∑k
j=k−`+2 d(xj , x

′
j) + d(xk+1, x

′
k+1) ≤ kD.8 Now, substitute d(xj , x

′
j) ≥ Dt for

every j ∈ {k− `+ 2, . . . , k+ 1} to get 2(`− 1)Dt+Dt ≤ kD, or equivalently t ≤ k
2`−1 , as

desired.
To see that this is asymptotically tight, consider a profile x1, . . . , x2k+1 with xi+1 −

xi = (1 − δ)i−1, where δ is chosen to make point xk−`+2 equally distanced from points
x1 and x2k+2, where x2k+2 is defined by the same geometric progression (i.e., x2k+2 =
x2k+1 + (1 − δ)2k). Here, it can be shown that δ = Θ(k/`2). The process continues
iteratively by always considering the next point in the geometric progression versus
the current smallest point in the profile. The new candidate continues to be chosen
over the smallest point at all iterations. The process converges to a point at distance

8Note that Lemma 5.3 applies to a single change, and we are discussing a sequence of changes. However,
the sum of distances of the j-th point is lower bounded by the distance from its initial to final location.



x2k+2x1..x2k+1 x2k+3..x4k+3

Fig. 5. An example of the configuration that the median has immunity if at least 3k + 3 votes are required
to remove a member.∑
i≥0(1 − δ)i = 1/δ from x1. The distance that point xk−`+2 moved is roughly 1/δ =

Θ(k2/`), whereas the diameter of the initial configurations is at most 2k. Thus, the
distance that xk−`+2 moved is Θ(Dk/`), as claimed.

For the case of consensus (i.e., ` = k), we establish a stronger bound on the shift of
the committee. In the Appendix C we prove that:

PROPOSITION 5.4. For the case of consensus (i.e., ` = k), if n ≥ 3 and the initial
configuration has diameter D = xn − x1, then every new element that will be added to
the committee during the process is at least x1 −D and at most xn +D.

5.2. Immunity
Given n, the majority needed to replace an existing member, and an initial configu-
ration, we say that a committee member has immunity if it can never be replaced by
the process above. We show that a phase transition occurs at a majority of 3

4n. For
simplicity of presentation we assume that n = 4k + 3.

THEOREM 5.5. Let n = 4k + 3. There exists an initial configuration in which a
member has immunity if and only if a majority of at least 3k + 3 is required.

In Figure 5 we give an example of such a configuration in which the median has
immunity. It consists of two clusters, each of size 2k+ 1, and an additional point which
is the median. Each cluster is located at a different side of the median and sufficiently
far from it. We now sketch the proof showing that the median of this committee has
immunity. Observe that in order to remove a member in the left cluster at least k + 1
members of the left cluster have to prefer the contender over the existing member. This
means that informally we can consider the left cluster as an independent committee
requiring a majority of at least d(n − 1)/2e + 1. Thus, as long as the left cluster is
sufficiently far from the median, we can apply Theorem 5.2 to show that the drift of
the left cluster is bounded. As the same argument holds for the right cluster we have
that the median will stay a median. The previous argument relied on the fact that the
majority required to remove a candidate is large enough such that the number of votes
required separately from each cluster is greater than half its size. We now provide a
formal proof of this argument:

PROPOSITION 5.6. If n = 4k + 3 and a majority of at least 3k + 3 is required, then
there exists a configuration in which the median has immunity.

PROOF. Suppose a majority of 3k + 2 + ` is required, where 1 ≤ ` ≤ k. Consider the
configuration where x2k+1 − x1 ≤ d, x4k+3 − x2k+3 ≤ D and the median M = x2k+2

is of distance greater than Dk
2`−1 from x2k+1 and from x2k+3. We claim that the median

has immunity.
Consider the 2k+1 members to the left of M . Any element xi of them can be replaced

by a new candidate y only if at least k+` elements out of the 2k+1 elements prefer y to
xi (otherwise, y has a majority of at most 3k+`+1, which is not sufficient). By applying
Theorem 5.2 to this set of 2k + 1 members, we get that in any future configuration
x′k−`+2 ≤ x2k+1 + kd

2`−1 . But since the median is of distance greater than Dk
2`−1 from

x2k+1, there are at least k − ` + 2 elements to the left of the median throughout the
whole process. Analogously, it can be shown that there are always at least k − ` + 2



members to the right of the median (by applying the assertion that x′k+` ≥ x1 − Dk
2`−1

from Theorem 5.2 to the 2k+ 1 members to the right of the median). Now observe that
as long as there are at least k − ` + 2 elements in each side of the median, it cannot
be replaced. Indeed, for every new candidate y, there are at most 3k + ` members who
prefer y to the median, while the required number is at least 3k + `+ 2.

It is interesting to note that, one can show that the median can guarantee an even
stronger property than immunity, namely to always remain the median. This can be
done by slightly modifying the previous example, so that the distance between the
median and each of the two points x2k+1 and x2k+3 is greater than, say, kd. Since no
element from the left set can ever be above x2k+1 + kd and no element from the right
set can ever be below x2k+3 − kd (see remark following the proof of Theorem 5.2), the
original median remains the median forever.

In Appendix C we show that the other direction also holds, that is:

PROPOSITION 5.7. If n = 4k+3 and a majority of at most 3k+2 is required to replace
an existing member, then for any initial configuration no element has immunity.

6. CONCLUDING REMARKS
In this paper we initiate the study of evolving social groups, and the effects of different
admission rules on their long-run compositions. In our models, each group member is
represented by a point in [0, 1] representing his opinion. Every group member prefers
candidates located closer to him to candidates that are further away because of ho-
mophily. We consider stochastic models where in each step two random candidates
appear and voted for by the current group members. In the case of a fixed-size group,
our analysis holds even in an adversarial model.

The framework we present extends itself to several exciting directions. First there
are more families of admission rules that are worth studying. One such family is the
p-majority which we only studied for fixed-size groups. Recall that for growing groups
we have analyzed a variant of it that gave special veto power to the founder located
at 1. We suspect that for growing groups the family of p-majority admission rules also
exhibits a phase transition: for p > 3/4 as the group grows only candidates close to
the extremes will join it; for p < 3/4 the distribution of opinions in the group will
converge to some continuous distribution. Additional interesting extensions include
considering candidates that arrive according to a not necessarily uniform distribution
on [0, 1], and analyzing a process in which at every step more than 2 candidates apply.
While these extensions lead to interesting questions we believe that the models we
have considered in this paper already shed light on real life processes involving the
dynamics of evolving groups; the present paper provides a framework and tools for
further exploration of this direction.
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A. PROOFS FROM SECTION 2
A.1. A remark about the convergence rate of the majority and consensus rules
It is interesting to note that the convergence of the majority process is very slow. In-
deed, suppose that when there are t points selected already, the median is 1/2 − g(t).
Then, by the reasoning above, in the next step the probability that the chosen point
is to the right of the median exceeds the probability it is on its left by (2g(t))2. This
means that the median, on the average, steps by 1

2 (2g(t))2 units to the right in each
step. For small values of g(t) the density of points in the relevant range is about 2δ
points in an interval of length δ. This means that on the average the median increases
by about 2g(t)2/(2t) = g(t)2/t in a step. We thus get that g(t) − g(t + 1) is essentially
g(t)2/t implying that g = g(t) satisfies the following differential equation: g′ = −g2/t.
Solving we get 1/g = ln t + c or equivalently t = Ceg. C can be solved from the initial
conditions. Thus, for example, if we start with t0 = 500 (which is close to 10e4) and the
median for that t is 1/4 = 1/2 − 1/4, we get that it will take close to t = 10e1/ε steps
to get to a median 1/2− ε. More information about how to prove that discrete random
processes converge with high probability to the solution of a differential equation can
be found in [Wormald 1995].

In contrast, in the consensus model convergence is fast: it is easy to see that for any
initial configuration, after t steps, with high probability every newly elected member
lies in [0, O(1/

√
t)] ∪ [1−O(1/

√
t), 1].

B. PROOFS FROM SECTION 3
In the following section we prove Theorem 2.3. Recall that the theorem we wish to
prove is the following:

Consider a group S(k0) that uses a smooth admission process fp(·). Let τp be the
unique value satisfying fp(τp) = p. For any ε > 0, with probability 1− o(1), there exits
k′ε, such that for any k′ > k′ε, |qp(S(k′))− τp| < ε.

The proof is quite complicated hence we first provide a brief outline of the proof. We
repeat propositions and claim that were already presented in the main body to make
the proof easier to follow.

The proof has two main building blocks that are used iteratively to show that the
p-quantile converges to τp. First, in Section B.1, we show that if the p-quantile is in a
relatively small and dense interval then it will move closer to τp by a certain number of
points which is a function of the density of the interval it is in. In the second building
block, in Section B.2 we use Chernoff bounds to show that on one hand the intervals
are dense enough so that the p-quantile will remain long enough in the same interval.
But, on the other hand, they are not too dense to prevent from the p-quantile to move
a non-negligible distance towards τp. In the rest of the proof, Section B.3, we carefully
use these two building blocks on groups of growing size to show that indeed the p-
quantile converges to τp.

B.1. If the p-quantile is confined to a small interval then it moves closer to τp
We now formally show that if the p-quantile is in a relatively small and dense interval
then it will move closer to τp by a certain number of points. We first state and prove
the proposition for the case that qp(S(k)) < τp and then provide the statement for the
symmetric case.

PROPOSITION B.1. Consider adding t more members to a group S(k), such that
qp(S(k)) < τp. For any σ < ω(k) such that:

(1) gr(ω(k)− σ) > gr(ω(k))/2 > c2 · σ.



(2) Each of the intervals [qp(S(k)) − σ, qp(S(k))] and [qp(S(k)), qp(S(k)) + σ] contain at
least t members.

The following hold with probability at least 1− e−Θ(gr(ω(k))2·t):

(1) ω(S(k + t)) ≤ ω(S(k)).
(2) The group S(k + t) contains at least gr(ω(k))

4 · t members in the interval
[qp(S(k)), qp(S(k + t))]. (i.e., the p-quantile moved by at least gr(ω(k))

4 · t members
as the group size was increased by t.)

PROOF. Note that since each of the intervals [qp(S(k)) − σ, qp(S(k))] and
[qp(S(k)), qp(S(k)) + σ] include at least t points, then for each step k′ in the next t
steps we have that qp(S(k′)) ∈ [qp(S(k)) − σ, qp(S(k)) + σ]. Using this we compute an
upper-bound on the probability of accepting a candidate in [0, qp(S(k))]:

(1) For every step k′ such that qp(S(k′)) < qp(S(k)) we have that the probability of
accepting a candidate in [0, qp(S(k))] is at most the probability of accepting a candi-
date in [0, qp(S(k′))], which is f(qp(S(k′))), plus the probability of accepting a candi-
date in [qp(S(k′)), qp(S(k))] which is at most c2 · (qp(S(k))− qp(S(k′))) < c2 · σ. Since
f(·) is an increasing function, qp(S(k′)) < qp(S(k)), and by using our assumptions
on σ, we have that:
f(qp(S(k′))) + c2 · σ ≤ f(qp(S(k))) + c2 · σ = p− gr(ω(k)) + c2 · σ ≤ p− gr(ω(k))/2.

(2) For every step k′ such that qp(S(k′)) ≥ qp(S(k)) the probability of accepting a
candidate in [0, qp(S(k))] is at most the probability of accepting a candidate in
[0, qp(S(k′))] which is:

f(qp(S(k′))) ≤ f(qp(S(k)) + σ) = p− gr(ω(k)− σ) ≤ p− gr(ω(k))/2,

where in the last transition we used our assumptions on σ.

Hence the probability of accepting a candidate in [0, qp(S(k))] is at most p− gr(ω(k))/2.
We can now use Chernoff bounds to compute the probability that the number of mem-
bers that join the interval [0, qp(S(k))] in the next t steps is more than (p− gr(ω(k))

4 ) · t.
Denote the number of candidates that joined the interval [0, qp(k))] by X, then:

Pr[X ≥ (1 +
gr(ω(k))

4p
) · (p− gr(ω(k))

2
) · t] ≤ e−

(
gr(ω(k))

4p
)2·(p− gr(ω(k))

2
)·t

3

≤ e−
(
gr(ω(k))

4p
)2·(gr(ω(k)− gr(ω(k))

2
)·t

3

= e−
gr(ω(k))2

96p ·t

For the transition before the last we use the assumption that gr(ω(k)) < p for every
ω(k) < τp. This implies that ω(S(k + t)) ≤ ω(S(k)) (since the number of member that
joined [0, qp(S(k))] is less than p · t and in particular that the number of members in
the interval [qp(S(k)), qp(S+ t))] is at least gr(ω(k))

4 · t. The last implies that in the group
S(k+ t) the number of points separating qp(S(k)) and qp(S(k+ t)) is at least gr(ω(k))

4 · t,
as required.

The proof for the symmetric case is very much similar hence we only state the cor-
responding proposition without repeating the proof:

PROPOSITION B.2. Consider adding t more members to a group S(k), such that
qp(S(k)) > τp. For any σ < ω(k) such that:

(1) gl(ω(k)− σ) > gl(ω(k))/2 > c2 · σ.



(2) Each of the intervals [qp(S(k)) − σ, qp(S(k))] and [qp(S(k)), qp(S(k)) + σ] contain at
least t members.

The following hold with probability at least 1− e−Θ(gl(ω(k))2·t):

(1) ω(S(k + t)) ≤ ω(S(k)).
(2) The group S(k + t) contains at least gl(ω(k))

4 · t members in the interval
[qp(S(k)), qp(S(k + t))].

B.2. Density Bounds
We now provide bounds on the density of the group in every interval and every step. In
particular, consider a group of size k and let δ(k) = k−1/10, we will show that for large
enough k, each interval I of length |I| ≥ δ(k) contains at least c′1 · |I| · δ(k) · k members
and at most c′2 · |I| · k members. We begin by partitioning the [0, 1] interval into equal
segments of length δ(k)/2:

LEMMA B.3. Consider adding t new members to the group S(k). With high proba-
bility (1− 2

δ(k) · e−Θ(δ(k)2·t)) for every segment J in the δ(k)/2-partition :

(1) The number of members accepted in the t steps to J is at least c1 · δ(k)2

8 · t.
(2) The number of members accepted in the t steps to J is at most c2 · δ(k) · t.

PROOF. We first compute the probability that a specific interval J has the right
number of candidates and then apply a union bound to show that the lemma holds for
all intervals simultaneously. Throughout this proof we denote the number of accepted
candidates that are located in an interval J by XJ .

(1) Lower bound - By the assumption that the admission process is smooth we have
that the probability of of accepting a candidate in a segment of length δ(k)

2 is at least
c1 · δ(k)2

4 . Thus, by taking a Chernoff bound we get that the number of candidates

accepted to interval J is at least c1 · δ(k)2

8 · t with probability (1− e− c1·δ(k)
2t

32 ):

Pr[XJ ≤ (1− 0.5) · c1 ·
δ(k)2

4
t] ≤ e−

1
4
·c1·

δ(k)2

4
t

2 = e−
c1·δ(k)2t

32 .

(2) Upper bound - By the assumption that the admission process is smooth we have
that the probability of accepting a candidate in a segment of length δ(k)

2 is at most
c2 · δ(k)

2 . Thus, by taking a Chernoff bound we get that the number of candidates
accepted to interval J is at most c2 · δ(k) · t with probability (1− e− c2·δ(k)t24 ):

Pr[XJ ≥ (1 + 0.5)c2 ·
δ(k)

2
] ≤ e−

1
4
·c2·

δ(k)
2
t

3 = e−
c2·δ(k)t

24 .

Finally we take a union bound to show that all the segments have the right number
of members with high probability:

2

δ(k)
(e−

c1·δ(k)2t
32 + e−

c2·δ(k)t
24 ) ≤ 2

δ(k)
· e−Θ(δ(k)2·t).

Next, we use the bounds on the smaller consecutive segments to show that any
interval of length greater than δ(k) contains the “right” number of members:



CLAIM B.4. Let k ≥ k0
δ(k) , where k0 is the initial size of the group, for any interval I

of length |I| ≥ δ(k) the following holds with probability of at least 1− 2
δ(k) · e−Θ(δ(k)2·k) :

(1) The number of members of S(k) in I is at least c′1 · |I| · δ(k) · k for c′1 < c1.
(2) The number of members of S(k) in I is at most c′2 · |I| · k, for c′2 > c2.

PROOF. In Lemma B.3 we partitioned the interval [0, 1] to disjoint segments of
length δ(k)

2 and proved bounds on the number of members in each small segment.
To show that similar density bounds hold for any interval of length at least δ(k), we
observe that any interval of size |I| ≥ δ(k) is contained in an interval I l of length at
most 2|I| consisting of consecutive segments of our δ(k)/2-partition and contains an
interval Is of length at least max{|I|− δ(k), δ(k)

2 } ≥ |I|/3 of consecutive segments of the
δ(k)/2-partition. Thus, for the lower bound we get that each interval I includes at least
|I|/(6δ(k)) segments of the δ(k)/2-partition. Since each of these segments includes at
least c1 · δ(k)2

8 · (k − k0) members and k ≥ k0
δ(k) , we have that there exists a constant c′1

such that the number of members in I is at least c′1 · |I| · δ(k).
Similarly, for the upper bound this implies that each segment of length δ(k)

2 contains
at most c2 · δ(k)(k − k0) members who joined the group in the admission process. Thus
the interval I l includes at most 2c2 · |I| · (k− k0) such members. Note that in the worst
case all the k0 initial members were located in the interval I. By the assumption that
k ≥ k0

δ(k) , we have that the number of members in this interval is at most 2c2 · |I| · (k −
k0) + k0 ≤ 2c2 · |I| · k + k · δ(k). Since |I| ≥ δ(k) we have that there exists a constant c′2
such that the number of members in interval I is at most c′2 · |I| · k.

B.3. Putting it all Together
The essence of Theorem 2.3 is repeated application of Propositions B.1 and B.2 and
Claim B.4. To formalize this idea we define a sequence of group sizes and then argue
how the p-quantile changes between them. Let k1 = max{kε, k10/9

0 }. Where, kε is chosen
be such that gl(ε/2), gr(ε/2) > 8 · c′2 · δ(kε) and for every ω > ε/2, gr(ω− δ(kε)) > gr(ω)/2
and gl(ω − δ(kε)) > gl(ω)/2. Such kε exists by continuity. The exact reasoning behind
this choice of kε will become clearer later. Next, for every i ≥ 1 let ki+1 = (1+c′1 ·δ(ki)2) ·
ki, we show that the p-quantile cannot get too far from τp and under some conditions
it gets closer to τp:

CLAIM B.5. Suppose that each of the intervals [qp(S(ki)) − δ(ki), qp(S(ki))] and
[qp(S(ki)), qp(S(ki)) + δ(ki)] contains at least c′1 · δ(ki)2 · ki members. Then, the following
holds with probability at least 1− e−Θ(k

3/5
i ):

(1) For every ki < k′ ≤ ki+1, ω(S(k′)) < ω(S(ki)) + δ(ki).
(2) Each of the intervals [qp(S(ki+1)) − δ(ki+1), qp(S(ki+1))] and

[qp(S(ki+1)), qp(S(ki+1)) + δ(ki+1)] contains at least c′1 · δ(ki+1)2 · ki+1 mem-
bers. More generally, every interval I of length |I| ≥ δ(ki+1) includes at least
c′1 · |I| · δ(ki+1) · ki+1 members and at most c′2 · |I| · ki+1 members.

(3) If qp(S(ki)) < τp and gr(ω(ki) − δ(ki)) > gr(ω(ki))/2 > c2 · δ(ki), then, the number
of members in the interval [qp(S(ki)), qp(S(ki+1))] in the group S(ki+1) is at least
gr(ω(ki))

4 · c′1 · δ(ki)2 · ki (in particular qp(S(ki)) ≤ qp(S(ki+1)) < τp).
(4) If qp(S(ki)) > τp and gl(ω(ki) − δ(ki)) > gl(ω(ki))/2 > c2 · δ(ki), then, the number

of members in the interval [qp(S(ki+1)), qp(S(ki))] in the group S(ki+1) is at least
gl(ω(ki))

4 · c′1 · δ(ki)2 · ki (in particular qp(S(ki)) ≥ qp(S(ki+1)) > τp).



PROOF. Observe that statement (1) holds simply by the assumption that each of the
intervals [qp(S(ki)) − δ(ki), qp(S(ki))] and [qp(S(ki)), qp(S(ki)) + δ(ki)] contains at least
c′1 · δ(ki)2 · ki = ki+1 − ki members. Thus, when increasing the group by c′1 · δ(ki)2 · ki
members the p-quantile cannot move a distance greater than δ(ki).

Next, recall that k1 ≥ k0
δ(k1) . Thus, we can apply Claim B.4 and get that statement

(2) holds with probability at least 1− 2
δ(ki+1) · e−Θ(δ(ki+1)2·ki+1).

For the last two statements we apply Proposition B.1 and Proposition B.2 using
σ = δ(ki) and t = c′1·δ(ki)2·ki we have that the two statements hold with probabilities at
least 1−e−Θ(gr(ω(ki))

2·δ(ki)2·ki) and 1−e−Θ(gl(ω(ki))
2·δ(ki)2·ki) respectively. By the assump-

tion that δ(ki) < gr(ω(ki))/(2 · c2) for statement (3) and that δ(ki) < gl(ω(ki))/(2 · c2) for
statement (4) we have that we can bound each of these probabilities by 1−e−Θ(δ(ki)

4·ki).
Thus, by taking a union bound we have that the claim holds with probability at least

1 − 2
δ(ki+1) · e−Θ(δ(ki+1)2·ki+1) − e−Θ(δ(ki)

4·ki). By using the fact that δ(ki) = k
−1/10
i and

ki+1 > ki we can bound this probability by

1− 2k
1/10
i+1 · e−Θ(k

4/5
i+1) − e−Θ(k

3/5
i ) ≥ 1− e−Θ(k

3/5
i ).

We are now ready to show that the p-quantile indeed gets closer to τp. To this end,
larger increments of the group’s size are required. Thus, we define the following series
aj such that 2kaj ≤ kaj+1

and for every i < aj+1, ki < 2kaj , and consider the changes
in the p-quantile from S(kaj ) to S(kaj+1

). Based on Claim B.5 we prove the following
proposition:

PROPOSITION B.6. For every j, with probability of at least 1− (aj+1 − aj)e−Θ(k3/5aj
):

(1) If ω(kaj ) >
3
4ε, then ω(kaj+1) < ω(kaj )−

gr( 2
3ω(kaj ))

8c′2
.

(2) Else, ω(kaj+1
) < 3

4ε+ δ(kaj ).

PROOF. We present the proof for qp(S(kaj )) < τp, as the proof for the symmetric case
is identical. We begin by considering the case that for all steps ki such that kaj ≤ ki <

kaj+1
we have that ω(ki) ≥ 2

3ω(kaj ). Recall that k1 > kε and kε was chosen such that:

— For every ω > ε/2, gr(ω − δ(kε)) > gr(ω)/2. This implies that for every aj < i < aj+1,
gr(ω(ki)−δ(ki)) > gr(ω(ki))/2, since gr(·) is a strictly increasing function and δ(ki) <
δ(kε).

— gr(ε/2) > 8 · c′2 · δ(kε). This implies that for every aj < i < aj+1, gr(ω(ki))/2 >
8 · c′2 · δ(ki) > c2 · δ(ki) since c′2 > c2 and δ(ki) < δ(kε).

Next, we apply Claim B.4 and get that with probability at least 1 − 2
δ(kaj ) ·

e−Θ(δ(kaj )2·kaj ) both intervals [qp(S(kaj )), qp(S(kaj )) + δ(kaj )] and [qp(S(kaj )) −
δ(kaj ), qp(S(kaj ))] contain at least c′1 · δ(kaj )2 · kaj members. Since we established
that gr(ω(ki) − δ(ki)) > gr(ω(ki))/2 > c2 · δ(ki), we can now apply Claim B.5 re-
peatedly for aj ≤ i < aj+1. We get that the number of members in the interval
[qp(S(ki)), qp(S(ki+1))] in the group S(ki+1) is at least gr(ω(ki))

4 · c′1 · δ(ki)2 · ki and in
particular qp(S(ki)) ≤ qp(S(ki+1)) < τp.



Finally, we sum over all the indices i, aj ≤ i < aj+1 to get that the number of
members that joined the group in the interval [qp(S(kaj )), qp(S(kaj+1

))] is at least:

aj+1−1∑
i=aj

gr(ω(ki))

4
· c′1 · δ(ki)2 · ki ≥

gr(
2
3ω(kaj ))

4
·
aj+1−1∑
i=aj

c′1 · δ(ki)2 · ki =
gr(

2
3ω(kaj ))

4
· (kaj+1 − kaj )

Note that by our construction of the series aj we have that kaj ≤ kaj+1/2, hence,
the number of members that joined the interval [qp(S(kaj )), qp(S(kaj+1))] is at least
gr( 2

3ω(kaj ))

8 · kaj+1
. Finally observe that by applying Claim B.5 over S(kaj+1

) we have
that in the group S(kaj+1

) every interval |I| of length |I| ≥ δ(kaj+1
) contains at most

c′2 · |I| · kaj+1
members. This means that if

gr( 2
3ω(kaj ))

8c′2
> δ(kaj+1

) (as we assumed), then,

the length of the interval [qp(S(kaj )), qp(S(kaj+1))] is at least
gr( 2

3ω(kaj ))

8c′2
as required.

The case in which there exists a step kaj < ki < kaj+1
such that that ω(ki) <

2
3ω(kaj )

is even simpler. In this case, by repeatedly applying Claim B.5 we have that:

— If ω(kl) <
2
3ω(kaj ), then ω(kl+1) < 2

3ω(kaj ) + δ(kl).
— If ω(kl) ≥ 2

3ω(kaj ), then ω(kl+1) < ω(kl).

Thus, by induction we have that for any l > i, ω(kl) < 2
3ω(kaj ) + δ(kaj ) and hence

ω(kaj+1
) < 2

3ω(kaj ) + δ(kaj ). Note, that for this case it is possible that for some l,
qp(S(kl)) > τp however by our choice of kε, it would still be the case that ω(kl) <
2
3 · ω(kaj ) + δ(kaj ).

The proof of the second statement is identical to the second case of the first state-
ment, for any l > i:

— If ω(kl) <
3
4ε, then ω(kl+1) < 3

4ε+ δ(kl).
— If ω(kl) ≥ 3

4ε, then ω(kl+1) < ω(kl).

Thus, by induction we have that ω(kaj+1
) < 3

4ε+ δ(kaj ).
Lastly, observe that in the proof we basically applied Claim B.5 aj+1−aj times, hence

by taking a union bound the assertion of the proposition holds with probability of at
least 1− (aj+1 − aj)e−Θ(k3/5aj

).

Finally we are ready to complete the proof of Theorem 2.3. To this end, we do
an induction over the series kaj . As long as ω(kaj ) > 3

4ε we can apply Proposition

B.6 repeatedly and get that ω(kaj+1) < ω(kaj ) −
gr(ω(kaj )/2)

8c′2
. In particular, as long as

ω(kaj′ ) >
3
4ω(kaj ), the distance to τp is reduced by at least

gr(ω(kaj )/2)

8c′2
hence after at

most 8c′2
gr(ω(kaj )/2) iterations the p-quantile is closer to τp by a factor of at least 3/4. We

can continue doing so till we reach a distance of 3
4ε. Let k′ε > k1 ≥ kε be such that

ω(k′ε) ≤ 3
4ε. For any kaj+1 > k′ε, the second statement in Proposition B.6 tells us that

ω(kaj+1
) < 3

4ε + δ(kε) < ε. The proof is then completed by noticing that Claim B.5
which we used in the induction actually guarantees that for any k′ > kaj+1

we have
that ω(k′) < 3

4ε + 2δ(kε) < ε. To prove the theorem we repeatedly applied Proposition
B.6, hence the theorem holds with probability 1−∑∞k=kε

e−Θ(k3/5).



C. PROOFS FROM SECTION 5

Proof of Proposition 5.4. Recall that we want to show that for the consensus admis-
sion rule (i.e., ` = k), if n ≥ 3 and the initial configuration has diameter D = xn − x1,
then every new element that will be added to the committee during the process is at
least x1 −D and at most xn +D.

It suffices to show we never get an element bigger than xn +D, as by symmetry the
same argument implies we do not get one below x1 −D.

We claim that during the process the quantity xn + x2 − x1 does not increase. To
prove it let the configuration before a step be x1 < x2 . . . < xn and the configuration
after a step in which y has been added be x′1 < x′2 < . . . < x′n. We have to show that
x′n + x′2 − x′1 ≤ xn + x2 − x1.

Since y cannot replace xi for 2 ≤ i ≤ n− 1, There are only two possible cases.
Case 1: The new element y replaced x1. In this case x1 ≤ y ≤ 2x2− x1. If y < xn then

if y < x2 the claim is trivial and otherwise x′n = xn, x′1 = x2 and x′2 ≤ y ≤ 2x2 − x1,
implying that

x′n + x′2 − x′1 ≤ xn + (2x2 − x1)− x2 = xn + x2 − x1,

as needed.
If y > xn then x′1 = x2, x

′
2 = x3 ≤ xn and x′n = y ≤ 2x2 − x1 and hence

x′n + x′2 − x′1 ≤ (2x2 − x1) + xn − x2 = xn + x2 − x1.

Case 2: The new element y replaced xn. In this case 2xn−1 − xn ≤ y ≤ xn. If y > x1

then x′n ≤ xn and x′2 − x′1 ≤ x2 − x1 implying the desired result. Otherwise x′1 = y ≥
2xn−1 − xn, x′2 = x1 and x′n = xn−1. Hence

x′n + x′2 − x′1 ≤ xn−1 + x1 − (2xn−1 − xn) = xn − (xn−1 − x1) ≤ xn ≤ xn + x2 − x1.

This completes the proof of the claim.
Note, now, that in the beginning xn + x2 − x1 ≤ xn + D. Therefore, if at some point

during the process we have a configuration (x′′1 , x
′′
2 , . . . x

′′
n), then x′′n ≤ x′′n + x′′2 − x′′1 ≤

xn +D, by the claim. This completes the proof.
Remark: It is easy to see that if n = 2 this is not true and that the above is tight, namely
we can add elements as close as we wish to xn+D or to x1−D with appropriate initial
configurations.

Proof of Lemma 5.3. Let the configuration before a step be x = (x1, x2, . . . , x2k+1),
and the configuration after a step in which y has been added and xi been dropped
be x′ = (x′1, x

′
2, . . . , x

′
2k+1). Recall that we want to show that if the median moved

to the right, then the sum of distances from the median has decreased by at least
2
∑k
j=k−`+2 d(xj , x

′
j) + d(xk+1, x

′
k+1).

For the conditions of the lemma to hold, it must be that y > xk+1, xi < xk−`+2

and xk−`+2 (weakly) prefers y to xi (i.e., d(xi, xk−`+2) ≥ d(xk−`+2, y)). Let S =∑2k+1
j=1 d(xj , xk+1) be the sum of distances from the median in configuration x. We dis-

tinguish between two cases.
Case 1: y is the new median. Let S′ denote the sum of distances from the (new) me-

dian in x′. Since the distance between xk+1 and y is added to k elements and subtracted
from k elements, we have S′ = S − d(xi, xk+1). It holds that 2

∑k
j=k−`+2 d(x′j , xj) +

d(x′k+1, xk+1) = 2d(xk−`+2, xk+1) + d(xk+1, y). Therefore, to establish the assertion of
the lemma we need to show that d(xi, xk+1) ≥ 2d(xk−`+2, xk+1) + d(xk+1, y), or equiva-
lently (by substituting d(xi, xk+1) = d(xi, xk−`+2)+d(xk−`+2, xk+1)) that d(xi, xk−`+2) ≥



d(xk−`+2, xk+1) + d(xk+1, y). But the right hand side is exactly d(xk−`+2, y), which is at
most d(xi, xk−`+2) by the fact that xk−`+2 has chosen y over xi, as desired.

Case 2: xk+2 is the new median (here, y > xk+2). Let S′ denote the sum of dis-
tances from the (new) median in x′. Since the distance between xk+1 and xk+2 is
added to k elements and subtracted from k elements, we have S′ = S − d(xi, xk+1) +

d(y, xk+2). It holds that 2
∑k
j=k−`+2 d(x′j , xj) + d(x′k+1, xk+1) = 2d(xk−`+2, xk+1) +

d(xk+1, xk+2). Therefore, to establish the assertion of the lemma we need to show
that d(xi, xk+1) − d(y, xk+2) ≥ 2d(xk−`+2, xk+1) + d(xk+1, xk+2), or equivalently (by
substituting d(xi, xk+1) = d(xi, xk−`+2) + d(xk−`+2, xk+1) and rearranging) that
d(xi, xk−`+2) ≥ d(xk−`+2, xk+1) + d(xk+1, xk+2) + d(xk+2, y). But the right hand side
is exactly d(xk−`+2, y), which is at most d(xi, xk−`+2) by the fact that xk−`+2 has chosen
y over xi, as desired.

Remark C.1. If n = 2k (i.e., n is even), then there are two medians. It is easy to
verify that the sum of distances of the points from the left median equals the sum of
their distances from the right median (as the difference is that in the distance from
the left median, the distance between the right and left medians is counted for all the
points to the right of the left median, and in the distance from the right median, it is
counted for all the points to the left of the right median. In both cases this distance
is counted k times). We leverage this observation to show, in a similar way to the odd
case, that if the left median moves right, then the sum of distances from (either one of)
the medians decreases by at least 2

∑k
j=k−`+1 d(x′j , xj).

Proof of Proposition 5.7. Recall tat we want to show for n = 4k + 3 and a major-
ity of at most 3k + 2 is required to replace an existing member, then for any initial
configuration no element has immunity.

We describe the process that removes the 2k + 2 points up to, and including, the
median. An analogous process can be applied to the points to the right of the median,
showing that all points can be removed. We describe the process in stages, each stage
j = 1, . . . , 2k + 2 handles points x1, . . . , xj . For ease of presentation, when clear in the
context we denote the ith point of a given configuration (not necessarily the initial one)
by xi.

For every j = 1, . . . , 2k + 2, stage j begins in a configuration where the smallest j
points form an arithmetic progression, and ends in a configuration where xj has been
removed and the smallest j + 1 points form an arithmetic progression. This is done as
follows. Suppose the smallest j points form an arithmetic progression. We replace x1

with z1 = xj − δj , where δj divides the difference between xj+1 and xj and is smaller
than xj+1−xj

j+1 . We then replace x2 by z2 = z1 − δj , and so on, until the smallest j points
form an arithmetic progression with difference δj . In every such replacement there
are at least 3k + 2 members who prefer the new point to the old one — these are the
2k + 1 members to the right of the median, the median itself, and at least k out of
the 2k + 1 members to the left of the median. For simplicity, let x1, . . . , xj denote the
new locations, i.e., xi = zj−i Now we would like the j point to progress to xj+1. Now,
replace x1 by z1 = xj+δj (again, following a similar argument to the one above, at least
3k + 2 points prefer x′1 to x1). We again rename x1, . . . , xj to denote the new locations.
We continue the process until we reach xj+1 and the j + 1 left-most points form an
arithmetic progression. By the choice of δj all points including xj have been replaced,
and are still all smaller than xj+1. Repeat this process until we reach the median and
replace it. Then we follow the same process from the right side.



Note that in the beginning we can make the process simpler, and only as we get close
to the median we have to be careful, but we prefer to keep the description uniform, for
ease of presentation.
Remark: Note that the process above establishes a stronger property. That is, not only
can we ensure to omit the element xi for every fixed i, we can omit all elements of the
committee together in one process.


