
The chromatic number of random Cayley graphs

Noga Alon ∗

Abstract

We consider the typical behaviour of the chromatic number of a random Cayley graph of a given

group of order n with respect to a randomly chosen set of size k ≤ n/2. This behaviour depends on

the group: for some groups it is typically 2 for all k < 0.99 log2 n, whereas for some other groups

it grows whenever k grows. The results obtained include a proof that for any large prime p, and

any 1 ≤ k ≤ 0.99 log3 p, the chromatic number of the Cayley graph of Zp with respect to a uniform

random set of k generators is, asymptotically almost surely, precisely 3. This strengthens a recent

result of Czerwiński. On the other hand, for k > log p, the chromatic number is typically at least

Ω(
√
k/ log p) and for k = Θ(p) it is Θ( p

log p ).

For some non-abelian groups (like SL2(Zq)), the chromatic number is, asymptotically almost

surely, at least kΩ(1) for every k, whereas for elementary abelian 2-groups of order n = 2t and any

k satisfying 1.001t ≤ k ≤ 2.999t the chromatic number is, asymptotically almost surely, precisely

4. Despite these discrepancies between different groups, it seems plausible to conjecture that for

any group of order n and any k ≤ n/2, the typical chromatic number of the corresponding Cayley

graph cannot differ from k by more than a poly-logarithmic factor in n.

1 Introduction

Let B be a finite group of order n. For an integer k ≤ n/2, let S be a random subset of B obtained by

choosing, randomly, uniformly and independently (with repetitions), k elements of B, and by letting

S be the set of these elements and their inverses, without the identity. Thus S is a set of cardinality at

most 2k, and is typically of cardinality at least k−O(k2/n). (Note that some elements b of the group

may be of order 2, and if such a b lies in S then b = b−1.) In this paper we consider the behaviour of

the chromatic number of the Cayley graph of B with respect to S, that is, the graph whose vertices

are all members of B where b1 and b2 are adjacent if b1 · b−1
2 ∈ S. We denote this random graph by

(B, k), and its chromatic number by χ(B, k).

One motivation for studying this problem is the constructions in [6] in which random self com-

plementary Cayley graphs of high chromatic number are used in the investigation of a problem in

Information Theory, providing graphs with a big gap between their chromatic number and their so-

called Witsenhausen rate-see [6] for more details. Another motivation is the fact that many of the
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known constructions of expanders, like the ones in [5], [19], [20] are Cayley graphs, the fact that

random Cayley graphs with logarithmic degrees over any group are typically expanders [8], and over

some groups even a bounded degree suffices [9], and the fact that graphs with strong expansion prop-

erties have high chromatic numbers. Yet another reason is the study of an extremal problem of Green

regarding sumsets in finite fields, whose investigation leads to the question of estimating the typical

behaviour of the chromatic number of random Cayley sum graphs of Zp. See [14], [1] for more details.

Our results are asymptotic and we are interested in the case of large n, where k may grow with n

or stay constant. As usual, we will say that a property holds asymptotically almost surely (a.a.s., for

short), if the probability it holds tends to 1 as n tends to infinity. The problem of determining the

typical asymptotic behaviour of χ(B, k) for a general given group B of order n and general k ≤ n/2

appears to be very difficult, but we do obtain several nontrivial estimates for general groups, as well

as more accurate estimates for specific groups.

The rest of the paper is organized as follows. In the next section we consider general groups, cyclic

groups are considered in Section 3 and abelian ones in Section 4. The final Section 5 contains several

open problems. Throughout the paper all logarithms are in base 2, unless otherwise specified, and we

omit floor and ceiling signs whenever these are not crucial. We generally make no serious attempts to

optimize the absolute constants in (most of) our estimates.

2 General groups

Note that (B, k) is regular of degree at most 2k, and hence always χ(B, k) ≤ 2k + 1.

Theorem 2.1 For any group B of order n and any k ≤ n/2, the chromatic number χ(B, k) satisfies,

a.a.s, the following bounds.

(i) χ(B, k) ≤ O(k/ log k).

(ii) χ(B, k) ≥ Ω((k/ log n)1/2).

(iii) χ(B, k) ≥ Ω( k2

n log2 n
).

Note that the bound (ii) is better than (iii) if k < cn2/3 log n for an appropriate constant c, and

that (i) and (iii) imply that for k = Θ(n),

Ω(
n

log2 n
) ≤ χ(B, k) ≤ O(

n

log n
).

In order to prove the theorem we need several lemmas. The first two supply upper bounds for the

chromatic number of sparse or pseudo-random graphs.

Lemma 2.2 ([4]) The chromatic number of any graph with maximum degree d in which every neigh-

borghood of a vertex spans at most d2/f edges, where f < d2, is O(d/ log f).

Lemma 2.3 ([3]) The chromatic number of any d-regular graph with all nontrivial eigenvalues bounded

in absolute value by λ is at most

O
( d− λ

log(d−λλ+1 + 1)

)
.
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The following lemma is proved in [8]. See also [17], [18], [11] for subsequent alternative proofs,

providing somewhat sharper estimates

Lemma 2.4 ([8]) Let G be a Cayley graph of a group of order n with a random set S of k generators.

Then, a.a.s., every nontrivial eigenvalues of G is, in absolute value, at most

λ = O(
√
k
√

log n).

We will also apply the following well known result of Hoffman.

Lemma 2.5 ([16]) Let G be a d-regular graph on n vertices in which the smallest (that is, the most

negative) eigenvalue is λn. Then the maximum size of an independent set in G is at most −nλnd−λn and

hence its chromatic number is at least −d−λn
λn

.

Call a subset D of cardinality |D| = t in a group B a subset with many quotients if the number

of distinct elements of the form d(d′)−1 with d, d′ ∈ D is at least t2/5. The following simple lemma

asserts that any sufficiently large set C in a group contains a subset with many quotients of size at

least b
√
|C|c. A version of this lemma for abelian groups appears in [6].

Lemma 2.6 Any set C of cardinality r > r0 in a group contains a subset D with many quotients of

cardinality at least b
√
rc.

Proof. Let C = {c1, c2, . . . , cr}, and let D = { ci1 , ci2 , . . . , cit } = {d1, d2, . . . , dt}, with dj = cij and

1 ≤ i1 < i2 < · · · < it ≤ r, be a random subset of t elements of C, where t will be chosen later. As

the group may contain elements of order 2 and thus it may be that d(d′)−1 = d′d−1 for some distinct

d, d′ ∈ D, we will consider only quotients of the form did
−1
j with i < j. There are

(
t
2

)
such quotients,

but some of them may be equal.

Let n3(D) denote the number of ordered triples (di, dj , dk) of elements of D with i < j < k so

that di(dj)
−1 = dj(dk)

−1. Let n4(D) denote the number of ordered 4-tuples (di, dj , dk, d`) of elements

of D with i < j and k < `, so that di(dj)
−1 = dk(d`)

−1. Similarly, let n3(C) and n4(C) be defined

analogously, with respect to the larger set C.

It is not difficult to check that the number of distinct quotients of the form di(dj)
−1 with i < j,

di, dj ∈ D is at least
(
t
2

)
− n3(D) − 1

2n4(D). Indeed, each group element obtained h > 1 times as

a quotient of the above form, contributes at least h − 1 to n3(D) + 1
2n4(D). This is because if we

fix a quotient di(dj)
−1 = g then any other quotient dp(dq)

−1 = g contributes to n3 with di, dj if

{i, j} ∩ {p, q} 6= ∅, and contributes 2 to n4 with di, dj if {i, j} ∩ {p, q} = ∅.
We proceed to estimate the expectation of the random variable

(
t
2

)
−n3(D)− 1

2n4(D). The expected

values E(n3(D)) and E(n4(D)) satisfy

E(n3(D)) = n3(C)
t(t− 1)(t− 2)

r(r − 1)(r − 2)
,
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and

E(n4(D)) = n4(C)
t(t− 1)(t− 2)(t− 3)

r(r − 1)(r − 2)(r − 3)
.

Indeed, this follows, by linearity of expectation, from the fact that the probability that a fixed set

of 3 members of C is contained in D is exactly t(t−1)(t−2)
r(r−1)(r−2) , and an analogous expression gives the

probability that a fixed set of 4 members of C is a subset of D.

It is also easy to see that n3(C) ≤
(
r−1

2

)
, as there are that many ways to choose ci, cj ∈ C with

i < j < r, and this determines a unique group element g so that ci(cj)
−1 = cjg

−1 (which may be some

ck for k > j.) Note that here j is strictly smaller than r, as k has to be bigger than j. A similar

argument implies that n4(C) ≤
(
r
2

)
(r−2), as there are

(
r
2

)
(r−2) ways to choose three distinct elements

of C, (ci, cj , ck) with i < j and this determines a unique group element g with cic
−1
j = ckg

−1. It thus

follows, by linearity of expectation, that the expectation of the difference
(
t
2

)
− n3(D) − 1

2n4(D) is a

least (
t

2

)
− (r − 1)(r − 2)

2

t(t− 1)(t− 2)

r(r − 1)(r − 2)
− r(r − 1)(r − 2)

4

t(t− 1)(t− 2)(t− 3)

r(r − 1)(r − 2)(r − 3)

=
t(t− 1)

2

[
1− t− 2

r
− (t− 2)(t− 3)

2(r − 3)

]
.

Taking t = b
√
rc we conclude that for a sufficiently large choice of r0 in the lemma, that ensures that t

is large, the expected number of distinct quotients of elements of D, which is at least the expectation

of
(
t
2

)
− n3(D)− 1

2n4(D), is a least (1
4 − o(1))t2 > 1

5 t
2. Thus there exists a D with many quotients, as

needed. 2

Proof of Theorem 2.1:

(i) For, say, k < n1/4 we apply Lemma 2.2. The random graph we consider is a Cayley graph of

the group B with respect to a set S of cardinality at most 2k. This is an |S|-regular graph and the

number of edges in a neighborhood of each of its vertices is at most the number of ordered triples

(s1, s2, s3) where si ∈ S for all i and s1 · s2 · s3 = 1, where 1 is the identity of B. The number of such

triples in which one of the elements si is equal to another one sj or to its inverse is clearly O(k). The

expected number of such triples in which no element si is equal to another one or to its inverse is at

most O(n2( kn)3) = O(k
3

n ) = O(n−1/4), as the number of ordered triples (x1, x2, x3) of elements of B

whose product is 1 is at most n2, and the probability that all members of such a triple belong to the

random set S is O(( kn)3). It thus follows, by Markov’s inequality, that a.a.s. the number of edges in a

neighborhood of a vertex is at most O(k), and the required O(k/ log k) upper bound for the chromatic

number follows from Lemma 2.2

For k ≥ n1/4, we have log k = Θ(log n). Here we use the result of [8] quoted as Lemma 2.4 above.

As we consider now the range k ≥ n1/4, λ = O(
√
k log n) < k3/4. We can now apply Lemma 2.3. In

our case, a.a.s, d = Θ(k) and λ < k3/4, providing the required bound and completing the proof of (i).

(ii) The required assertion follows immediately from Lemma 2.4 and Lemma 2.5.
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(iii) Define t = 5n lnn
k and note that as k ≤ n/2 this number is at least 10 lnn. We claim that a.a.s.

the random Cayley graph (B, k) contains no independent set D of size t which forms a set with many

quotients. Indeed, the probability that a fixed such set is independent is at most the probability that

all k random choices of the elements in our generating set lie outside the set D ·D−1, whose cardinality

is at least t2

5 . This probability is at most (1− t2

5n)k ≤ e−t2k/(5n). As the number of potential sets D is(
n
t

)
≤ nt

t! we conclude that the probability that there exists such a D is at most

1

t!
nt · e−t2k/(5n) =

1

t!
[ne−tk/5n]t =

1

t!
.

As t ≥ 10 lnn this probability is negligible, proving the claim. By Lemma 2.6 this implies that a.a.s

our graph contains no independent set of size t2 = 25n2 ln2 n
k2

supplying the desired lower bound for the

chromatic number. 2

We conclude this section by observing that for some groups B, the typical chromatic number

χ(B, k) grows with k even if k is very small as a function of the size n of the group. As we show later,

this is not the case if B is abelian.

Proposition 2.7 There exists an absolute constant δ > 0 so that if B is the group SL2(Zq) then for

any k, χ(B, k) ≥ Ω(kδ) a.a.s.

The proof is an immediate consequence of Lemma 2.5 and the following result of Bourgain and Gam-

burd.

Lemma 2.8 ([9]) There exists an absolute constant δ > 0 so that if B is the group SL2(Zq) then for

any k, every nontrivial eigenvalue of the random Cayley graph (B, k) is, in absolute value, at most

k1−δ a.a.s.

3 Cyclic groups

3.1 Groups of prime order

A recent result of Czerwiński [10] implies that for any prime p and for k ≤ ( log p
log log p)1/2, χ(Zp, k) = 3

a.a.s. It turns out that this holds for a wider range of k including all k ≤ (1 − o(1)) log3 p. This is

proved in Theorem 3.2 below. Note that by Theorem 2.1, part (ii), once k > C log p for some large

constant C, the chromatic number exceeds 3 (and is at least Ω(
√
C)) a.a.s.

The main tool in the proof of Theorem 3.2 is the following lemma.

Lemma 3.1 Let p be an odd prime, let δ, µ be positive reals satisfying 1 > δ > 2µ > 0 and let I be a

cyclic interval in Zp of size |I| = δp. Let A ⊂ Zp be an arbitrary subset of Zp, and let x be a uniformly

chosen random element of Zp. Define A′ = {a ∈ A : xa ∈ I}. Then the probability that the size of

A′ is smaller than (δ − 2µ)|A| satisfies

Pr(|A′| < (δ − 2µ)|A|) ≤ d 1

µ
e(δ − µ)(1− δ + µ)|A|

µ2|A|2
<

2δ(1− δ + µ)

µ3|A|
.
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Proof. We apply the second moment method, a similar application appears in [7] and in [2]. Put

r = d 1
µe and let L = {J1, J2, . . . , Jr} be a family of cyclic intervals in Zp, each of size (δ − µ)p,

so that any cyclic interval I of size δp fully contains at least one Ji. It is clear that such a set of

intervals Ji exists, simply choose their leftmost points with (nearly) equal spacing in Zp. Fix an

interval J in L, and let y be another random uniform member of Zp, independent of x. For each

a ∈ A, put za = ax + y, and let Za be the indicator random variable whose value is 1 if and only if

za ∈ J . Define also Z =
∑

a∈A Za. Note that each za is uniformly distributed in Zp and hence the

expectation of Za is exactly δ − µ. Moreover, crucially, for each two distinct a, a′ ∈ A, the ordered

pair (za, za′) is uniformly distributed in Z2
p , implying that the random variables {Za : a ∈ A} are

pairwise independent. It follows that the expectation of Z =
∑

a∈A Za is (δ − µ)|A|, and its variance

is (δ− µ)(1− δ + µ)|A|. By Chebyshev’s Inequality, the probability that the value of Z deviates from

its expectation by at least µ|A| is at most

Var[Z]

µ2|A|2
=

(δ − µ)(1− δ + µ)|A|
µ2|A|2

.

Therefore, the probability that there exists an interval J in L which contains less than (δ − 2µ)|A|
elements za is at most r times the above bound. It follows that with probability at least

P = 1− r (δ − µ)(1− δ + µ)|A|
µ2|A|2

(over the choices of x and y) every interval in L contains at least (δ − 2µ)|A| elements za, and hence

there is a fixed y so that for this y, as x is chosen at random, the probability that every interval in

L contains at least that many numbers za is at least P . However, by the construction of the family

L, the interval I + y (whose length is δp) fully contains one of the intervals in L, and hence with the

above probability it contains at least (δ − 2µ)|A| elements of the form za = ax + y, implying that I

contains that many elements ax. This completes the proof. 2

Theorem 3.2 For any fixed ε > 0, if p is a prime and 1 ≤ k ≤ (1 − ε) log3 p then the chromatic

number χ(Zp, k) is, a.a.s., exactly 3.

Proof. As the order of each nonzero member of Zp is p, which is odd, the chromatic number is

at least 3. To prove the upper bound, let S = (x1, x2 . . . , xk) with k ≤ (1 − ε) log3 p be a sequence

of random elements of Zp, and consider the Cayley graph of Zp with respect to S ∪ (−S). Let

I = {dp/3e, . . . , b2p/3c} be the interval consisting of (roughly) the third middle of Zp. Note that its

size is δp where δ = 1
3 + Θ(1/p) and the Θ(1/p) term is positive for p ≡ 2(mod 3) and is negative for

p ≡ 1(mod 3).

Claim: A.a.s. there exists an a ∈ Zp so that axi ∈ I for all 1 ≤ i ≤ k.

Proof of Claim: Let µ be a fixed real satisfying δ > 2µ (its exact value will be chosen later). Put

A0 = Zp and for each i, 1 ≤ i ≤ k, define Ai = {a ∈ Ai−1, axi ∈ I}. By Lemma 3.1, |Ai| ≥ (δ−2µ)|Ai−1|
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with probability at least 1− 2δ(1−δ+µ)
µ3|Ai−1| . Therefore, with probability at least

1− 2δ(1− δ + µ)

µ3p

k−1∑
i=0

1

(δ − 2µ)i
= 1− 2δ(1− δ + µ)

µ3p
[

1

(δ − 2µ)k
−1]/[

1

δ − 2µ
−1] ≥ 1− 2δ

µ3p(δ − 2µ)k−1
,

we have |Ai| ≥ (δ − 2µ)ip for all i. In our case δ ≥ 1
3 −

1
3p . By choosing, say, µ = ε

20 this implies that

with probability at least 1− p−Ω(ε) the set Ak is nonempty. Any a ∈ Ak satisfies the assertion of the

claim. 2

Having proved the claim we can now complete the proof of the theorem. Cover Zp by three pairwise

disjoint intervals I1, I2, I3, each having at most dp/3e elements, and color any z ∈ Zp by the index i,

1 ≤ i ≤ 3 such that in Zp, az ∈ Ii. It is easy to check that this is a proper coloring. Indeed, if z1

and z2 have the same color then az1 and az2 lie in the same interval Ij and thus differ in Zp by at

most dp/3e − 1 = bp/3c. Therefore their difference cannot be of the form axi or −axi for some i, as

all these numbers lie in I = {dp/3e, . . . , b2p/3c}. 2

Remarks:

• The proof above works for elementary abelian p-groups B = Zmp by a simple modification,

showing that for any odd prime p, whenever k does not exceed c log |B| for an absolute positive

constant c, then χ(B, k) = 3 a.a.s.

• For two integers a ≥ 2b, an (a, b)-coloring of a graph G = (V,E) is a mapping f : V 7→
{0, 1, . . . , a− 1} so that for every edge uv ∈ E, b ≤ |f(u)− f(v)| ≤ a− b. The circular chromatic

number χc(G) of G is the minimum possible ratio a/b so that there is an (a, b)-coloring of G. See

[22] for a survey on circular coloring. It is known that for any graph G, dχc(G)e = χ(G). The

proof above can be easily modified to show that for any positive µ there is a positive c = c(µ) so

that for any large prime p, if k ≤ c log p then the circular chromatic number of a random Cayley

graph of Zp with respect to k randomly chosen generators is, asymptotically almost surely, at

most 2 + µ.

By a similar reasoning, we can prove the following.

Theorem 3.3 For all k, 1 < k ≤ p/2, χ(Zp, k) ≤ O(1 + k
log p) a.a.s.

Proof. Observe, first, that the statement for k < 10 log p, say, follows from the one for k = 10 log p

proven below, and that for k ≥ p0.1 the statement follows from Theorem 2.1, part (i). We thus may

and will assume that 10 log p ≤ k ≤ p0.1.

Put k = g log p, and let S = {x1, . . . , xk} be a random sequence of elements of Zp. Note that

10 ≤ g < p0.1/ log p. Define I to be the following interval in Zp,

I = {d p
10g
e, d p

10g
e+ 1, . . . , p− d p

10g
e}.
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Thus |I| = δp where δ = 1− 2
10g + Θ(1

p). Put µ = 1
10g , then for large p,

δ − 2µ = 1− 4

10g
+ Θ(

1

p
) ≥ 1− 1

2g
.

As in the previous proof, we claim that a.a.s. there exists an a ∈ Zp so that axi ∈ I for all 1 ≤ i ≤ k.

To prove this claim define, as before, A0 = Zp and Ai = {a ∈ Ai−1, axi ∈ I}. Thus |Ai| ≥ (δ − 2µ)ip

for all 1 ≤ i ≤ k with probability at least

1− 2δ

µ3p(δ − 2µ)k−1
.

In our case µ3 ≥ p−0.3 and (δ − 2µ)k−1 ≥ p−2/3, implying that with probability at least 1− p−Ω(1) Ak

is nonempty, providing the existence of the claimed a.

Once we have the claimed a it is easy to define a proper coloring by O(g) colors. Indeed, split

Zp into, say, 20g nearly equal pairwise disjoint intervals and color each z ∈ Zp by the index of the

interval containing az. If two elements z, z′ have the same color then az, az′ lie in the same interval,

and hence the difference between these two lies in [− p
20g ,

p
20g ] and therefore cannot be an axi or −axi,

as all these lie in I. This shows that a.a.s. χ(Zp, k) ≤ 20g ≤ O(k/ log p), completing the proof. 2

For k = Θ(p) the above estimate is tight up to a constant factor, as shown by the following, which

is essentially proved in [15].

Proposition 3.4 For any constant 1/2 ≥ c1 > 0 there are two constants b1, b2 > 0 so that for

k = bc1pc, a.a.s., b1
p

log p ≤ χ(Zp, k) ≤ b2 p
log p .

The upper bound is proved in Theorem 2.1. The lower bound follows from the result of Green

[15] who showed that the maximum size of an independent set in the relevant Cayley graph is, a.a.s.,

O(log p). Note that Green’s proof actually deals with Cayley sum-graphs, rather than Cayley graphs,

but the proof for Cayley graphs is analogous. Note also that he only deals with the case k = p/2, but

his argument carries over to all admissible values of c1. We omit the details.

3.2 General cyclic groups

The probabilistic proof in the previous section can be extended to general cyclic groups, by a more

careful computation of the variance. As before, the main idea is showing that for a logarithmic number

of random elements xi of Zn, with high probability there is a multiplier a so that axi lies in the middle

third of Zn for all i. This is done by proving the analog of Lemma 3.1 for Zn, but the computation

of the variance here requires some work. Luckily this has already been done in [7], and hence we will

simply quote and apply a result from that paper.

Lemma 3.5 ([7], Corollary 4.1) For every fixed α > 0 and all r > r0(α) the following holds. Let

A be a set of r elements in the one dimensional torus T = R/Z, let N be a large integer, and let

(xA + y)(mod 1) be a random set of T , where x is a uniform random integer in {1, 2, . . . , N} and y
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is a random real in T . Let I be a fixed interval of length β in T , and let the random variable Y give

the cardinality of (xA+ y) ∩ I. Then the expectation of Y is βr, and its variance, for all sufficiently

large N , is at most r1+αβ1−α.

We apply the lemma where the set A consists of all elements of the form a
n for integers 1 ≤ a ≤ n.

These elements represent the members of the cyclic group Zn. As in the proof of Lemma 3.1 we

can, given 1 > δ > 2µ > 0, define a family of d 1
µe intervals in T , each of length δ − µ, so that any

interval (with arbitrary real endpoints) in T of length δ fully contains one of these intervals. We can

then repeat the proof of the lemma, replacing the expression for the variance by the estimate given in

Lemma 3.5, noting that in our case, if N is any multiple of n, then the choice of a random uniform

integer in {1, 2, . . . , N} is equivalent to a uniform choice in {1, 2, . . . , n}, as we only multiply this

number by fractions of the form a/n modulo 1. Interpreting the obtained elements as members of Zn,

this gives the following.

Lemma 3.6 For any positive α > 0, 1 > δ > 2µ > 0 and any n > r > r0(α) the following holds. Let

I be a cyclic interval in Zn of size |I| = δn. Let A ⊂ Zn be an arbitrary subset of r > r0 elements of

Zn, and let x be a uniformly chosen random element of Zn. Define A′ = {a ∈ A : xa ∈ I} (where

the product is computed in Zn). Then the probability that the size of A′ is smaller than (δ − 2µ)|A|
satisfies

Pr(|A′| < (δ − 2µ)|A|) ≤ d 1

µ
e(δ − µ)1−αr1+α

µ2r2
<

2

µ3r1−α .

The above lemma suffices to prove the following analogs of Theorem 3.2 and Theorem 3.3 with no

essential change in the proofs, besides the obvious minor modifications required in the computation.

Note that in the proofs Lemma 3.6 is applied to sets Ai each of which is of cardinality at least

nΩ(ε) > r0. We omit the details.

Theorem 3.7 For any fixed ε > 0, if n is an integer and 1 ≤ k ≤ (1 − ε) log3 n then the chromatic

number χ(Zn, k) is, a.a.s., at most 3.

Theorem 3.8 For all k, 1 < k ≤ n/2, χ(Zn, k) ≤ O(1 + k
logn) a.a.s.

The analog of Proposition 3.4 also holds for any cyclic group Zn, where the lower bound is (essentially)

proved in [15], and the upper bound follows from Theorem 2.1.

4 Abelian groups

4.1 Elementary abelian 2-groups

When B = Zt2 is an elementary abelian 2-group of order n = 2t, and k ≤ 2.999t we can determine the

typical chromatic number of (Zt2, k) accurately. This is described in the following theorem, in which

ω(1) denotes any positive function that grows to infinity, arbitrarily slowly, with t .
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Theorem 4.1 For B = Zt2 the following hold.

(i) If k ≤ t− ω(1) then χ(Zt2, k) = 2 a.a.s.

(ii) If t+ ω(1) ≤ k ≤ 3t− ω(1)
√
t then χ(Zt2, k) = 4 a.a.s.

(iii) If k = t+ Θ(1) then the probability that χ(Zt2, k) = 2 as well as the probability that χ(Zt2, k) = 4

are both bounded away from 0.

Note that the chromatic number of (Zt2, k) above is never 3. Indeed, a somewhat surprising known

result of Payan asserts that no Cayley graph of Zt2 can have chromatic number 3.

Lemma 4.2 (Payan [21]) If the chromatic number of a Cayley graph of an elementary abelian 2-

group is at least 3, then it is at least 4.

Although the result sounds surprising, its elegant proof is not very difficult. It proceeds by showing

that if such a graph contains an odd cycle, then it contains the graph of an even dimensional discrete

cube together with additional edges connecting every pair of antipodal vertices, and by proving that

the chromatic number of each of these graphs is 4, as they contain a so called generalized Mycielski

graph. See [21] for more details.

It is not difficult to use Edmonds’s well known result about covering matroids by bases (see [13])

in order to show that a random set of 2t elements of Zt2 can be partitioned , a.a.s., into two linear

bases. This can be used to show that for k = 2t the chromatic number of (Zt2, k) is, a.a.s., at most 4.

In order to deal with somewhat higher values of k we prove the following.

Lemma 4.3 Let S be a random sequence of at most 3t−ω(1)
√
t elements of Zt2. Then, a.a.s., S can

be partitioned into two disjoint sets S1, S2 so that S2 is linearly independent and S1 contains no subset

of odd cardinality whose sum is the 0 vector.

Proof. Let S = (s1, s2, . . . , sk), where k = 3t − g
√
t, and g grows arbitrarily slowly to infinity as t

grows to infinity, be a random sequence of elements of Zt2. Starting with both S1, S2 empty, examine

these elements one by one. Whenever an si is not a sum of an even number of previous vectors placed

already in S1, add it to S1. Else, put it in S2. Note that by definition, the set S1 produced at the end

of this process will not contain any subset of odd cardinality with sum 0. We proceed to show that

a.a.s. the process ends with S2 of cardinality smaller than t− (g/5)
√
t which is linearly independent.

During the process of producing S1 and S2 let us also produce a linear basis of S1 consisting of all

elements that when they are added to S1 increase its rank. Thus, the basis consists of all members

of S1 which are not linear combinations of previous members of S1. When exposing a new element of

S, let us first examine only whether or not it is a linear combination of the current basis of S1. If so,

it is clearly a uniform linear combination, and let us next examine if it is a sum of an odd number of

basis elements, or an even number (each of these events happens with probability 1/2). If it is a sum

of an even number-it is thrown into S2. Note that at this point it is a uniform sum of an even number
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of these basis elements, and we will expose the actual sum only once we consider S2. If it is a sum of

an odd number of the basis elements, it is added to S1.

For any positive i, the probability that si is a linear combination of the previous elements s1, . . . , si−1

is at most 2i−1−t, and hence a.a.s. all the first, say, t− g members of S are placed in S1. After that,

at most g elements will be added to S1 while increasing its rank. However, at least k − t times we

will have an element that is a linear combination of the previous basis elements of S1, and whenever

such a random element is exposed, it is a sum of an odd number of such elements with probability

exactly 1/2. Therefore, the number of extra elements added to S1 in that part of the process is a

binomial random variable with parameters k − t and 1/2 and hence a.a.s. its value is at least, say,

(k − t)/2 − (g/4)
√
t, leaving at most t − (g/4)

√
t + g < t − (g/5)

√
t elements for S2. Note that S1

contains a basis and additional elements each of which is a sum of an odd number of basis elements,

and it is therefore clear that no sum of an odd number of members of S1 can be the zero vector (as

altogether such a sum is a sum of an odd number of basis elements).

What about S2 ? It consists of at most t − (g/5)
√
t elements, and each of them is a sum of an

even number of the basis elements of S1. We also know that each such element is a uniform linear

combination of an even number of members from some prefix consisting of at least t−g basis elements

of S1. This means that each member of S2 is uniformly distributed over a set of at least 2t−g−1

vectors (all combinations of an even number of those basis elements). However, this implies that the

probability that some given fixed subset of elements of S2 has sum 0 is at most 2−(t−g−1), since we

can expose all members of this subset but the last one, and then the last one still has at least 2t−g−1

possibilities and at most one of them can make the sum 0. As there are only at most 2t−(g/5)
√
t subsets

of S2 this implies that the probability that one of them adds to 0 is at most 2t−(g/5)
√
t · 2−(t−g−1),

which is negligible. This shows that a.a.s. S2 is linearly independent, completing the proof. 2

Proof of Theorem 4.1:

(i) Put k = t − h with h = ω(1). The probability that all k vectors in S are linearly independent

is exactly
∏k−1
i=0 (1 − 1

2t−i ), as each term (1 − 1
2t−i ) is exactly the conditional probability that vector

number i + 1 does not lie in the span of the previous ones assuming all previous ones are linearly

independent. This product is bigger than 1 − 1
2t−k = 1 − 1

2h
, showing that a.a.s all vectors in S are

linearly independent. Therefore, a.a.s. no nontrivial linear combination of members of S is 0, and in

particular no sum of an odd number of members of S is 0. Since an odd cycle in the Cayley graph

(Zt2, S) is exactly a sum of an odd number of members of S that add to 0 this shows that a.a.s. (Zt2, k)

contains no odd cycle and is thus bipartite. This proves (i).

(ii) By the obvious monotonicity it suffices to show that for k = t + 2h, with h = ω(1), χ(Zt2, k) ≥ 4

a.a.s and that χ(Zt2, 3t− ω(1)
√
t) ≤ 4 a.a.s.

To prove that a.a.s. χ(Zt2, t+ 2h) ≥ 4 observe, first, that a.a.s, the first t+ h members of S span

Zt2, as the probability they do not is at most 2t · 2−(t+h) = 2−h since if they do not span Zt2 all should

be orthogonal to some vector in it, and the probability of being orthogonal to a fixed nonzero vector

is exactly 1/2. Assuming this is the case, fix a basis among the first t+ h members of S, and expose
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the last h vectors in S. Each of them is the sum of an even number of the basis elements we fixed

with probability exactly 1/2. If it is, then this generates an odd cycle in the graph. The probability

this fails to happen is at most 2−h. This shows that a.a.s. the graph contains an odd cycle, and hence

by Lemma 4.2 its chromatic number is at least 4.

To show that a.a.s. χ(Zt2, 3t − ω(1)
√
t) is at most 4 let S be a random sequence of elements of

Zt2, |S| = 3t − ω(1)
√
t. Apply Lemma 4.3 to partition S into two sets S1, S2 as in the lemma. Such

a partition exists a.a.s., and it provides a partition of the set of edges of the Cayley graph into two

bipartite graphs, implying the assertion of (ii).

(iii) For k = t − h, h = O(1) nonnegative, the probability that the first t − h − 1 vectors in S are

linearly independent is bounded away from zero, and then the conditional probability that the last

vector is a sum of an even number of them, creating an odd cycle, is at least 2−h−2 which is bounded

away from zero. By Lemma 4.2 if this happens then the chromatic number is at least 4.

Similarly for k = t+ h, h = O(1) positive, the probability that the first t vectors in S form a basis

is bounded away from zero, and then the conditional probability that each of the last h vectors is a

sum of an odd number of the basis elements is at least 2−h, which is bounded away from zero. If this

happens, then there is no odd cycle and the graph is 2-colorable. Monotonicity thus completes the

proof. 2

For bigger values of k the situation is less clear. If k ≥ 2Ω(t) then by Theorem 2.1, part (i) we know

that χ(Zt2, k) ≤ O( k
log k ) a.a.s., and by Theorem 2.1, parts (ii) and (ii) we get some lower bounds. Note

that for k = 2ct with 0 < c < 1 the gap between the upper and lower bounds is large. For smaller values

of k, say, 2.99t < k < 2o(t), we can show that χ(Zt2, k) ≤ O(k/t) as follows. Put p = dlog2(k/t)e + 2,

and consider only the vectors in S whose first p coordinates are all 0. A.a.s. their number is smaller

than, say, t/2, which is much smaller than their length (as p = o(t)). Thus a.a.s. they are linearly

independent and the Cayley graph in which the only edges correspond to these elements has chromatic

number 2. The Cayley graph corresponding to all other edges (arising from the members of S with

nonzero values in the first p coordinates) can be trivially colored by 2p colors- simply color each vertex

by the vector of its first p-coordinates. The product coloring gives a proper coloring of our graph with

at most 2p · 2 = O(k/t) colors.

We have thus proved the following simple proposition.

Proposition 4.4 For all t < k ≤ 2t−1, χ(Zt2, k) ≤ O(k/t) a.a.s.

For very large values of k one can get a sharper estimate, using the results of Green [15]. Indeed,

these results give the following.

Proposition 4.5 For every c, 0 < c ≤ 1/2 there are b1 = b1(c), b2 = b2(c) > 0 so that for n = 2t and

k = cn = c2t, a.a.s.

b1
n

log n log logn
≤ χ(Zt2, k) ≤ b2

n

log n log log n
.

Indeed Green proves in [15] that for c = 1/2 the largest independent set in (Zt2, c2
t) is, a.a.s, of

size Θ(log n log log n), providing the lower bound for this case. Moreover, his proof shows that there
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is such an independent set consisting of all nonzero elements of a linear subspace, and we can thus

color by the cosets of this subspace. His proof works essentially as it is for all other values of c which

are bounded away from 0. Note that he considers Cayley sum graphs, but for Zt2 the definitions of

Cayley sum-graphs and Cayley graphs coincide.

4.2 General abelian Groups

For general abelian groups, it is not difficult to see that if k is small with respect to n, then the

chromatic number is typically at most 3.

Theorem 4.6 For any abelian group B of size n and any k ≤ 1
4 log log n, the chromatic number

χ(B, k) satisfies χ(B, k) ≤ 3 a.a.s.

Proof. Let B = Zn1 ⊕ Zn2 ⊕ . . . ⊕ Znr be a general abelian group of order n = n1n2 . . . nr. Let

S = {s1, .., sk} be a random subset, where si = (si1, si2, . . . , sir) for 1 ≤ i ≤ k. Note that each sij is a

random uniform element of Znj .

There is a natural graph-homomorphism from the Cayley graph (B, k) to the Cayley graph (Znj , k),

mapping each vertex to its j-th coordinate. Thus, the chromatic number of (B, k) is at most that

of (Znj , k) for every j (where here we define the chromatic number to be infinite if some generator

vanishes in Znj .)

If for some j |Znj | ≥ log n, then the result follows from Theorem 3.7. Else, r ≥ logn
log logn . For a

fixed j, the probability that all values sij for 1 ≤ i ≤ k fall into the open middle third of Zni ensuring

chromatic number at most 3, is at least, say, (1
4)k ≥ 1√

logn
. Thus, the probability that this fails for all

values of j is at most (1− 1√
logn

)r < e−
√

logn/ log logn. It follows that in this case, a.a.s., the chromatic

number of at least one graph (Znj , k) is at most 3, and hence so is the chromatic number of (B, k). 2

5 Open problems

The general problem of determining or estimating more accurately the chromatic number of a random

Cayley graph in a given group with a prescribed number of randomly chosen generators deserves more

attention. It may be interesting, in particular, to study the case of the symmetric group Sn.

Regarding other groups, it seems plausible to believe that for every solvable group B of size n and

every k ≤ 0.01 log n, χ(B, k) ≤ 3 a.a.s., but we have not been able to prove or disprove this statement.

Is it true that for every group B of size n and every k ≤ n/2, the typical chromatic number

χ(B, k) differs from the degree of regularity of (B, k) only by a poly-logarithmic factor (in n), that is:

is χ(B, k) = Θ̃n(k) a.a.s. ?

Another interesting question is the study of the concentration of the chromatic number χ(B, k),

that is, the standard deviation of this quantity. Our results show that for several families of groups

this is o(1) for small values of k (though for elementary abelian 2-groups Zt2 and for k = t+ Θ(1) the
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deviation is Θ(1), by Theorem 4.1). Since our model here does not fix the size of the set of generators

(as we are choosing them with repetitions), there is a rather simple argument showing that in this

model, for cyclic groups Zn the standard deviation is a least Ω(
√
n

logn) for some values of k = Θ(n). If,

however, we fix the degree of regularity |S ∪ S−1| of the graph, the standard deviation may well be

smaller.

Finally, it seems interesting to investigate systematically other invariants and properties of random

Cayley graphs. For a finite group B and an integer k, the random Cayley graph (B, k) is a natural

model of a random regular graph, and the study of its properties is often challenging. In this paper

we focused on the investigation of its chromatic number, while some of the earlier papers mentioned

here deal with its expansion and spectral properties. The problem of developing a general theory of

this class of random graphs deserves further attention.

Acknowledgment I would like to thank Jarek Grytczuk, as well as an anonymous referee, for helpful

comments.

Note added in proof: A recent paper of Christofides and Markström [12] discusses a new model

of random graphs arising from Latin squares, which includes random Cayley graphs as a special case.

They study several properties of these graphs and establish, in particular, the statement of Theorem

2.1 (i) and (iii) for the special case k = Θ(n).
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