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Abstract

The choice number of a graph G is the minimum integer k such that for every assignment of

a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each

vertex v a color from S(v). It is shown that the choice number of the random graph G(n, p(n)) is

almost surely Θ( np(n)
ln(np(n)) ) whenever 2 < np(n) ≤ n/2. A related result for pseudo-random graphs

is proved as well. By a special case of this result, the choice number (as well as the chromatic

number) of any graph on n vertices with minimum degree at least n/2 − n0.99 in which no two

distinct vertices have more than n/4 + n0.99 common neighbors is at most O(n/ lnn).

1 Introduction

A vertex-coloring of a graph G is an assignment of a color to each of its vertices. The coloring

is proper if no two adjacent vertices get the same color. The chromatic number χ(G) of G is the

minimum number of colors used in a proper coloring of it. If χ(G) ≤ k we say that G is k-colorable.

A related, more complicated quantity is the choice number ch(G) of G, introduced in [11] and

[22]. This is the minimum integer k such that for every assignment of a set S(v) of k colors to every

vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). The

study of this parameter received a considerable amount of attention in recent years, see, e.g., [2], [15]

for two surveys.

In this paper we consider the asymptotic behavior of the choice number of the random graph

G(n, p), as well as its behavior for certain pseudo-random graphs. Formally, G(n, p) denotes the
∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: noga@math.tau.ac.il. Research supported in part by a USA Israeli BSF grant and by a grant from

the Israel Science Foundation.
†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: krivelev@math.tau.ac.il. Research supported in part by a Charles Clore Fellowship.
‡Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: sudakov@math.tau.ac.il.

Mathematics Subject Classification (1991): 05C80, 05C15

1



probability space whose points are graphs on a fixed set of n labeled vertices, where each pair of

vertices forms an edge, randomly and independently, with probability p. The term “the random graph

G(n, p)” means, in this context, a random point chosen in this probability space. Each graph property

A (that is, a family of graphs closed under graph isomorphism) is an event in this probability space,

and one may study its probability Pr[A], that is, the probability that the random graph G(n, p) lies

in this family. In particular, we say that A holds almost surely (or a.s., for short), if the probability

that G(n, p) satisfies A tends to 1 as n tends to infinity. There are numerous papers dealing with

random graphs, and the book of Bollobás [8] is an excellent extensive account of the known results

in the subject proved before its publication in 1985.

Answering an old question of Erdős and Rényi, Bollobás [9] proved that the chromatic number of

the random graph G(n, 1/2) is (1 + o(1))n/(2 log2 n) almost surely. His result, together with the one

of  Luczak in [19], imply that if p(n) satisfies 2 < np(n) ≤ n/2, then almost surely χ(G(n, p(n))) =

Θ(np/ ln(np)). (In fact, their results are more precise and supply an asymptotic formula for the

typical value of χ(G(n, p(n))) in all this range.)

The asymptotic behavior of the choice number for random graphs is not that well understood.

In their original paper, Erdős, Rubin and Taylor [11] conjectured that almost surely ch(G(n, 1/2)) =

o(n). This was proved in [1]. Kahn applied the above mentioned result of Bollobás and proved

that almost surely ch(G(n, 1/2)) = (1 + o(1))χ(G(n, 1/2)) = (1 + o(1))n/(2 log2 n). His argument,

described (in a slightly modified form) in [2], does not supply an estimate for the typical choice

number of G(n, p) for sparse random graphs. Here we prove the following result, which determines

the asymptotic behavior of ch(G(n, p)) for all p = p(n) satisfying 2 < np(n) ≤ n/2.

Theorem 1.1 There exist two absolute positive constants c1 and c2 such that if p = p(n) satisfies

2 < np ≤ n/2 then the choice number of the random graph G(n, p) satisfies, almost surely,

c1
np

ln(np)
≤ ch(G(n, p)) ≤ c2

np

ln(np)
.

It is convenient to prove this theorem for relatively large values of p(n) by proving that its

assertion in fact holds for graphs that exhibit some (rather weak) pseudo-random properties. This

is done in the following (purely deterministic) theorem, which is interesting in its own right.

Theorem 1.2 For every δ satisfying 0 < δ < 1/4 there exists an n0 = n0(δ) such that for every

n > n0 and every p satisfying 1
nδ/3

≤ p ≤ 1/2 the following holds. Let G be a graph on n vertices

satisfying the following two properties:

1. Each vertex degree is at least pn− n1−4δ.

2. Every two distinct vertices have at most p2n+ n1−4δ common neighbors.
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Then the choice number ch(G) of G and its chromatic number χ(G) satisfy

χ(G) ≤ ch(G) ≤ 4np
δ lnn

.

It turns out that even some very special cases of the last theorem are nontrivial and yield interest-

ing consequences in Combinatorial Number Theory. A similar result has been proved, independently,

by Vu [23].

The rest of the paper is organized as follows. In section 2 we present the proof of Theorem

1.2 and apply it to some special cases. Section 3 contains the proof of Theorem 1.1, and section 4

contains some results about the chromatic numbers of graphs with separated eigenvalues and graphs

in which the neighborhood of each vertex spans relatively few edges. The final section 5 contains

some concluding remarks and open problems. Throughout the paper we assume, whenever this is

needed, that n is sufficiently large. We also omit all floor and ceiling signs whenever these are not

crucial, to simplify the presentation.

2 Pseudo-random graphs

In this section we prove Theorem 1.2 which bounds the choice number (and hence also the chromatic

number) of pseudo-random graphs. The bound provided by the theorem is tight, up to a constant

factor, as shown, for example, by appropriate random graphs. We make no attempt to optimize our

absolute constants here and in the rest of the paper.

The proof is rather short. We need the following lemma and its corollary.

Lemma 2.1 Suppose 0 < δ < 1/4, n ≥ n0(δ) and let p satisfy 1
nδ
≤ p ≤ 1/2. Let G = (V,E) be

a graph on n vertices satisfying the two properties in the assumption of Theorem 1.2. Then every

B ⊂ V of size at least n1−δ contains at most 1.01
2 p|B|2 edges of G.

Proof. Let A be the adjacency matrix of G, let J be the all 1 matrix whose rows and columns are

indexed by the vertices of G and put H = A − pJ = (huv)u,v∈V . An easy computation shows that

the inner product of any two columns of H is relatively small. Indeed, if N(v) and N(v′) denote the

sets of all neighbors of v and v′, respectively, and v 6= v′ then,∑
u∈V

huvhuv′ = |N(v) ∩N(v′)| − p(|N(v)|+ |N(v′)|) + np2 ≤ 2n1−4δ.

Therefore ∑
u∈B

(
∑
v∈B

huv)2 ≤
∑
u∈V

(
∑
v∈B

huv)2

=
∑
u∈V

(
∑
v∈B

h2
uv +

∑
v,v′∈B,v 6=v′

huvhuv′) =
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∑
v∈B

∑
u∈V

h2
uv +

∑
v,v′∈B,v 6=v′

∑
u∈V

huvhuv′ ≤ |B|n+ |B|22n1−4δ.

Let e(B) denote the total number of edges of G contained in B. By the Cauchy-Schwartz inequality

and the last estimate

(2e(B)− p|B|2)2 = (
∑
u∈B

∑
v∈B

huv)2

≤ |B|
∑
u∈B

(
∑
v∈B

huv)2 ≤ |B|2n+ |B|32n1−4δ.

Hence

e(B) ≤ 1
2
p|B|2 +

1
2
|B|
√
n+ |B|3/2n1/2−2δ <

1.01
2
p|B|2,

where the last inequality follows from the facts that δ < 1/4, p ≥ n−δ and n is sufficiently large.

This completes the proof. 2

Corollary 2.2 Suppose 0 < δ < 1/4, n ≥ n0(δ) and let p satisfy 1
nδ
≤ p ≤ 1/2. Let G = (V,E) be

a graph on n vertices satisfying the two properties in the assumption of Theorem 1.2. Then every

subset C of at least n1−δ/2 vertices of G contains an independent set of G of size at least δ
3p lnn.

Proof. Repeatedly choose a vertex of minimum degree in the induced subgraph of G on C, add it to

the independent set and delete it and its neighbors from C. By Lemma 2.1, as long as the remaining

part of C has at least n1−δ vertices the minimum degree in the induced subgraph on it is at most
2.02p

2 |C| and hence the number of vertices deleted from C at each such step is at most 2.02p
2 |C|+ 1 ,

implying that its size after such a step exceeds, say, e−3p/2|C|. Therefore one can complete at least
δ
3p lnn steps successfully before the size of |C| drops below n1−δ, completing the proof. 2

Proof of Theorem 1.2. Let G = (V,E) be a graph satisfying the assumptions of the theorem.

For each vertex v ∈ V , let S(v) be a list of at least 4np
δ lnn colors. Our objective is to prove that there

is a proper coloring of G assigning to each vertex a color from its list. As long as there is a set C

of at least n1−δ/2 vertices containing the same color c in their lists we can, by Corollary 2.2, find an

independent set of at least δ
3p lnn vertices in C, color them all by c, omit them from the graph and

omit the color c from all lists. The total number of colors that can be deleted in this process cannot

exceed 3np
δ lnn (since in each such deletion at least δ lnn

3p vertices are deleted from the graph). When this

process terminates, no color appears in more than n1−δ/2 lists, and each list still contains at least
np
δ lnn > n1−δ/2 colors. Therefore, by Hall’s theorem, we can assign to each of the remaining vertices

a color from its list so that no color is being assigned to more than one vertex, thus completing the

coloring and the proof. 2

The above proof is clearly algorithmic in the sense that there is a polynomial time algorithm that

finds, given a graph satisfying the assumptions of the theorem, and an assignment of lists of colors of

the appropriate size for each vertex, a proper coloring assigning to each vertex a color from its list.
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To demonstrate the applications of Theorem 1.2 consider the case p = 1/2. Here we can choose,

say, δ = 1/10 and conclude that for any graph G with a large number n of vertices in which every

degree exceeds n/2−n0.6 and every two distinct vertices have at most n/4+n0.6 common neighbors,

χ(G) ≤ ch(G) ≤ 20n/ lnn. Here are a few examples illustrating this estimate.

• The obvious example that satisfies the above assumptions is the random graph G(n, 1/2),

which satisfies all assumptions almost surely. Here, in fact, a better estimate is known. As

mentioned in the introduction, Bollobás [9] proved that almost surely the chromatic number of

G(n, 1/2) is (1 + o(1))n/2 log2 n, and Kahn (cf. [2]) showed that this implies a similar estimate

for ch(G(n, 1/2)).

• Another class of examples is the well known Paley graphsGq defined for every prime q congruent

to 1 modulo 4. The vertices of Gq are all elements of the finite field Zq and two vertices are

adjacent iff their difference is a quadratic residue modulo q. These graphs are (q−1)/2 regular

and any two distinct vertices of them have at most (q − 1)/4 common neighbors. Thus, for

any large q, by choosing, say, δ = 1/5 in our theorem we conclude that the chromatic and

the choice number of Gq are both at most 10q/ ln q. We can in fact improve the constant 10

by being slightly more careful. It is not known if for any ε > 0 and any prime q > q0(ε) the

chromatic number of Gq is bigger than q1−ε, and a proof of such an estimate would have far

reaching number theoretic consequences.

• An additional class of pseudo-random graphs for which the case p = 1/2 of our theorem can be

applied (and yields, as in the case of random graphs, tight bounds up to a constant factor) is

the following. For any odd integer k let Hk denote the graph whose nk = 2k−1 − 1 vertices are

all binary vectors of length k with an odd number of ones except the all one vector, in which two

(distinct) vertices are adjacent iff the inner product of the corresponding vectors is 1 modulo

2. It is easy to check that this graph is (2k−2 − 2) regular, and every two distinct vertices in it

have at most 2k−3 − 1 common neighbors. Therefore, by our theorem, the chromatic number

and the choice number of Hk are both at most, say, 10nk/ lnnk for all large k. Here, too, the

constant 10 can be improved. This estimate is tight up to a constant factor since it is easy to

see that the independence number of Hk is k = (1 + o(1)) log2 nk, as the vectors corresponding

to any independent set are linearly independent over Z2, because the inner product of each of

them with itself is 1 modulo 2 and the inner product of each of them with another one is 0

modulo 2.

• Finally we present examples which show that sometimes the estimate of Theorem 1.2 may be

very far from the right answer. Let q > 2 be a prime and let Fq2 be the finite field with q2
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elements. The vertices of the graph Gq2 are all the elements of the field and two vertices are

adjacent iff their difference is not a quadratic residue in Fq2 . These graphs are (q2−1)/2 regular

and any two distinct vertices of Gq2 have at most (q2 − 1)/4 common neighbors. Therefore

Theorem 1.2 with p = 1/2 supplies an 10q2/ ln(q2) upper bound on both the choice and the

chromatic numbers of Gq2 . But the actual chromatic number of Gq2 is much smaller. Indeed,

note that all elements of the subfield Fq ⊂ Fq2 , |Fq| = q are quadratic residues and thus Fq and

also all its additive cosets are independent sets in Gq2 and cover all its vertices. This implies

that χ(Gq2) ≤ q. In fact Gq2 contains a clique of size q (any multiplicative coset αFq of Fq
with α ∈ Fq2 , quadratic non-residue), showing that χ(Gq2) = q.

3 Random graphs

In this section we prove Theorem 1.1. We start with the statement of some preliminary known

results, and continue with a brief outline of the proof. Next we present some lemmas dealing with

the properties of random graphs and conclude with the proof of the theorem. Throughout this

section ε and δ always denote positive reals, and we always assume, whenever this is needed, that n

is sufficiently large as a function of ε and δ.

3.1 Preliminaries

A graph is d-degenerate if every subgraph of it contains a vertex of degree at most d. The following

is a simple, well known fact (c.f., e.g., [2]):

Proposition 3.1 Every d-degenerate graph is (d+ 1)-choosable. 2

Let ∆(G) denote the maximum vertex degree in a graph G. The girth of G is the minimum

length of a cycle in it. The following result of Kim [14] is one of the main ingredients of our proof.

Proposition 3.2 ([14]) Let G be a graph with girth at least 5, then

ch(G) ≤ (1 + o(1))
∆(G)

ln ∆(G)

where the o(1) term tends to zero as ∆(G) tends to infinity. 2

3.2 An outline of the proof

In the proof of Theorem 1.1 for the random graph G = G(n, p) = (V,E), we consider three possible

ranges of the edge probability p. If p is large, say, p ≥ n−1/30, the result follows from Theorem 1.2.
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If p is small, say p ≤ n−3/4−ε, (but np ≥ 30 ), then almost surely there is a relatively small set of

vertices U containing all triangles and all 4-cycles of G, as well as all vertices of degree bigger than,

say, 4np. By repeatedly adding to U vertices in V − U that have many neighbors in it, as long as

such vertices exist, we obtain a new set U which still contains all cycles of length 3 and 4 as well as

all vertices of high degree, such that no vertex in V −U has too many neighbors in U . Moreover, by

the properties of the random graph it can be shown that this set U is still rather small. Given , now,

a list of colors assigned to each vertex, we first find, using Proposition 3.1, a proper coloring of the

induced subgraph of G on U assigning to each vertex a color from its list. Next we delete from the

list of each vertex in V −U all the colors used to color its neighbors in U , noting that the remaining

list is still large, since no vertex in V −U has too many neighbors in U . Finally, we use Proposition

3.2 to properly color the remaining vertices, using the fact that the induced subgraph of G on V −U
has girth at least 5 and maximum degree at most 4np.

It remains to deal with the medium values of p, say n−7/8 ≤ p ≤ n−ε. Here (if, say, p = n−1/2)

every vertex is likely to lie in many 4-cycles and hence there is no small set U as before. The trick

here is to split the vertex set of the graph arbitrarily into many parts, noting that the induced

subgraph on each part is now a random graph which is much sparser (as a function of the smaller

number of vertices in a part). Given lists of colors, we can now split their union randomly into

disjoint sets, where each set is assigned to one of our subgraphs, making sure by some standard large

deviation inequalities that the list of colors of each vertex contains sufficiently many colors assigned

to its subgraph. (Here we use the fact that p is medium, and not too small). The proof can now be

completed by applying the arguments of the sparse case to each part separately.

The details, which require some care and some careful computation, are presented in the rest of

the section.

3.3 Some properties of random graphs

We need the following simple though somewhat technical lemma.

Lemma 3.3 If p ≥ 30/n, then the random graph G(n, p) has the following properties:

• (i) Almost surely every s ≤ 2n/ln2(np) vertices of G span fewer than (4np/ln2(np))s edges.

Therefore any subgraph of this graph induced by a subset V0 ⊂ V of size |V0| ≤ 2n/ln2(np), is

8np/ln2(np)-choosable.

• (ii) If 30/n ≤ p ≤ n−3/4−ε, ε > 0 then almost surely:

1. All but at most n/ln2(np) vertices of G have degree at most 4np.
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2. There exists a subset U ⊂ V (G) of size at most n1−ε such that the induced subgraph G[V −U ]

of G on V − U has girth at least 5;

• (iii) If nδ ≤ pn ≤ n1−δ, δ > 0 then with probability at least 1− e−
√
np :

1. Every vertex v ∈ V (G) has degree (1 + o(1))np;

2. The maximum number of edge disjoint 3-cycles in G is at most 5n3p3 and the maximum

number of edge disjoint 4-cycles is at most 5n4p4.

Proof. (i) Define r = 4np/ln2(np). Then the probability of existence of a subset V0 ⊂ V violating

the assertion of the lemma is at most

2n/ln2(np)∑
i=r

(
n

i

)((i
2

)
ri

)
pri ≤

2n/ln2(np)∑
i=r

[
en

i

(
ei

2r

)r
pr
]i

=
2n/ln2(np)∑

i=r

[
e2np

2r

(
eip

2r

)r−1
]i

≤
2n/ln2(np)∑

i=r

ln2(np)

(
eiln2(np)

8n

)4np/ln2(np)−1
i = o(1).

The additional claim about the choosability now follows from Proposition 3.1.

(ii) 1. Suppose there are more than n/ln2(np) vertices with degree at least 4np. Denote by S a set

containing exactly n/ln2(np) such vertices. By statement (i), almost surely, the induced subgraph

G[S] has at most e(G[S]) ≤ (4np/ln2(np))|S| = 4n2p/ln4(np) ≤ n2p/2ln2(np) edges. Therefore the

number of edges between the sets of vertices S and V −S is at least 4np|S|−2e(G[S]) ≥ 3n2p/ln2(np).

On the other hand the probability that G(n, p) contains such a bipartite subgraph is at most

(
n
n

ln2(np)

)( n2

ln2(np)

3n2p
ln2(np)

)
p

3n2p

ln2(np) ≤ (eln2(np))
n

ln2(np)

(
e

3

) 3n2p

ln2(np)

=

[
eln2(np)

(
e

3

)3np
] n

ln2(np)

= o(1).

This implies that almost surely there are at most n/ln2(np) vertices in G with degree greater than

4np.

(ii) 2. Let X1, X2 be the number of cycles of length 3 and 4, respectively, in the graph G(n, p).

Clearly the expectations satisfy E(X1) ≤ n3p3 ≤ n3/4−3ε and E(X2) ≤ n4p4 ≤ n1−4ε with room to

spare. By Markov’s inequality this implies that almost surely X1 + X2 ≤ n1−2ε. Denote by U the

union of all 3− and 4-cycles in G. Then the induced subgraph G[V −U ] has girth at least 5 and a.s.

|U | ≤ 4n1−2ε ≤ n1−ε.
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(iii) 1. The degree of every vertex v ∈ V (G) is a binomially distributed random variable with param-

eters n and p. Therefore the result follows from the standard estimates for binomial distributions

(see, e.g., [7], Appendix A).

(iii) 2. We describe the proof only for the case of 3-cycles, the case of 4-cycles can be treated similarly.

Denote by X the number of 3-cycles and by X0 the maximum number of edge disjoint 3-cycles in

G(n, p). By the inequality of Erdős and Tetali ([12])

Pr(X0 ≥ s) ≤
(E(X))s

s!
.

Since the expectation E(X) is at most n3p3 we conclude that

Pr(X0 ≥ 5n3p3) ≤ (E(X))5n3p3

(5n3p3)!
≤
(
e

5

)n3p3

< e−
√
np.

This completes the proof. 2

Proposition 3.4 The random graph G(n, p) with 30/n ≤ p ≤ n−4ε, 0.1 > ε > 0 contains almost

surely a subset U ⊂ V of size (1 + o(1))n/ln2(np) such that the induced subgraph G[V − U ] is
2np

ε ln(np) -choosable.

Proof. Let us first consider the case p ≤ n−7/8. Then by Lemma 3.3, part (ii) (with ε = 1/8) there

exists a set U0 ⊂ V (G) such that |U0| ≤ n1−1/8 and the induced subgraph G[V − U0] has girth at

least 5. Denote by U the set of vertices consisting of U0 and all vertices with degree greater than 4np.

Then by Lemma 3.3, part (ii) the size of U is bounded by n/ln2(np) + n7/8 = (1 + o(1))n/ln2(np).

Since the induced subgraph G[V − U ] has girth at least 5 and maximum degree at most 4np, it

follows by Proposition 3.2 that its choice number is at most (1 + o(1))4np/ ln(np) ≤ 2np
ε ln(np) .

Now we treat the case n−7/8 ≤ p ≤ n−4ε. Fix an arbitrary partition of the set of vertices V (G)

into r = n1−εp equal parts V1, . . . , Vr each of size n/r. Note that for all 1 ≤ i ≤ r the induced

subgraph G[Vi] is a random graph G(n/r, p). Let C1
i and C2

i be maximum families of edge disjoint

cycles of length 3 and 4, respectively, in G[Vi]. Then as p(n/r) = nε > (n/r)ε, by Lemma 3.3, part

(iii) we get that with probability at least 1− 3e−n
ε/2

|C1
i | ≤ 5(

n

r
)3p3 = 5

n1+2εp

r
< 5

n1−2ε

r
,

|C2
i | ≤ 5(

n

r
)4p4 = 5

n1+3εp

r
< 5

n1−ε

r

and the maximum degree in the subgraph G[Vi] is (1+o(1))np/r. Denote by Ui the set of all vertices

in Vi which belong to one of the cycles from the families C1
i and C2

i . Then, with probability at least

1 − 3ne−n
ε/2

the size of Ui is bounded by |Ui| ≤ 3|C1
i | + 4|C2

i | < n1−ε/2/r for all i. Also from the
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definition of the set Ui it follows that the induced subgraph G[Vi−Ui] has girth greater than 4. Thus

Proposition 3.2 implies that with probability at least 1− 3ne−n
ε/2

the choice number of the induced

subgraph G[Vi−Ui] is at most (1 + o(1)) np
r ln(np/r) ≤

np
εr ln(np) for all 1 ≤ i ≤ r. Put U = ∪ri=1Ui. Then

almost surely |U | ≤ rn
1−ε/2

r = n1−ε/2 < n/ln2(np). It remains to prove that the induced subgraph

G[V − U ] is 2np
ε ln(np) choosable.

Indeed, given lists of colors Lv of size 2np
ε ln(np) for each vertex v, partition the set of all colors

X = ∪v∈V Lv into r sets X1, . . . , Xr by choosing for each color randomly and independently an index

i between 1 and r and by placing it in Xi. As for all vertices v ∈ V the random variable |Lv ∩Xi| is
binomially distributed with parameters 2np

ε ln(np) and 1/r, it follows, by the standard large deviation

inequality of Chernoff (cf. , e.g., [7], Appendix A), that

Pr

(
|Lv ∩Xi| ≤

np

εr ln(np)

)
< e
− np

4εr ln(np) < e−n
ε/2
.

Therefore with positive probability no such event happens. This implies that there exists a partition

of the colors into r pairwise disjoint parts with the property that |Lv ∩Xi| ≥ np
εr ln(np) for all i and

v ∈ V . Take one such partition. Since ch(G[Vi − U ]) = ch(G[Vi − Ui]) ≤ np
εr ln(np) , one can color the

induced subgraph G[Vi −U ] using only colors from Xi. Since all the sets Xi are disjoint this gives a

proper coloring of the vertices of the graph G[V − U ] from the original lists of colors. 2

3.4 The proof of the theorem

We need the following result. Note that its statement is purely deterministic.

Proposition 3.5 Suppose 0 < ε < 0.1, np ≥ 30 and let G = (V,E) be a graph on n vertices with the

property that there exists a subset U0 ⊂ V of size (1 + o(1))n/ln2(np) such that the induced subgraph

G[V − U0] is 2np
ε ln(np) -choosable. Suppose further, that every s ≤ 2n/ln2(np) vertices of G span fewer

than (4np/ln2(np))s edges. Then

ch(G) ≤ 3np
ε ln(np)

.

Proof. First we find a subset U ⊂ V of size |U | ≤ 2n/ln2(np), such that the induced subgraph

G[V −U ] is 2np
ε ln(np)−choosable, and every vertex v ∈ V −U has at most 10np/ln2(np) neighbors in U .

A similar idea was used in the papers of  Luczak [20] and of Alon and Krivelevich [4]. (Note that the

number 10 can be easily reduced, and we make no attempt to optimize the multiplicative constants

here and in what follows.) To find U as above, start with U = U0, |U0| = (1 + o(1))n/ln2(np),

such that the induced subgraph G[V −U0] is 2np
ε ln(np) choosable. The existence of U0 follows from our

assumptions. As long as there exists a vertex v ∈ V −U having at least 10np/ln2(np) neighbors in U ,

add it to U and update U by defining U := U ∪ {v}. This process terminates with |U | < 2n/ln2(np)
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because otherwise we would get a subset U ⊂ V of size |U | = 2n/ln2(np), containing more than

(10 − o(1))n2p/ln4(np) edges, thus contradicting the assumptions about G. On the other hand, as

V − U ⊂ V − U0 and G[V − U0] is 2np
ε ln(np) choosable, it follows that the induced subgraph G[V − U ]

is also 2np
ε ln(np) choosable.

By the assumptions, the induced subgraph G[U ] is 8np/ln2(np)-degenerate. Therefore by Propo-

sition 3.1 its choice number is at most 8np
ln2(np)

+ 1 < 3np
ε ln(np) . Given lists of colors of size 3np

ε ln(np) for

each vertex of G, first color the vertices of U . Then each vertex in V −U has at most 10np/ln2(np)

forbidden colors in its list as it has at most that many neighbors in U . Delete these colors from

the list. The updated list still contains at least 3np
ε ln(np) −

10np
ln2(np)

≥ 2np
ε ln(np) colors. Since the induced

subgraph G[V − U ] is 2np
ε ln(np) choosable we can complete its coloring using the new lists. 2

Having finished all necessary preparations, we are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us first consider the case 0.5 ≥ p ≥ n−1/30. Then the random graph

G(n, p) almost surely satisfies all the properties in the assertion of Theorem 1.2 with δ = 1/10.

Therefore we have that a.s.

ch(G(n, p)) ≤ 4np
δ lnn

=
40np
lnn

≤ 40np
ln(np)

.

Now let 30/n ≤ p ≤ n−1/30. Then from Lemma 3.3 (i), Proposition 3.4 and Proposition 3.5 with

ε = 1/120, it follows that almost surely

ch(G(n, p)) ≤ 3np
ε ln(np)

=
360np
ln(np)

.

Finally if 2 < np ≤ 30, then a simple calculation similar to the one in the proof of Lemma 3.3, part

(i) shows that a.s. the random graph G(n, p) is 120-degenerate. Therefore its choice number is at

most 121 ≤ 121np/ ln(np).

Since the choice number of any graph is at least its chromatic number, the lower bound for

ch(G(n, p)) follows from the known results for χ(G(n, p)) (see [9] and [19]). Therefore almost surely

ch(G(n, p)) = Θ( np
ln(np)). This completes the proof. 2

Remark. The constants in the proof of Theorem 1.1 can be considerably improved by replacing the

application of Theorem 1.2 with a more direct approach based on the ideas in its proof together with

the properties of the random graph. Since, however, our method does not enable us to determine

the best possible constant we make no attempt to optimize the constant it does provide.

4 Separated eigenvalues and sparse neighborhoods

A modification of the argument in Section 2 provides an upper bound for the chromatic number of

d-regular graphs in which the second (adjacency matrix)-eigenvalue is much smaller than the first.
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The maximum eigenvalue of each such graph is d, and the second one is strictly smaller than d iff

the graph is connected. It is well known (see, e.g., [10], page 115 or [6]) that in graphs with a small

second eigenvalue the number of edges in each set of vertices cannot be too large. This can be used

to prove the following result.

Proposition 4.1 Let G be a connected d-regular graph on n vertices in which d+ 1 ≤ 2n/3 and the

second largest eigenvalue of the adjacency matrix is λ. Then the chromatic number of G satisfies

χ(G) ≤ 6(d− λ)
ln(d−λλ+1 + 1)

.

Proof. Note, first, that since d + 1 < 2n/3 and the trace of the adjacency matrix is 0 it follows

that λ+ 1 > 0, as otherwise the trace, which is the sum of all eigenvalues, would have been at most

d − (n − 1) < 0. Since ln(1 + x) ≤ x for all x > 0, it is easy to see that 6(d − λ)/(ln(d−λλ+1 + 1)) ≥
6(d − λ)/(d−λλ+1) = 6(λ + 1). As χ(G) ≤ d + 1, it follows that if d−λ

λ+1 ≤ 2 then the inequality in

the statement of the proposition is trivially true, as in this case the right hand side is at least

6(λ+ 1) ≥ 2d+ 2 ≥ d+ 1. Thus we can assume that d−λ
λ+1 ≥ 2. First we prove the following estimate

on the maximum size of an independent set α(G[U ]) in any induced subgraph of G on a subset

U ⊂ V (G).

Proposition 4.2 Let G be a connected d-regular graph on n vertices in which d+ 1 ≤ 2n/3 and the

second largest eigenvalue of the adjacency matrix is λ. Then the induced subgraph G[U ] of G on any

subset U, |U | = m contains an independent set of size at least

α(G[U ]) ≥ n

2(d− λ)
ln
(
m(d− λ)
n(λ+ 1)

+ 1
)
.

We need the following simple, known lemma (see, e.g., [10], [6]).

Lemma 4.3 Let G be a d-regular graph on n vertices in which the second largest eigenvalue of the

adjacency matrix is λ. Let U be a set of bn vertices of G. Then the average degree in the induced

subgraph G[U ] is at most db+ λ(1− b). 2

Proof of Proposition 4.2. Construct an independent set I in the induced subgraph G[U ] of G

by the following greedy procedure. Repeatedly choose a vertex of minimum degree in G[U ] , add it

to the independent set I and delete it and its neighbors from U , stopping when the remaining set

of vertices is empty. Let ai, i ≥ 0 be the sequence of numbers defined by the following recurrence

formula:

a0 = m, ai+1 = ai − (d
ai
n

+ λ(1− ai
n

) + 1) = (1− d− λ
n

)ai − (λ+ 1), ∀i ≥ 0.

12



Note, that the definition of ai together with Lemma 4.3 imply that the size of the remaining set of

vertices after i iterations is at least ai. Therefore the size of the resulting independent set I is at

least the smallest index i such that ai ≤ 0. By solving the recurrence equation we have that

ai =
(

1− d− λ
n

)i (
m+

n(λ+ 1)
d− λ

)
− n(λ+ 1)

d− λ

≥ e−2( d−λ
n

)i
(
m+

n(λ+ 1)
d− λ

)
− n(λ+ 1)

d− λ
.

Here we used the simple fact that if 0 ≤ x ≤ 2/3 then 1 − x ≥ e−2x. Solving the inequality ai ≤ 0,

one can show that the index i should be at least

i ≥ n

2(d− λ)
ln
(
m(d− λ)
n(λ+ 1)

+ 1
)
.

This completes the proof. 2

Remark. Note that if d = o(n) the above proof actually shows that any set of m vertices contains

an independent set of size at least

(1 + o(1))
n

d− λ
ln
(
m(d− λ)
n(λ+ 1)

+ 1
)
.

Returning to the proof of Proposition 4.1, color the graph G as follows. As long as the remaining

set of vertices U contains at least n/ ln(d−λλ+1 + 1) vertices, find an independent set of vertices in the

induced subgraph G[U ] of size at least

n

2(d− λ)
ln
( |U |(d− λ)
n(λ+ 1)

+ 1
)
≥ n

2(d− λ)
ln

(
d− λ

(λ+ 1) ln(d−λλ+1 + 1)
+ 1

)

≥ n

2(d− λ)
ln

(
1

ln(d−λλ+1 + 1)

(
d− λ
λ+ 1

+ 1
))

=
n

2(d− λ)

(
ln
(
d− λ
λ+ 1

+ 1
)
− ln ln

(
d− λ
λ+ 1

+ 1
))

≥ n

4(d− λ)
ln
(
d− λ
λ+ 1

+ 1
)
.

Color all the members of such a set by a new color, delete them from the graph and continue. When

this process terminates, the remaining set of vertices U is of size at most n/ ln(d−λλ+1 + 1) and we used

at most 4(d− λ)/ ln(d−λλ+1 + 1) colors so far. By Lemma 4.3 the induced subgraph G[U ] is at most

d
|U |
n

+ λ(1− |U |
n

) ≤ d− λ
ln(d−λλ+1 + 1)

+ λ ≤ 2(d− λ)
ln(d−λλ+1 + 1)

− 1

degenerate. Thus we can complete the coloring of G by coloring G[U ] using at most 2(d−λ)/ ln(d−λλ+1 +

1) additional colors. The total number of colors used is at most 6(d− λ)/ ln(d−λλ+1 + 1). 2
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Remark. An easy modification of the above computation shows that if λ << d << n then

χ(G) ≤ (1 + o(1)) d
ln(d/(λ+1)) . A similar result can be proved for non-regular (but nearly regular)

graphs using the second smallest eigenvalue of their Laplace matrices. We omit the details.

By a special case of Proposition 4.1, if λ = O(
√
d) then χ(G) = O(d/ ln d). There are many

interesting regular graphs with this property (including all three families of examples described in

Section 2 above). Other examples appear in, e.g., [17], [3].

Another variant of Proposition 4.1 is obtained by noting that if λ1 ≥ λ2 ≥ · · · ≥ λn are the

eigenvalues of the adjacency matrix of a d-regular graph G containing N cycles of length 4 then

n∑
i=1

λ4
i = 8N + nd2 + nd(d− 1)

(c.f., e.g., [7], Chapter 9 for the easy argument). Therefore, if N does not exceed d4/8 by much, the

second eigenvalue is relatively small and one can apply Proposition 4.1 and get the following result,

whose (simple) proof is left to the reader.

Proposition 4.4 Let G be a d-regular graph on n vertices in which 2
√
n < d ≤ 2n/3 − 1 and the

number of 4-cycles is at most (d4 + nd2)/8. Then the chromatic number of G satisfies

χ(G) ≤ O
(

d

ln(d2/n)

)
. 2

Here, too, there are several examples of graphs satisfying these properties including the Paley graphs

and the graphs Hk described in Section 2.

An additional result that follows from the method described in Section 2 is the following.

Proposition 4.5 For every ε > 0 there exists an n0 = n0(ε) such that for every n > n0 and every

p satisfying n−1/2+ε ≤ p ≤ 2/3 the following holds. Let G be a graph on n vertices satisfying the

following two properties:

1. Each vertex degree is at least pn− n1−εp.

2. Every two distinct vertices have at most p2n+ n1−εp2 common neighbors.

Then the chromatic number of G satisfy χ(G) ≤ 6np
ε lnn .

We need two lemmas whose detailed proofs, which are very similar to those of Lemma 2.1 and

Corollary 2.2, are omitted.

Lemma 4.6 Suppose 0 < ε, n ≥ n0(ε) and let p satisfy n−1/2+ε ≤ p ≤ 2/3. Let G = (V,E) be a

graph on n vertices satisfying the two properties in the assumption of Proposition 4.5. Then every

subset B of vertices of G contains at most 1
2 |B|

2p+ 1
2 |B|
√
n+ |B|3/2n1/2−ε/2p edges of G. 2
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Lemma 4.7 Suppose 0 < ε, n ≥ n0(ε) and let p satisfy n−1/2+ε ≤ p ≤ 2/3. Let G = (V,E) be a

graph on n vertices satisfying the two properties in the assumption of Proposition 4.5. Then every

subset C of at least n1−ε/2 vertices of G contains an independent set of G of size at least ε
5p lnn. 2

Proof of Proposition 4.5. LetG = (V,E) be a graph satisfying the assumptions of the proposition.

Starting with B = V , as long as B is of size at least n1−ε/2, find, using Lemma 4.7, an independent

set of at least ε
5p lnn vertices in B, color them all by a new color, omit them from B and continue.

The total number of colors used in this process cannot exceed 5np
ε lnn (since in each such deletion at

least ε lnn
5p vertices are deleted from the graph). When this process terminates, the set of uncolored

vertices B is of size at most n1−ε/2. By Lemma 4.6 the induced subgraph G[B] is at most

|B|p+
√
n+ 2|B|1/2n1/2−ε/2p < 2n1−ε/2p− 1

degenerate. Therefore we can color all the remaining vertices of B by 2n1−ε/2p additional colors.

This completes the coloring of G. The total number of colors used is at most

5np
ε lnn

+ 2n1−ε/2p <
6np
ε lnn

. 2

Using a different approach, based on a result of Johansson [13], we can also prove the following

result about graphs with sparse neighborhoods, which strengthens the assertion of Proposition 4.5

for all p ≤ n−ε.

Theorem 4.8 Let G = (V,E) be a graph on n vertices with maximum degree d in which the neigh-

borhood N(v) of any vertex v ∈ V spans at most d2−ε edges for some fixed ε > 0. Then the chromatic

number of G is at most O(d/(ε3 ln d)).

We omit the detailed proof. Some extensions of this result have recently been proved in [5] and [23].

5 Concluding remarks and open problems

The condition np > 2 in Theorem 1.1 is technical and it is easy to determine the asymptotic behavior

of ch(G(n, p)) for the trivial cases of smaller values of p.

In the proof of Theorem 1.1 we could have used Johansson’s result [13] about the choice number of

triangle free graphs instead of Proposition 3.2, to get a slightly simpler argument. But the advantage

of the proof as described here is that it supplies a better explicit constant.
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Let X(G) be a graph-theoretic function. We say that a function X(G(n, p)) with p = p(n) is

concentrated in width s = s(n, p) if there exists a u = u(n, p) so that

lim
n→∞

Pr(u ≤ X(G(n, p)) ≤ u+ s) = 1.

The question of estimating the width of concentration of the chromatic number χ(G(n, p)) was first

considered by Shamir and Spencer [21], who showed that χ(G(n, p)) is a.s. concentrated in an interval

of length roughly
√
n. Their proof used martingales and the fact that the chromatic number of a

graph is a vertex Lipschitz function, which means that |χ(G) − χ(G′)| ≤ 1 for any pair of graphs

that differ only at the edges incident with a single vertex. It is easy to see that the choice number

of a graph is also vertex Lipschitz. Therefore the method of [21] can be applied to prove that almost

surely ch(G(n, p)) is concentrated in width roughly
√
n. Shamir and Spencer further proved that

for every constant α > 1/2, if p = n−α then the chromatic number of G(n, p) is almost surely

concentrated in some fixed number C(α) of values. The same statement can be proved, in a similar

manner, for the choice number of the random graph as well. Here we present an outline of the proof

(which is similar to the ones in [20] and [4]) only for the case α > 3/4. We show that in this case

ch(G(n, p)) is a.s. two point concentrated.

Proposition 5.1 Suppose p = n−3/4−δ, δ > 0. Then the choice number of G(n, p) is almost surely

two-point concentrated.

Following the arguments in [4], this can be used to show that for every integer-valued function

r(n) satisfying r(n) < n−3/4−δ there is some p = p(n) such that the choice number of G(n, p) is

almost surely precisely r(n).

Proof of Proposition 5.1. Fix an arbitrarily small ε > 0 and let u = u(n, p, ε) be the least

integer so that

Pr[ch(G(n, p)) ≤ u] > ε.

We can assume that u ≥ 3, since otherwise the probability p should be very small and the result

follows from the same argument as in [20]. Define Y (G) to be the minimum size of a set of vertices

S0 ⊂ V (G) for which the induced subgraph G[V − S0] is u-choosable. This Y satisfies the vertex

Lipschitz condition, since at worst one could add a vertex to S0. Let µ = E(Y ). By applying the

vertex exposure martingale on G(n, p) (see, e.g., [7]) we get that for every λ > 0

Pr[Y ≤ µ− λ
√
n− 1] < e−λ

2/2, P r[Y ≥ µ+ λ
√
n− 1] < e−λ

2/2.

Let λ satisfy e−λ
2/2 = ε, so that these tail events each have probability less than ε. By our definition,

with probability at least ε, G = G(n, p) is u-choosable and hence Y = 0. Therefore the first inequality
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implies that µ ≤ λ
√
n− 1. Now substitute this in the second inequality,

Pr[Y ≥ 2λ
√
n− 1] ≤ Pr[Y ≥ µ+ λ

√
n− 1] ≤ ε.

Thus with probability at least 1− ε, there is a set of vertices S0 of size at most O(
√
n) such that the

induced subgraph G[V − S0] is u-choosable.

In our case p = n−3/4−δ, δ > 0. A straightforward computation, similar to the one in the proof

of Lemma 3.3, part (i) shows that with probability at least 1− ε any subset of vertices S of size at

most C
√
n spans in G(n, p) at most (2 − δ)|S| edges, provided n > n0(ε, δ, C). Hence the induced

subgraph G[S] is 3-degenerate. Start with S = S0, and as long as there exists a vertex v ∈ V − S
having at least 2 neighbors in S, add it to S and update S by defining S := S ∪ {v}. This process

terminates with |S| = O(
√
n) because otherwise we would get a subset S ⊂ V of size |S| = O(

√
n),

containing more than (2− δ)|S| edges, contradicting the above mentioned property of G(n, p).

Now we prove that with probability at least 1− ε the random graph G(n, p) is u+ 1-choosable.

Indeed, given lists of colors of size u+ 1 for each vertex v ∈ V (G), first color the vertices of S. This

can be done, since the induced subgraph G[S] is 3-degenerate. Now each vertex v ∈ V − S has at

most one forbidden color in its list as it has at most one neighbor in S. If there is such a color, omit

it from the list of v. The updated list still contains at least u colors. Since the induced subgraph

G[V − S] is u-choosable we can complete its coloring using the updated lists. The minimality of u

guarantees that with probability at least 1− ε, ch(G) ≥ u. Altogether

Pr[u ≤ ch(G(n, p)) ≤ u+ 1] ≥ 1− 3ε,

and since ε can be chosen arbitrarily this completes the proof. 2

It is worth mentioning that the two-point concentration for the chromatic number of G(n, p) is

known (see [20], [4]) for all p = n−α, α > 1/2. It seems interesting to decide if the same result is also

true for the choice number of the random graph.

Our results imply that if 2 < np(n) ≤ n/2 then the choice number and the chromatic number of

G = G(n, p(n)) satisfy almost surely ch(G) = Θ(χ(G)). The following stronger conjecture seems

plausible.

Conjecture 5.2 If np(n) tends to infinity then almost surely the choice number and the chromatic

number of G(n, p(n)) satisfy χ(G) = (1 + o(1))ch(G).

This is known to be true for p ≥ n−(1/4−ε) for any fixed ε > 0 (see [16]). Moreover, it is possible that

almost surely these two numbers are equal precisely. This remains open. Note that the results of

Bollobás [9] and of  Luczak [20] supply an asymptotic formula for the chromatic number of G(n, p(n))
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in all this range. Note also that the results described above for the concentration of the choice number

of G(n, p) show that it is similar to that of the chromatic number of G(n, p), thus supporting the

conjecture that these two numbers may be equal or nearly equal almost surely.
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