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Abstract

Given a set of m coins out of a collection of coins of k unknown distinct weights, we wish to
decide if all the m given coins have the same weight or not using the minimum possible number of
weighings in a regular balance beam. Let m(n, k) denote the maximum possible number of coins
for which the above problem can be solved in n weighings. It is known that m(n, 2) = n( 1

2 +o(1))n.
Here we determine the asymptotic behaviour of m(n, k) for larger values of k. Surprisingly
it turns out that for all 3 ≤ k ≤ n + 1, m(n, k) is much smaller than m(n, 2) and satisfies
m(n, k) = Θ(n log n/ log k).

1 Introduction

Coin-weighing problems deal with the determination or estimation of the minimum possible number
of weighings in a regular balance beam that enable one to find the required information about
the weights of the coins. There are numerous questions of this type, see, e.g., [GN] and its many
references. Here we study the following variant of the old puzzles, which we call the all equal problem.
Given a set of m coins, we wish to decide if all of them have the same weight or not, when various
conditions about the weights are known in advance. The case in which the coins are given out of
a collection of coins of k unknown distinct weights is of special interest. Let m(n, k) denote the
maximum possible number of coins for which this problem can be solved in n weighings. The case
k = 2 has been considered in [HH], [KV] and [AV]. The authors of [HH] observed that m(n, 2) ≥ 2n

for every n. Somewhat surprisingly, this is not tight. In [KV] it is proved that m(n, 2) > 2n for all
n > 2 and that

m(n, 2) ≤ 3n − 1
2

(n+ 1)(n+1)/2.
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These upper and lower bounds for m(n, 2) are proved in [KV] by establishing a correspondence
between the set of vectors in a Hilbert basis of a certain canonical cone and algorithms that solve
the all equal problem for a given number of coins in n weighings.

In [AV] it is shown that the above upper bound for m(n, 2) is asymptotically tight, that is,

m(n, 2) = n( 1
2

+o(1))n,

where the o(1)-term tends to 0 as n tends to infinity.
In this paper we determine the asymptotic behaviour ofm(n, k) for larger values of k. Surprisingly,

it turns out that for k ≥ 3, m(n, k) is much smaller than m(n, 2). Our main result is the following.

Theorem 1.1 There are two absolute positive constants c and C such that for every n+ 1 ≥ k ≥ 3

c
n log n
log k

≤ m(n, k) ≤ Cn log n
log k

.

It is worth noting that for k > n+ 1, m(n, k) = n+ 1, as we observe in Section 3.
The proof of Theorem 1.1 is probabilistic, and does not supply an explicit weighing algorithm. For

the special case k = 3 in which the three potential distinct weights are known to form an arithmetic
progression we describe an explicit algorithm.

We also consider several related problems. Our basic approach is similar to the one introduced
in [KV] and further studied in [AV], and combines combinatorial and linear algebraic tools. This is
briefly explained in Section 2. In Section 3 we observe that if no information on the weights of the
coins is given in advance, then m− 1 weighings are both necessary and sufficient for solving the all
equal problem for m coins. We also briefly discuss the number of weighings needed to determine the
number of distinct weights of the given m coins. In Section 4 we study the all equal problem for
coins whose weights are known to lie in a three term arithmetic progression. Theorem 1.1 is proved
in Section 5 and the final Section 6 contains some concluding remarks and open problems.
All logarithms throughout the paper are in base 2, unless otherwise specified.

2 The basic approach

For the case k = 2 it is shown in [KV] (see also [AV]) that there is a simple correspondence be-
tween coin weighing algorithms solving the all equal problem and certain matrices with entries from
{1,−1, 0}. In this section we generalize this approach to the case k ≥ 3.

To describe this correspondence, consider weighing algorithms for the all equal problem for coins
chosen out of a collection of k distinct (unknown) weights. Let Wm,k denote the set of all real
vectors of length m with positive coordinates and with at most k distinct coordinates. The set Wm,k

represents the set of all possible weight-vectors of our given m coins. Let An,m denote the set of all
n by m matrices with {0,−1, 1}-entries whose sum of columns is the zero vector. We can associate
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each matrix A = (aij) ∈ An,m with a weighing algorithm as follows. Put [m] = {1, . . . ,m} and
define, for each i, 1 ≤ i ≤ n, two disjoint subsets Li and Ri of [m] by Li = {j : aij = −1} and
Ri = {j : aij = 1}. Note that since the sum of each row of A is 0, |Li| = |Ri|. Trying to solve the all
equal problem for a given set of m coins denoted {1, 2, . . . ,m}, the weighing algorithm determined
by A consists of n weighings. For 1 ≤ i ≤ n the algorithm compares, in step number i, the coins
in Li with those in Ri. If all weighings are balanced the algorithm declares that all coins have the
same weight, otherwise, it states that not all weights are equal. It is not difficult to see that a
necessary and sufficient condition for the algorithm to solve correctly the all equal problem for coins
with up to k distinct weights is that the only solutions of the system Ax = 0 which lie in Wm,k are
constant vectors. To see this, observe that since |Li| = |Ri| for every i, if not all the weighings are
balanced, then certainly not all the coins have the same weight. If, on the other hand, all weighings
are balanced, and it is known that the vector of weights of the coins lies in Wm,k, then the vector
of correct weights must lie in ker(A) ∩Wm,k, showing that the algorithm is correct iff there are no
nonconstant vectors in ker(A) ∩Wm,k.

We have thus seen that any matrix A ∈ An,m defines a weighing algorithm. The converse is also
true. Given an optimal weighing algorithm that solves the all equal problem for m coins with up to
k weights note, first, that we may assume that the algorithm always compares sets of coins of equal
cardinalities. (This is the case because all weights may well be close enough to each other so that the
result of any weighing of sets of nonequal cardinalities will be known in advance. See [KV] for the
detailed explanation.) We can now define a matrix A = (aij) ∈ An,m from the algorithm as follows.
For each 1 ≤ i ≤ n, let Li ⊂ [m] and Ri ⊂ [m] be the two sets of coins the algorithm compares in
step number i assuming all previous weighings are balanced. Define aij = −1 if j ∈ Li, ai,j = 1 if
j ∈ Ri and aij = 0 otherwise. Clearly A ∈ An,m. The algorithm reports that all coins are of the
same weight iff all weighings are balanced, and it is correct for coins with up to k distinct weights
iff ker(A) ∩Wm,k consists only of constant vectors.

3 Arbitrary weights

Let us first observe that even if there are no conditions on the weights of the coins at all, one simple
algorithm for solving the all equal problem always exists. Namely, one can compare all the coins to
a fixed coin, one by one. This will certainly decide whether all the m coins have the same weight or
not in m − 1 weighings. In the next proposition we observe that if there are no conditions on the
weights this number of weighings cannot be improved.

Proposition 3.1 The most efficient algorithm solving the all equal problem for m coins with arbi-
trary weights uses m− 1 weighings.

Proof. An algorithm using m− 1 weighings is the obvious one described above. Simply pick a
fixed coin and compare it to every other coin, each one in its turn. Clearly all the coins have the
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same weight iff all weighings are balanced.
To prove that one cannot do better, assume n < m − 1 weighings suffice and let A ∈ An,m be

the matrix corresponding to an optimal algorithm. Then, if all the weighings are balanced, any
vector w = (w1, . . . , wm) ∈ ker(A) may be the vector of weights of the m given coins. However, the
dimension of ker(A) is at least m − n > 1, showing that it must contain a nonconstant vector, and
completing the proof. 2

Note that by the above proposition and its proof it follows that for the function m(n, k) defined
in the introduction, m(n, k) = n+ 1 for all k > n+ 1.

One may be interested in determining how many different weights the coins have. Formulated as
a decision problem, this corresponds to the following question: Given m coins of arbitrary weights,
decide whether they have at least k distinct weights or not. Let T (m, k) denote the minimum number
of weighings required to answer this problem.

Proposition 3.2 For every m > k > 1,

max{m− 1,m log3(k − 1)− k + 1} ≤ T (m, k) ≤ m log2(2k).

Proof. The above problem can be solved by a standard algorithm using at most m log2(2k)
steps, where in each step we compare two coins. This can be done by a simple binary sorting using
the insertion method, while maintaining an ordered list of the distinct weights found so far, as long as
their number does not exceed k. On the other hand, it is proved in Björner and Lovász, [BL], using
the topological approach introduced there, that any algorithm that performs in each step an arbitrary
linear test on the weights of the coins (that is, in each step the algorithm may check if a specified
linear form in the weights is positive, negative or zero), and decides in the end if there are at least k
distinct weights, must perform, in the worst case, at least max{m− 1,m log3(k − 1)− k + 1} tests.
Note that the fact that the authors of [BL] allow arbitrary linear tests and not only comparisons
between two weights, which might seem a bit artificial in the original context, is essential here. Since
every weighing is a special case of a linear test, the desired result follows. 2

4 Three weights in arithmetic progression

One of the simplest cases besides that of two weights seems to be the case of three weights, say
a, b, c satisfying the simple relation a + c = 2b. Let f(n) denote the maximum number m such
that it is possible to solve the all equal problem for m coins whose potential weights lie in an
(unknown) three-terms arithmetic progression using n weighings. It is not difficult to see that we
may restrict our attention here too only to algorithms that compare sets of coins of equal cardinalities
in each weighing. Therefore, by the discussion in Section 2, every algorithm corresponds to a matrix
A ∈ An,m. The algorithm is correct, if and only if the only vectors in ker(A) whose coordinates all
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lie in some three-terms arithmetic progression with positive terms are the constant vectors. This
enables one to prove the following simple lemma.

Lemma 4.1 A matrix A ∈ An,m corresponds to a correct algorithm for solving the all equal problem
for m coins whose weights lie in a three term arithmetic progression if and only if the only vectors
x with {0,−1, 1}-coordinates in the kernel of A are the constant vectors. This is equivalent to the
condition that no two distinct nonempty subsets of the columns of A have the same sum.

Proof. Suppose there is a nonconstant vector x = (x1, . . . , xm) with {0,−1, 1}-coordinates that lies
in ker(A), and let J denote the all 1 vector of length m. Note that J lies in ker(A), as the sum of
columns of A is the zero vector. Let a, b, c be three distinct positive reals satisfying a+ c = 2b. Then
the vector y = (b − a)x + bJ is in ker(A), it is not a constant vector, and all its coordinates lie in
{a, b, c}. Hence, A cannot correspond to a correct algorithm.

Conversely, if there is no nonconstant vector x as above, we claim that A corresponds to a
correct algorithm. To see this, assume the algorithm is incorrect. Then there is some three-terms
progression a, b, c and a nonconstant vector y with coordinates in {a, b, c} which lies in ker(A). This,
however, implies that x = (y − bJ)/(b − a) ∈ ker(A), and x is clearly a nonconstant vector with
{0,−1, 1}-coordinates, contradicting the assumption.

The existence of a nonconstant vector x with {0,−1, 1}−coordinates in ker(A) is clearly equivalent
either to the existence of a proper subset of the columns whose sum is the zero vector, which is equal
to the sum of all columns, or to the existence of two disjoint subsets of columns of equal sums. On
the other hand, if there are any two nonempty distinct sets of columns with the same sum, then
by omitting the columns in their intersection we get two disjoint sets of columns with the above
property (and if one of them is empty, then the sum of columns in the other one is equal to the sum
of all columns). This completes the proof. 2

Remark. Note that the proof actually shows that even if the three potential weights are known
in advance, then every correct algorithm that always compares sets of equal cardinalities must cor-
respond to a matrix satisfying the conditions in the lemma. On the other hand, any such matrix
corresponds to a correct algorithm, even if the possible weights are not known, and it is only known
they lie in a three-terms progression.

Corollary 4.2 If m = f(n), then

2m − 1 ≤ (2bm/2c+ 1)n ≤ (m+ 1)n.

Therefore,
f(n) ≤ (1 + o(1))n log2 n,

where the o(1)-term tends to zero as n tends to infinity.
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Proof. Let A ∈ An,m be the matrix corresponding to an optimal algorithm. By Lemma 4.1 all
the 2m − 1 sums of nonempty subsets of the set of columns of A are distinct. Since the sum of all
columns is zero, all such sums must lie in the box [ − bm/2c, bm/2c ]n and are vectors of integers.
Since all of them are distinct, the assertion of the lemma follows. 2

Remark. The (1 + o(1))-term in the above estimate can be improved to (1
2 + o(1)) using the

second moment method (see, e.g., [AS], Chapter 4.) Here is an outline of the argument. Given a
matrix A = (aij) ∈ An,m corresponding to an optimal algorithm, let ε = (ε1, ε2, . . . , εm) be a random
vector in which each εj is chosen, randomly and independently, to be either 1 or −1, both choices
being equally likely. Let X be the random variable ‖Aε‖2 =

∑n
i=1(

∑m
j=1 aijεj)

2. By linearity of
expectation, the expected value of X satisfies

E(X) =
n∑
i=1

(
m∑
j=1

a2
ij + 2

∑
1≤j<j′≤m

aijaij′E(εjεj′)) =
n∑
i=1

(
m∑
j=1

a2
ij) ≤ nm.

Therefore, by Markov’s Inequality, the probability that X is at most 2mn is at least a half. This
means that there are at least 2m−1 vectors ε as above for which ‖Aε‖2 ≤ 2mn. By the Cauchy-
Schwarz Inequality the sum of absolute values of the coordinates of each such vector Aε is at most
n
√

2m. Since each such vector is an integral vector with even coefficients, there are only (O(1)m)n/2

possible vectors of this type and as Lemma 4.1 implies that all these vectors must be distinct we
conclude that 2m−1 ≤ (O(1)m)n/2, implying that m ≤ (1

2 + o(1))n log2 n, as claimed.
We next show, by an explicit construction, that f(n) ≥ Ω(n log n). For every i ≥ 1, define

ni =
7 · 4i−1 − 4

3
, mi =

7
48
i4i +

47
144

4i +
1
9
.

It is easy to check that n1 = 1, m1 = 2, and that ni+1 = 4ni + 4 and mi+1 = 4mi + ni + 1 for all
i ≥ 1. Note that for large i, mi = (1

4 + o(1))ni log4 ni.

Lemma 4.3 For every i ≥ 1, there is a matrix Mi with entries from {−1, 1, 0}, having ni rows and
mi columns, so that the sum of entries of each row of Mi is 0, and the only linear combinations
of columns of Mi with coefficients in {−1, 1, 0} which vanish are the combinations in which all
coefficients are equal.

Proof. We apply induction on i, starting with the matrix M1 = (1,−1). Suppose we have already
constructed an ni by mi matrix M = Mi satisfying the requirements of the lemma. Define a matrix
M ′ with ni+1 = 4ni + 4 rows and mi+1 = 4mi +ni + 1 columns as follows. Let O denote an ni by ni
matrix of zeros, let I denote the identity matrix of order ni, let j denote a column vector of ni ones
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and let o denote a column vector of ni zeros. M ′ is given in the following equation.

M ′ =



M M M M I −j
M −M M −M O o

M M −M −M O o

M −M −M M O o

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 −1
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 −1
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 −1
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 −1


It is obvious that M ′ is a matrix with entries in {−1, 1, 0} and that the sum of each of its rows is 0.
Put m = mi, ni = n, let M = (mij)1≤i≤n,1≤j≤m, and let

u = (x1, . . . , xm, y1, . . . , ym, z1, . . . zm, w1, . . . , wm, t1, . . . tn, r)

be a vector with {−1, 1, 0}-entries for which

M ′ut = 0. (1)

To complete the proof we have to show that all coordinates of u are equal. For each i, 1 ≤ i ≤ n, by
summing the rows numbers i, i+n, i+ 2n and i+ 3n of the system of equations (1) we conclude that

4
m∑
j=1

mijxj + ti − r = 0.

This implies that ti − r ≡ 0 (mod 4), and since −2 ≤ ti − r ≤ 2 it follows that ti = r for all i and
hence that

∑m
j=1mijxj = 0 for all i, implying, by the induction hypothesis, that all the variables xj

are equal.
Similarly, by adding the rows numbers i and i+2n of the system (1) and by subtracting the rows

numbers i+ n and i+ 3n we conclude that

4
m∑
j=1

mijyj + ti − r = 0.

Since ti = r for all i we conclude, by the induction hypothesis, that all variables yj are equal. By a
similar argument all the variables zj are equal and so are all the variables wj . Moreover, by the last
four equations all these variables are equal to r, completing the proof. 2

By Lemma 4.3 and Lemma 4.1, and since clearly f(n) is a nondecreasing function of n, we
conclude that f(n) ≥ Ω(n log n). This, together with Corollary 4.2 proves the following.

Theorem 4.4 There are two absolute positive constants c1 and c2 such that

c1n log n ≤ f(n) ≤ c2n log n
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for every n. Moreover, there exists an explicit algorithm for solving the all equal problem for
dc1n log ne coins whose potential weights lie in a (known or unknown) three-terms arithmetic pro-
gression using n weighings.

5 Three weights or more

In this section we prove Theorem 1.1. Note first that by the discussion in Section 2 m(n, k) is
simply the maximum integer m such that there exists an n by m matrix A ∈ An,m for which
ker(A) ∩Wm,k contains only constant vectors, where Wm,k is the set of all vectors of length m with
positive coordinates in which the number of distinct coordinates is at most k. The upper bound in
Theorem 1.1 is rather simple, and is proved in the following lemma.

Lemma 5.1 Suppose k ≥ 3, put m = m(n, k) and define r = b(k − 1)/2c. Then

(r + 1)m−1 ≤ (2r(m− 1) + 1)n. (2)

Therefore,

m(n, k) ≤ Cn log n
log k

for some absolute constant C.

Proof. Given a matrix A ∈ An,m corresponding to an optimal algorithm, let v1, . . . , vm denote the
columns of A. Define

S =
{ m∑
j=2

rjvj , rj ∈ Z, 0 ≤ rj ≤ r
}
,

where Z denotes the set of all integers. Then |S| = (r + 1)m−1. We claim that no two vectors in S

are equal. To see this, assume this is false and suppose
m∑
j=2

rjvj =
m∑
j=2

tjvj ,

where rj , tj are integers and there is at least one j for which rj and tj differ. Then the vector
y = (0, r1 − t1, r2 − t2, . . . , rm − tm) lies in ker(A) and is not a constant vector. Since the vector J
consisting of m ones is also in ker(A), so is (r+1)J +y, which is in Wm,k as each of its coordinates is
an integer between 1 and 2r+1 ≤ k. Therefore, A does not correspond to a valid algorithm, showing
that indeed all members of S are distinct.

Since each coordinate of any vector in S is an integer whose absolute value cannot exceed r(m−1)
the inequality (2) follows, completing the proof. 2

Remark. As in the previous section one can apply the second moment method to improve the
best estimate obtained for C by the above argument, but since we are not trying to optimize the
constants in this section we omit the details.

The lower bound in Theorem 1.1 is proved next, by a probabilistic argument.
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Lemma 5.2 There exists an absolute positive constant c such that for every n and k satisfying
n+ 1 ≥ k ≥ 3,

m(n, k) ≥ cn log n
log k

.

Proof. Since m(n, k) ≥ n+ 1 for every k the result is trivial for, say, k ≥ n1/3 (for all c < 1/3), and
we thus may consider only k ≤ n1/3. Throughout the proof we assume, whenever this is needed, that
n is sufficiently large. To simplify the presentation, we omit all floor and ceiling signs whenever these
are not essential. Given a large n, let m be an even integer satisfying m = (1 + o(1))cn log n/ log k,
where c < 1/3 is an absolute positive constant to be chosen later. Let A ∈ An,m be a random
matrix obtained by choosing each row of A, randomly and independently, among all row-vectors
of length m having exactly half of the coordinates equal to 1 and another half equal to −1. To
complete the proof we show that almost surely (that is, with probability that tends to 1 as n tends
to infinity) the weighing algorithm corresponding to A solves the all equal problem for coins with
up to k distinct weights. To do so, we must show that with high probability there is no nonconstant
vector in Wm,k that lies in ker(A). Let vj = (v1j , . . . , vnj)t, j = 1, . . . ,m, denote the columns of A.
The existence of a nonconstant vector in Wm,k ∩ ker(A) is equivalent to the existence of a partition
of [m] = {1, 2, . . . ,m} into l + 1 ≤ k pairwise disjoint nonempty subsets S1, S2, . . . , Sl+1, such that
the vectors ui =

∑
j∈Si vj satisfy a linear relation with nonconstant positive coefficients. If there is

such a relation, we may take one with the minimum possible value of l. Since A ∈ An,m, the sum of
the vectors u1, . . . , ul+1 is zero, and hence such a relation yields a linear relation between any l of the
vectors ui. Without loss of generality we may thus assume that |S1| ≤ |S2| ≤ . . . ≤ |Sl+1|, that the
vectors u1, . . . , ul are linearly dependent and that the vectors u1, . . . , ul−1 are linearly independent.

For a partition S = (S1, S2, . . . , Sl+1) of [m] into pairwise disjoint sets, satisfying |S1| ≤ |S2| ≤
. . . ≤ |Sl+1|, where l + 1 ≤ k ≤ n1/3, put ui =

∑
j∈Si vj for 1 ≤ i ≤ l, and let BS denote the event

that u1, . . . , ul are linearly dependent, whereas u1, . . . , ul−1 are linearly independent. By the above
discussion, in order to complete the proof, it suffices to prove the following.
Claim: Almost surely, none of the above events BS occurs.
To prove this claim, fix a partition S = (S1, S2, . . . , Sl+1) of [m] as above, put T = Sl ∪Sl+1, t = |T |,
and note that t ≥ 2n/k > n2/3. Let AS denote the event that there are at least n/3 indices i for
which ∣∣∣∑

j∈T
vij
∣∣∣ > t/10. (3)

Note that this event depends only on the choice of the numbers vij where j lies in the union S1 ∪
. . . ∪ Sl−1. Using some standard estimates for hypergeometric distributions (or simply the Stirling
formula n! ∼ (n/e)n

√
2πn), it is not difficult to check that for each fixed i, the probability that (3)

holds for i is at most e−Ω(t). Since the rows of A are chosen independently, this implies that

Prob [AS ] ≤
(
n

n/3

)
e−Ω(t)n/3 ≤ e−Ω(n5/3),
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where the last inequality follows from the fact that t > n2/3.

To estimate the probability Prob [BS ] note that

Prob [BS ] = Prob [AS ] · Prob [BS | AS ] + Prob [AS ] · Prob [BS | AS ]

≤ Prob [AS ] + Prob [BS | AS ].

In order to estimate the conditional probability Prob [BS | AS ] let us expose, first, all the elements
vij of the matrix A for 1 ≤ i ≤ n and j ∈ S1 ∪ . . . ∪ Sl−1 ( = [m] − T ). This enables us to
compute u1, . . . , ul−1, and also supplies the sum in the left hand side of (3) for every i. Since we are
interested in bounding the conditional probability above, assume AS did not happen. If u1, . . . , ul−1

are not linearly independent, then the event BS did not happen at all. Otherwise, choose some fixed
l − 1 ( < k) indices i such that the vectors u1, . . . , ul−1 restricted to these coordinates are linearly
independent. Next, expose all the values vij for these l − 1 values of i and for j ∈ Sl. This enables
us to compute the unique linear relation between the vectors u1, . . . , ul, and hence, if indeed BS

happens, determines uniquely the value of ul =
∑
j∈Sl vj in each coordinate. There is a set I of at

least 2n/3 − (l − 1) ≥ n/2 indices i for which (3) does not hold, and for which the values vij for
j ∈ Sl have not been exposed yet. We now expose them, and estimate the probability that each of
these n/2 sums

∑
j∈Sl vij for i ∈ I turns out to be precisely the unique value it has to be in order

to satisfy the linear relation which enables the event BS to occur. It is convenient to consider two
cases separately, depending on the size of Sl, which we denote by s. If |Sl| = s ≤

√
n, simply expose,

for each fixed i ∈ I, the numbers vij one by one, and notice that while exposing the last one, the
number of positive entries and the number of negative entries in the yet unknown part of the ith row
is rather balanced, that is, at least, say, 1/3 of the entries are negative and at least 1/3 are positive.
Since the last exposed number is uniquely determined, the probability it is the desired number is at
most 2/3. As the rows are chosen independently and |I| ≥ n/2, we conclude that in this case, the
probability that BS happens is at most (2/3)n/2.

If the size s of Sl exceeds
√
n, we note that it surely does not exceed t/2 (since |Sl+1| ≥ |Sl|).

Therefore, in this case in each row i ∈ I we are choosing s ≤ t/2 entries out of a collection of t
entries in which the number of −1 and the number of 1 entries do not differ by more than t/10.
The probability of obtaining any fixed desired number as the sum of the s chosen entries is thus
bounded, by some standard estimates for hypergeometric distributions, by a/

√
s, for some absolute

constant a. As before, since the rows are independent, in this case the probability BS occurs is at
most (a/

√
s)n/2.

Note that in both cases, the above upper bound for the probability is much larger than our
e−Ω(n5/3) upper bound for the probability of the event AS . Therefore, we conclude that for each
fixed partition S as above, if s denote the cardinality of Sl, the probability of BS in case s ≤

√
n is

at most 2(2/3)n/2, whereas in case s >
√
n, this probability is at most 2(a/

√
s)n/2.
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To complete the proof of the claim observe, now that there are at most

k−1∑
l=1

√
n∑

s=1

(
m

ls

)
(l + 1)ls

partitions S with |Sl| = s ≤
√
n. Indeed, once the values of l and s are chosen, the union S1∪ . . .∪Sl

is of size at most ls, and hence we can choose a subset of size ls of [m] (in
(m
ls

)
possibilities) containing

this union. Once this subset is chosen, we can decide for each of its element, in which Si (including,
possibly Sl+1) it lies, in at most (l + 1)ls possibilities.

A similar argument shows that the number of partitions S in which the size of Sl satisfies
√
n ≤

|Sl| ≤ m/2k is bounded by
k−1∑
l=1

m/2k∑
s=
√
n

(
m

ls

)
(l + 1)ls.

Finally, the number of partitions S in which the size of Sl exceeds m/2k is bounded by

k−1∑
l=1

(l + 1)m,

since here we may simply decide, once l is chosen, for each index j to which Si it belongs.
Combining all the above we conclude that the probability that at least one of the events BS holds

is bounded by A+B + C, where

A =
k−1∑
l=1

√
n∑

s=1

(
m

ls

)
(l + 1)ls2

(2
3

)n/2
,

B =
k−1∑
l=1

m/2k∑
s=
√
n

(
m

ls

)
(l + 1)ls2

( a√
s

)n/2
,

and

C =
k−1∑
l=1

(l + 1)m2
( a√

(m/2k)

)n/2
.

However, since m = (1 + o(1))cn log n/ log k ( < n2), and k ≤ n1/3,

A ≤ n1/3√nn2n5/6
n

1
3
n5/6

(2
3

)n/2
= o(1).

Also,

B ≤
k−1∑
l=1

m/2k∑
s=
√
n

(2em
s

)ls
2
( a√

s

)n/2
.

This is a sum of less than mk < n3 terms, and the logarithm of a typical term is at most

ls log(2em/s)− n

8
log s.
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However, ls log(2em/s) is an increasing function of s in the relevant range, as its derivative is
l log(2em/s)− l ≥ l log(4ek)− l > 0 and hence ls log(2em/s) ≤ m

2 log(4ek). Since

m = (1 + o(1))cn log n/ log k,

if c is sufficiently small (say c < 1/64), this is smaller than n log n/32. On the other hand n
8 log s ≥

n log n/16. This shows that the logarithm of each of the above terms is smaller than −n log n/32
showing that the term itself is at most n−n/32, and hence B, which is the sum of less than n3 such
terms, is still o(1).

Finally

C ≤ n1/3km2
( a√

(m/2k)

)n/2
< n2(1+o(1))cn lognn−n/8 = o(1),

where here, again, we applied the fact that c is small, say c < 1/10.
Therefore, if c < 1/64 then the assertion of the claim holds, completing its proof, and hence

completing the proof of the theorem as well. 2

6 Concluding remarks

• The results in Section 4 apply to a slightly more general case which we may call relaxed
generic weights. A set of weights w1, . . . , wt is called relaxed generic if any vector of integers
(λ1, . . . , λt) that satisfies

∑t
i=1 λi = 0 and

∑t
i=1 λiwi = 0 is a scalar multiple of the vector

(1,−2, 1, 0, . . . , 0). Note that any set of three terms in arithmetic progression is relaxed generic.
Let f ′(n) denote the maximum possible number m such that given a set of m coins out of a
collection of coins of unknown relaxed generic weights, one can decide if all the coins have the
same weight or not using n weighings in a regular balance beam. It is easy to see that the
results described in Sections 4 apply to this case (without any essential change in the proofs)
and show (constructively) that f ′(n) = Θ(n log n).

• The techniques described here can be used to study the all equal problem under various similar
conditions on the possible weights of the coins. For example, we may assume that the coins are
picked out of a collection of coins of weights w1, . . . , wt so that whenever a vector of integers
(λ1, . . . , λt) satisfies

∑t
i=1 λi = 0 and

∑t
i=1 λiwi = 0, it is a scalar multiple of some fixed vector

with k nonzero entries. Since most of these variants are somewhat artificial, we do not study
them in detail here.

• The proof of the lower bound in Theorem 1.1 described in Section 5 is not constructive. It would
be interesting to find a constructive proof yielding an explicit algorithm for the corresponding
problem.
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