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Abstract

Given a set of m coins out of a collection of coins of k unknown distinct weights, we wish
to decide if all the m given coins have the same weight or not using the minimum possible
number of weighings in a regular balance beam. Let m(n, k) denote the maximum possible
number of coins for which the above problem can be solved in n weighings. We show that
m(n, 2) = n( 1

2 +o(1))n, whereas for all 3 ≤ k ≤ n + 1, m(n, k) is much smaller than m(n, 2)
and satisfies m(n, k) = Θ(n log n/ log k). The proofs have an interesting geometric flavour, and
combine Linear Algebra techniques with geometric, probabilistic and combinatorial arguments.
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1 Introduction

Coin-weighing problems deal with the determination or estimation of the minimum possible number
of weighings in a regular balance beam that enable one to find the required information about the
weights of the coins. There are numerous questions of this type, see, e.g., [9] and its many references.
Here we study the following variant of the old problems, which we call the all equal problem. Given a
set of m coins, we wish to decide if all of them have the same weight or not, when various conditions
about the weights are known in advance. The case in which the coins are given out of a collection of
coins of k unknown distinct weights is of special interest. Let m(n, k) denote the maximum possible
number of coins for which this problem can be solved in n weighings. The case k = 2 has been
considered in [12], following related questions discussed in [5] and other places. The authors of [12]
observed that m(n, 2) ≥ 2n for every n. (To see this, note that m(n, 1) = 2 and that once we already
have m coins which are known to have the same weights, we can compare them to another set of m
new coins. Since there are only two possible weights, if the weighing is balanced all 2m coins have
the same weights.) Somewhat surprisingly, this bound is not tight. Applying a geometric approach,
we show here that in fact m(n, 2) > 2n for all n > 2. Combining this approach with some simple
results in Lattice geometry as well as a construction of H̊astad [10] of threshold gates that require
large weights we determine the asymptotic behaviour of m(n, 2) as follows.

Theorem 1.1 The function m(n, 2) satisfies

m(n, 2) = n( 1
2

+o(1))n,

where the o(1)-term tends to 0 as n tends to infinity.

The proof, with some extra work, provides an explicit weighing algorithm for the corresponding
problem.
As a byproduct, we improve results of Shapley, van Lint and Pollak on a problem in Extremal
Combinatorics motivated by the study of cores in n-person games and settle an open problem of
Graham and Sloane concerning the norms of inverses of nonsingular matrices with {−1, 1} entries.

Surprisingly, it turns out that for k ≥ 3, m(n, k) is much smaller than m(n, 2). Using probabilistic
arguments we prove the following.

Theorem 1.2 There are two absolute positive constants c and C such that for every n+ 1 ≥ k ≥ 3

c
n log n
log k

≤ m(n, k) ≤ Cn log n
log k

.

It is worth noting that for k > n+ 1, m(n, k) = n+ 1, as we observe in Section 3.
Unlike the proof of Theorem 1.1, that of Theorem 1.2 is probabilistic, and does not supply an

explicit weighing algorithm. For the special case k = 3 in which the three potential distinct weights
are known to form an arithmetic progression we can describe an explicit algorithm.
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Our basic approach is geometric. The geometric point of view is motivated by the observation
that if we let (w1, w2, . . . , wm) denote the weight-vector of the coins, then any weighing is simply a
linear test, and its result determines if this vector lies on the corresponding hyperplane, or lies in one
of the corresponding half-spaces. Therefore, any weighing algorithm is a linear decision tree. This
implies that several known results about the complexity of linear decision trees, including the results
in [6], [3], [4] which are based on geometric and topological arguments, yield immediately results
about certain coin-weighing problems. The geometric approach needed for studying the all equal
problem is, however, somewhat different, and is briefly explained in Section 2. In Section 3 we make
several simple observations about the problem, including the observation that if no information on
the weights of the coins is given in advance, then m− 1 weighings are both necessary and sufficient
for solving the all equal problem for m coins. In Sections 4 and 5 we study the asymptotic behaviour
of m(n, 2) and show how it is related to the existence of threshold gates that require large weights.
A very brief sketch of the proof of Theorem 1.2 is given in Section 6 and the final Section 7 contains
some concluding remarks about related results and open problems. Due to space limitations we
omit most detailed proofs from this extended abstract. These will appear in the full version of the
paper(s).
All logarithms throughout the paper are in base 2, unless otherwise specified.

2 The basic approach

There is a simple correspondence between coin weighing algorithms for the all equal problem and
matrices with {0,−1, 1}-entries.

To see this correspondence, consider weighing algorithms for the all equal problem for coins
chosen out of a collection of k distinct (unknown) weights. Let Wm,k denote the set of all real
vectors of length m with positive coordinates and with at most k distinct coordinates. The set Wm,k

represents the set of all possible weight-vectors of our given m coins. Let An,m denote the set of all
n by m matrices with {0,−1, 1}-entries whose sum of columns is the zero vector. We can associate
each matrix A = (aij) ∈ An,m with a weighing algorithm as follows. Put [m] = {1, . . . ,m} and
define, for each i, 1 ≤ i ≤ n, two disjoint subsets Li and Ri of [m] by Li = {j : aij = −1} and
Ri = {j : aij = 1}. Note that since the sum of each row of A is 0, |Li| = |Ri|. Trying to solve the all
equal problem for a given set of m coins denoted {1, 2, . . . ,m}, the weighing algorithm determined
by A consists of n weighings. For 1 ≤ i ≤ n the algorithm compares, in step number i, the coins
in Li with those in Ri. If all weighings are balanced the algorithm declares that all coins have the
same weight, otherwise, it states that not all weights are equal. It is not difficult to see that a
necessary and sufficient condition for the algorithm to solve correctly the all equal problem for coins
with up to k distinct weights is that the only solutions of the system Ax = 0 which lie in Wm,k are
constant vectors. To see this, observe that since |Li| = |Ri| for every i, if not all the weighings are
balanced, then certainly not all the coins have the same weight. If, on the other hand, all weighings

2



are balanced, and it is known that the vector of weights of the coins lies in Wm,k, then the vector
of correct weights must lie in ker(A) ∩Wm,k, showing that the algorithm is correct iff there are no
nonconstant vectors in ker(A) ∩Wm,k.

We have thus seen that any matrix A ∈ An,m defines a weighing algorithm. The converse is also
true. Given an optimal weighing algorithm that solves the all equal problem for m coins with up to
k weights note, first, that we may assume that the algorithm always compares sets of coins of equal
cardinalities. (This is the case because all weights may well be close enough to each other so that
the result of any weighing of sets of nonequal cardinalities will be known in advance. We omit the
detailed explanation.) We can now define a matrix A = (aij) ∈ An,m from the algorithm as follows.
For each 1 ≤ i ≤ n, let Li ⊂ [m] and Ri ⊂ [m] be the two sets of coins the algorithm compares in
step number i assuming all previous weighings are balanced. Define aij = −1 if j ∈ Li, ai,j = 1 if
j ∈ Ri and aij = 0 otherwise. Clearly A ∈ An,m. The algorithm reports that all coins are of the
same weight iff all weighings are balanced, and it is correct for coins with up to k distinct weights
iff ker(A) ∩Wm,k consists only of constant vectors.

3 Two simple observations

Let us first observe that even if there are no conditions on the weights of the coins at all, one simple
algorithm for solving the all equal problem always exists. Namely, one can compare all the coins to
a fixed coin, one by one. This will certainly decide whether all the m coins have the same weight or
not in m − 1 weighings. In the next proposition we observe that if there are no conditions on the
weights this number of weighings cannot be improved.

Proposition 3.1 The most efficient algorithm solving the all equal problem for m coins with arbi-
trary weights uses m− 1 weighings.

Proof. An algorithm using m−1 weighings is the obvious one described above. Simply pick a fixed
coin and compare it to every other coin, each one in its turn. Clearly all the coins have the same
weight iff all weighings are balanced.

To prove that one cannot do better, assume n < m − 1 weighings suffice and let A ∈ An,m be
the matrix corresponding to an optimal algorithm. Then, if all the weighings are balanced, any
vector w = (w1, . . . , wm) ∈ ker(A) may be the vector of weights of the m given coins. However, the
dimension of ker(A) is at least m− n > 1, showing that it must contain a nonconstant vector, and
completing the proof. 2

Note that by the above proposition and its proof it follows that for the function m(n, k) defined
in the introduction, m(n, k) = n+ 1 for all k > n+ 1.

One may be interested in determining how many different weights the coins have. Formulated as
a decision problem, this corresponds to the following question: Given m coins of arbitrary weights,
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decide whether they have at least k distinct weights or not. Let T (m, k) denote the minimum number
of weighings required to answer this problem.

Proposition 3.2 For every m > k > 1,

max{m− 1,m log3(k − 1)− k + 1} ≤ T (m, k) ≤ m log2(2k).

Proof: Björner and Lovász observed in [4] that the above problem can be solved using at most
m log2(2k) steps, where in each step we compare two coins to each other. On the other hand, they
proved in the same paper, using a topological approach, that any algorithm that performs in each
step an arbitrary linear test on the weights of the coins (that is, in each step the algorithm may check
if a specified linear form in the weights is positive, negative or zero), and decides in the end if there are
at least k distinct weights, must perform, in the worst case, at least max{m−1,m log3(k−1)−k+1}
tests. Note that the fact that the authors of [4] allow arbitrary linear tests and not only comparisons
between two weights, which might seem a bit artificial in the original context, is essential here. Since
every weighing is a special case of a linear test, the desired result follows. 2

4 Threshold gates

A threshold gate of n inputs is a function F : {−1, 1}n 7→ {−1, 1} defined by

F (x1, . . . , xn) = sign(
n∑
i=1

wixi − t),

where w1, . . . , wn, t are reals called weights, chosen in such a way that the sum
∑n
i=1wixi− t is never

zero for (x1, . . . , xn) ∈ {−1, 1}n. Threshold gates are the basic building blocks of Neural Networks,
and have been studied extensively. See, e.g., [11] and its references. It is easy to see that every
threshold gate can be realized with integer weights. Various researchers proved that there is always
a realization with integer weights satisfying |wi| ≤ 2−n(n+ 1)(n+1)/2. See, e.g., [13] for a proof.

There are several simple constructions of threshold gates of n inputs that require some weights of
size 2Ω(n). H̊astad [10] constructed threshold gates that require larger weights, thus showing that the
above mentioned upper bound is nearly tight. The precise statement of his theorem is the following.

Theorem 4.1 ([10], Theorem 2.10) For every n which is a power of 2 there exists a threshold
gate F of n inputs (described explicitly) so that if w1, . . . , wn, t are integers and

F = sign(
n∑
i=1

wixi − t)

for every (x1, . . . , xn) ∈ {−1, 1}n, then for every j

|wj | ≥
1

2nen4β2n
nn/2,

where here and from now on β = log(3/2).
In addition, the above F can be realized by weights w1, . . . , wn, t with t = 0.
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5 Coin-weighing

In this section we sketch the proof of Theorem 1.1.
Let Vn denote the set of all vectors of length n with {−1, 1, 0} coordinates. A sequence v1, . . . , vm

of not necessarily distinct members of Vn is called admissible if the sum of its elements is the zero
vector, and it contains no proper nonempty subsequence whose sum is the zero vector.
Fact: For every n, m(n, 2) is precisely the maximum possible length m of an admissible sequence
v1, . . . , vm of members of Vn.
The proof of this fact is not difficult. Here is a sketch. Given an admissible sequence as above, let
A = (aij) be the n by m matrix whose columns are the vectors v1, . . . , vm. Clearly A ∈ An,m and
it is not too difficult to check that since the sequence is admissible, there is no solution w of the
system Aw = 0 in which w is a nonconstant vector whose coordinates attain only two distinct values.
Conversely, any correct weighing algorithm corresponds, by the discussion in Section 2, to a matrix
in An,m with no nonconstant vectors in ker(A) ∩Wm,2 and it is easy to check that the columns of
such a matrix form an admissible sequence.

In order to prove the upper bound in Theorem 1.1 we have to bound the maximum possible
length of an admissible sequence of elements of Vn. A geometric argument based on Steinitz’s
Lemma, following the ideas in [1], can be given, but it only yields a weaker estimate. The best upper
bound we can prove is that for n > 1

m(n) ≤ 3n − 1
2

(n+ 1)n(n−1)/2.

This is proved by considering the cone consisting of all integer nonnegative vectors of length 3n that
describe dependencies between the members of Vn. Using some standard results about Hilbert bases
of polyhedral cones (see, e.g., [14]), it can be shown that any member of this cone is an integral
nonnegative linear combination of certain members of the cone, each of which is a nonnegative linear
combination of at most (3n − 1)/2 integral vectors whose l1-norms can be bounded by applying
Cramer’s rule and Hadamard’s Inequality. The details are not complicated, but are somewhat
lengthy, and will appear in the full version.

In order to prove the lower bound in Theorem 1.1 using the above fact we have to prove the
existence of a long admissible sequence. To do so, we apply the following procedure for obtaining
such a sequence. Let B = (bij) be an n by (n + 1) matrix whose columns are members of Vn, and
suppose the rank of B is n. Then the system of n linear equations By = 0, where y = (y1, . . . , yn+1) is
a (column) vector of variables has a one dimensional solution, that is, all the solutions of the system
are scalar multiples of any fixed given nontrivial solution. The system obviously has a nontrivial
integral solution, by Cramer’s rule, for example. Among all integral solutions, let y = (y1, . . . , yn+1)
be one with the minimum possible l1−norm, that is, with the minimum possible value of the sum∑n+1
j=1 |yj |. Define zj = |yj |, and note that by the minimality in the choice of y the greatest common

divisor of the numbers zj is 1. Let uj be the column number j of B if yj is positive, and the additive
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inverse of that column otherwise. Note that
∑n+1
j=1 zjuj = 0 and that if

∑n+1
j=1 sjuj = 0 then the

vector s = (s1, . . . , sn+1) is a scalar multiple of z = (z1, . . . , zn+1). Therefore, if the numbers sj are
integers then s is an integral multiple of z. In particular, it follows that if

∑n+1
j=1 sjuj = 0 for some

integers sj , not all zeros, then
n+1∑
j=1

|sj | ≥
n+1∑
j=1

zj . (1)

We can now define an admissible sequence consisting of
∑n+1
j=1 zj members of Vn by taking zj

copies of uj , for every j. The sum of the members of this sequence is clearly the zero vector.
Moreover, any proper nonempty subsequence of it contains sj copies of uj for some 0 ≤ sj ≤ zj ,
where 0 <

∑n+1
j=1 sj <

∑n+1
j=1 zj , and hence the sum of its members cannot be 0, by (1). We have thus

proved the following.

Proposition 5.1 Let B be an n by (n+ 1) matrix of rank n whose columns are members of Vn, and
suppose that every nontrivial integral solution y = (y1, . . . , yn+1) of the system By = 0 satisfies

n+1∑
j=1

|yj | ≥M.

Then m(n) ≥M.

Before procceeding with the proof of the asymptotic result note that the 3 by 4 matrix

B =


−1 1 1 −1

0 −1 1 −1
1 0 −1 −1


whose kernel is spanned by the vector (4, 2, 3, 1) already shows that m(3, 2) ≥ 4+2+3+1 = 10 ( > 8).
Similarly, by a computer search, we have found matrices providing explicit algorithms that show that,
for example, m(4, 2) ≥ 30, m(10, 2) ≥ 259606 and m(15, 2) ≥ 2132870658.

The main part of the proof of the lower bound in Theorem 1.1 is its proof when n is a power
of 2, using Theorem 4.1. The result can then be deduced for all n by some additional tricks. The
additional tricks require a detailed constructive description for the proof for powers of two and are
thus omitted, due to space limitations. Here is the proof for powers of two.

Proposition 5.2 For every n which is a power of 2 there exists an n by (n+ 1) matrix B of rank n
with {−1, 1}-entries so that every nontrivial integral solution y = (y1, . . . , yn+1) of the system By = 0
satisfies

n+1∑
j=1

|yj | ≥
1

2e4nβ2n
nn/2.
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Proof. Let
F (x1, . . . , xn) : {−1, 1}n 7→ {−1, 1}

be a threshold gate satisfying the assertion of Theorem 4.1. Consider the following system of 2n

inequalities with the n variables w1, . . . , wn

n∑
j=1

εjwj ≥ 1 if (ε1, . . . , εn) ∈ {−1, 1}n, F (ε1, . . . , εn) = 1,

n∑
j=1

εjwj ≤ −1 if (ε1, . . . , εn) ∈ {−1, 1}n, F (ε1, . . . , εn) = −1.

Since F can be realized with weights w1, . . . , wn, t where t = 0 there is a solution of the above system
of inequalities. By a standard result from the theory of Linear Programming, which we omit, there
is a solution in which n inequalities are tight, where the linear forms of these inequalities have full
rank.

Let C denote the n by n matrix whose rows are n tight independent linear forms Li as above
and let δ be the corresponding vector of values of Li(w′). Note that C is an n by n matrix of full
rank with {−1, 1} entries and δ is a vector with {−1, 1} coordinates. By the discussion above, our
system of inequalities has a solution w′ = (w′1, . . . , w

′
n) which is the unique solution of the system

of n equations Cw = δ. Let B be the n by (n + 1) matrix obtained from C by adding to it the
column δ. Then y′ = (w′1, . . . , w

′
n,−1) is a nontrivial solution of the system By = 0 and any integral

solution of it must be an integral multiple of y′ (since the last coordinate has to be integral). Hence,
any integral solution y of the system By = 0 is of the form y = py′ = (pw′1, . . . , pw

′
n,−p), where p

is an integer, and it thus follows that either the vector of first n coordinates of any such solution
or its additive inverse satisfies all inequalities in the system above. This shows that for any such
y = (y1, . . . , yn+1) either wi = yi or wi = −yi satisfy

F (x1, . . . , xn) = sign(
n∑
i=1

wixi)

for all (x1, . . . , xn) ∈ {−1, 1}n.
By Theorem 4.1 this implies that the absolute value of each of the first n coordinates of y is at

least
1

2nen4β2n
nn/2,

completing the proof of the proposition, and implying, in view of Proposition 5.1, the assertion of
Theorem 1.1 as well. 2

Remark. Note that since the matrix B in the last proposition has no zeros, in the weighing
algorithm it provides every coin participates in every weighing. We note also that the proof here can
be converted into a constructive one by some additional work, thus yielding an explicit algorithm for
the corresponding problem.
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6 Three weights or more

In this section we sketch the proof of Theorem 1.2. Note, first that by the discussion in Section 2,
m(n, k) is simply the maximum integer m such that there exists an n by m matrix A ∈ An,m for
which ker(A) ∩Wm,k contains only constant vectors, where Wm,k is the set of all vectors of length
m with positive coordinates in which the number of distinct coordinates is at most k. The upper
bound in Theorem 1.2 is rather simple, and is proved in the following lemma.

Lemma 6.1 Suppose k ≥ 3, put m = m(n, k) and define r = b(k − 1)/2c. Then

(r + 1)m−1 ≤ (2r(m− 1) + 1)n. (2)

Therefore,

m(n, k) ≤ Cn log n
log k

for some absolute constant C.

Proof. Given a matrix A ∈ An,m corresponding to an optimal algorithm, let v1, . . . , vm denote the
columns of A. Define

S = {
m∑
j=2

rjvj , rj ∈ 6 6 6 6 , 0 ≤ rj ≤ r},

where 6 6 6 6 denotes the set of all integers. Then |S| = (r + 1)m−1. We claim that no two vectors in S

are equal. To see this, assume this is false and suppose
m∑
j=2

rjvj =
m∑
j=2

tjvj ,

where rj , tj are integers and there is at least one j for which rj and tj differ. Then the vector
y = (0, r1 − t1, r2 − t2, . . . , rm − tm) lies in ker(A) and is not a constant vector. Since the vector J
consisting of m ones is also in ker(A), so is (r+ 1)J + y, which is in Wm,k as each of its coordinates
is an integer between 1 and 2r + 1 ≤ k. Therefore, A does not correspond to a valid algorithm,
showing that indeed all members of S are distinct.

Since each coordinate of any vector in S is an integer whose absolute value cannot exceed r(m−1)
the inequality (2) follows, completing the proof. 2

Remark. One can apply the second moment method (see, e.g., [2]) to improve the best estimate
obtained for C by the above argument, but since we are not trying to optimize the constants here
we omit the details.

The lower bound in Theorem 1.2 is proved by a probabilistic argument.

Lemma 6.2 There exists an absolute positive constant c such that for every n and k satisfying
n+ 1 ≥ k ≥ 3,

m(n, k) ≥ cn log n
log k

.
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Proof (brief sketch). Since m(n, k) ≥ n + 1 for every k the result is trivial for, say, k ≥ n1/3

(for all c < 1/3), and we thus may assume that k ≤ n1/3. Given a large n, let m be an even
integer satisfying m = (1 + o(1))cn log n/ log k, where c < 1/3 is an absolute positive constant to
be chosen later. Let A ∈ An,m be a random matrix obtained by choosing each row or A, randomly
and independently, among all row-vectors of length m containing precisely m/2 − 1-coordinates
and m/2 1-coordinates. To complete the proof it suffices to show that almost surely (that is, with
probability that tends to 1 and n tends to infinity) the weighing algorithm corresponding to A solves
the all equal problem for coins with up to k distinct weights. To do so, we must show that there is no
nonconstant vector in Wm,k that lies in ker(A). Note that there are infinitely many vectors in Wm,k

and hence the proof requires some ideas besides standard probabilistic arguments. This, however,
can be done by considering certain minimal possible linear relations and by combining them with
appropriate estimates for hypergeometric distributions. The details are rather complicated and will
appear in the final version. 2

7 Concluding remarks

Our techniques here enable us to improve the known results for several additional seemingly unrelated
questions. Three examples are the following.

• A (multi)-hypergraph H on a set N of n vertices is a collection of (not necessarily distinct)
subsets of N , called edges. The hypergraph is d-regular if every member i ∈ N lies in pre-
cisely d-edges. A subhypergraph of H is a sub (multi)-set of H. A regular hypergraph H is
indecomposable if it contains no proper nonempty regular subhypergraph. Let D(n) denote
the maximum possible degree d so that there exists a d-regular indecomposable hypergraph
on n vertices. The problem of determining or estimating the value of D(n), which is moti-
vated by questions in game theory, received a considerable amount of attention (see [8] and its
references). Huckeman, Jurkat and Shapley proved that

D(n) ≤ (n+ 1)(n+1)/2,

for every n, Shapley showed that D(n) ≥ 2n−1

n−1 for all n > 2, and van Lint and Pollak improved
this lower bound and showed that D(n) ≥ 2n−3 + 1 for all n > 2. Our techniques here enable
us to improve the lower bound and show that it is not far from the above mentioned upper
bound, that is, that the asymptotic behaviour of D(n) is given by D(n) = n( 1

2
+o(1))n.

• Answering a question of Graham and Sloane [7], which was motivated by questions in Numerical
Algebra, we can show that the maximum possible entry in an inverse of an n by n invertible
matrix with {−1, 1} entries is n( 1

2
+o(1))n. A similar estimate holds for {0, 1}-matrices.

• As described in Section 4, H̊astad proved that for every n which is a power of 2 there is a
threshold gate F (x1, . . . , xn) such that in any realization of it with integral weights, some
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weights are of absolute value at least n( 1
2

+o(1))n. He further mentioned that it is not clear how
to get a similar estimate for all values of n (although, as he remarked, this is not extremely
intriguing, as his result clearly implies that for every n some threshold gates of n inputs require
weights of size at least n( 1

4
+o(1))n.) Combining his technique with some of our ideas here we

can show that in fact for every n, some threshold gates of n inputs require weights of size
n( 1

2
+o(1))n.

The results in Section 5 apply to a slightly more general case which we may call generic weights. A
set of weights w1, . . . , wt is called generic if any vector of integers (λ1, . . . , λt) that satisfies

∑t
i=1 λi =

0 and
∑t
i=1 λiwi = 0 is the zero vector. Note that any set of two numbers is generic. Let m′(n)

denote the maximum possible number m such that given a set of m coins out of a collection of coins of
unknown generic weights, one can decide if all the coins have the same weight or not using n weighings
in a regular balance beam. It can be shown that the results described in Section 5 apply to this
case (without any essential change in the proofs) and show (constructively) that m′(n) = n( 1

2
+o(1))n.

Another variant of the all equal problem for two weights is the following. Let M(n) denote the
maximum possible number m such that given a set of m coins out of a collection of coins of an
arbitrary number of unknown distinct weights, and given a distinguished coin which is known to be
either the heaviest or the lightest one among the given m coins, one can decide if all the coins have
the same weight or not using n weighings in a regular balance beam. Note that the distinguished
coin may be either the heaviest or the lightest, and it is not known in advance which of the two it
is. If there are only two possible weights, then any coin is distinguished, and hence m(n) ≥ M(n).
We can extend our method here and show that the asymptotic behaviour of M(n) also satisfies
M(n) = n( 1

2
+o(1))n.

The proof of the lower bound in Theorem 1.2 described in Section 6 is not constructive. It
would be interesting to find a constructive proof yielding an explicit algorithm for the corresponding
problem. We can describe a constructive algorithm for the case of three (unknown) weights, known
to form an arithmetic progression. Even this seemingly simple case, where n weighings suffice to solve
the problem for Θ(n log n) coins, requires some nontrivial construction whose detailed description is
omitted.
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