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Abstract

The cochromatic number of a graph G = (V,E) is the smallest number of parts in a partition
of V in which each part is either an independent set or induces a complete subgraph. We show
that if the chromatic number of G is n, then G contains a subgraph with cochromatic number at
least Ω( n

lnn ). This is tight, up to the constant factor, and settles a problem of Erdős and Gimbel.

1 Introduction

All graphs considered here are finite and simple. For a graph G, let χ(G) denote the chromatic
number of G. The cochromatic number of G = (V,E) is the smallest number of sets into which the
vertex set V can be partitioned so that each set is either independent or induces a complete graph.
We denote by z(G) the cochromatic number of G.

The cochromatic number was originally introduced by L. Lesniak and H. Straight [6] and is related
to coloring problems and to Ramsey theory. The subject has been studied by various researches (see
[8] for several references). A natural question is to find a connection between the chromatic and
the cochromatic numbers of a graph. A complete graph on n vertices shows that a graph G with
a high chromatic number may have a low cochromatic number. Thus to get a nontrivial result one
should consider subgraphs of G. P. Erdős and J. Gimbel [3] studied this question and proved that
if χ(G) = n, then G contains a subgraph whose cochromatic number is at least Ω(

√
n/ lnn). They

conjectured (see also [7] and [8], pp. 262–263) that the square root can be omitted. In this note we
prove the following theorem which settles this conjecture.

Theorem 1.1 Let G be a graph with chromatic number n, then G contains a subgraph with cochro-
matic number at least (1

4 + o(1)) n
log2 n
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Note that the result of the above theorem is best possible up to a constant factor, as shown by a
clique on n vertices together with the simple result of [2], [4] that the cochromatic number of any
graph on n vertices is at most (2 + o(1)) n

log2 n
.

2 The Proof

In this section we prove the main result. This is done using a probabilistic argument. Throughout,
we assume that n is sufficiently large. To simplify the presentation, we omit all floor and ceiling signs
whenever these are not crucial. Let G = (V,E) be a graph with chromatic number n. We can assume
that G does not contain a clique of size n. Otherwise, by the known results about Ramsey numbers
(see, e.g., [5], [1]), G contains an n-vertex subgraph with neither a clique nor an independent set of
size at least 2 log2 n, whose cochromatic number is at least n

2 log2 n
, as needed.

As the first step we reduce the size of the problem. More precisely, we prove that it is enough to
consider graphs with at most n2 vertices. This can be done by the following lemma.

Lemma 2.1 Let G = (V,E) be a graph with chromatic number n. Then either z(G) ≥ n/ lnn or G
contains a subgraph G1 = (V1, E1), such that χ(G1) = (1 + o(1))n and |V1| ≤ n2.

Proof: Suppose that z(G) < n/ lnn. Let V =
⋃k
i=1 Ui∪

⋃l
j=1Wj be a partition of the set of vertices

of G into independent sets Ui and cliques Wj , such that k + l < n/ lnn. Define V1 = ∪lj=1Wj . Since
G has no clique of size n, |V1| ≤ n2/ lnn < n2. Let G1 be the subgraph of G induced on the set V1.
Then any coloring of G1 together with the sets Ui forms a coloring of G. Thus

n = χ(G) ≤ χ(G1) + k ≤ χ(G1) + n/ lnn.

Therefore χ(G1) ≥ n− n/ lnn = (1 + o(1))n. 2

Theorem 1.1 is now a straightforward consequence of the following lemma.

Lemma 2.2 Let G1 = (V1, E1) be a graph on at most n2 vertices with χ(G1) = (1+o(1))n. Let H be
a subgraph of G1, obtained by choosing each edge of G1 randomly and independently with probability
1/2. Then almost surely

z(H) ≥ (
1
4

+ o(1))
n

log2 n
.

Proof: The probability that H contains a clique of size 4 log2 n is clearly at most(
n2

4 log2 n

)(
1
2

)(4 log2 n
2 )

≤
(

en2

4 log2 n

)4 log2 n (1
2

)8(log2 n)2−2 log2 n

≤
[

n2

log2 n

√
2

n2

]4 log2 n

= o(1),

where here we used the estimate
(m
k

)
≤
(
em
k

)k which is valid for all m and k.
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The probability that there exists a subset V0 ⊆ V1 such that the induced subgraph G1[V0] of G1

on V0 has minimum degree at least 4 log2 n and V0 becomes an independent set in H, is at most

n2∑
k=4 log2 n

(
n2

k

)(
1
2

) 4k log2 n

2

≤
n2∑

k=4 log2 n

[
en2

k

1
n2

]k

=
n2∑

k=4 log2 n

(
e

k

)k
≤ n2

(
1

log2 n

)log2 n

= o(1).

This implies that almost surely (that is, with probability tending to 1 as n tends to infinity) any
independent set V0 in H induces a subgraph of G1 with chromatic number at most 4 log2 n. Indeed,
if χ(G1[V0]) > 4 log2 n, then G1[V0] contains a color-critical subgraph G2 = (V2, E2) with χ(G2) =
4 log2 n + 1 which must have minimum degree at least 4 log2 n. Since V2 is independent in H this
almost surely does not happen, by the above argument.

Now, let V1 =
⋃k
i=1 Ui ∪

⋃l
j=1Wj be a partition of the vertex set of H into independent sets Ui

and cliques Wj , satisfying k + l = z(H). Then almost surely

(1 + o(1))n = χ(G1) ≤
k∑
i=1

χ(G1[Ui]) +
l∑

j=1

|Wj | ≤ k · 4 log2 n+ l · 4 log2 n

= (k + l)4 log2 n = z(H)4 log2 n,

implying z(H) ≥ 1+o(1)
4

n
log2 n

. 2
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