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Abstract
We show that for every x1, . . . , xn, y1, . . . , yn ∈ S1 there exists i ∈ {1, . . . , n} such that∑n

k=1 d(xi, xk) ≤
∑n

k=1 d(xi, yk), where S1 is the unit circle and d is the distance on S1. We
also discuss a game theoretic interpretation of this result.

1 Introduction

Let x1, . . . , xn, y1, . . . , yn ∈ R, and denote N = {1, . . . , n}. We claim that there exists i ∈ N such
that ∑

k∈N

|xi − xk| ≤
∑
k∈N

|xi − yk|. (1)

To see this, assume without loss of generality that x1 ≤ x2 ≤ · · · ≤ xn. For every k ∈ N

|x1 − xk|+ |xn − xk| = |x1 − xn| ≤ |x1 − yk|+ |xn − yk|,

and by summing over all k ∈ N we get∑
k∈N

|x1 − xk|+
∑
k∈N

|xn − xk| ≤
∑
k∈N

|x1 − yk|+
∑
k∈N

|xn − yk|.

It immediately follows that (1) holds with respect to i = 1 or i = n, that is, with respect to one of
the extreme points.

Next, let x1, . . . , xn, y1, . . . , yn ∈ S1, where S1 is the unit circle. Let d : S1 × S1 → R+ be the
distance on S1, i.e., the distance between two points is the length of the shorter arc between them.
If x1, . . . , xn cannot be placed on one semicircle then there are no longer points that can easily be
identified as “extreme”. Is it still true that there exists i ∈ N such that∑

k∈N

d(xi, xk) ≤
∑
k∈N

d(xi, yk)?
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Put another way, if we have n people walking on a circle from x1, . . . , xn to y1, . . . , yn, is it true
that they cannot jointly move closer (in terms of the sum of distances) to every starting point?

In Section 2 we answer this question in the affirmative. Although our main result is formulated
with respect to S1, it clearly also holds for any closed curve that is homeomorphic to S1. On
the other hand it is easy to see that it does not hold for any graph embedded in the plane that
contains a vertex v of degree at least 3. This is shown by taking n = 3 and letting x1, x2 and x3 be
three points that lie on different edges incident with v, each being of equal distance from v, with
y1 = y2 = y3 = v. In Section 3 we briefly discuss a game theoretic implication of this result.

2 Main Theorem

We first introduce some notations. Let x, y ∈ S1; we denote the shorter open arc between x and
y by (x, y), and the shorter closed arc between x and y by [x, y].1 For every x ∈ S1 we let x̂ be
the antipodal point of x on S1, i.e., the diametrically opposite point. Finally, given x, y ∈ S1 we
denote the “clockwise operator” by �, and its strong version by �. Without being very formal,
x � y means that x is clockwise of y on the circle; this operator is well-defined in the context of an
arc of length at most π.

We are now ready to formulate and prove our main result.

Theorem 1. Let x1, . . . , xn, y1, . . . , yn ∈ S1. Then there exists i ∈ N such that∑
k∈N

d(xi, xk) ≤
∑
k∈N

d(xi, yk). (2)

Proof. Let x1, . . . , xn ∈ S1, and define a multiset X by X = {x1, . . . , xn}. We first note that we
can assume that there are no xi, xj ∈ X such that xj = x̂i. Indeed, in this case the claim holds
trivially with respect to either i or j, since for all z ∈ S1,

d(xi, z) + d(xj , z) = π.

In particular, for every xi, xj ∈ X, (xi, xj) and (x̂i, x̂j) are well-defined.
We say that two points xi, xj ∈ X are nearly antipodal if there is no point xk ∈ X such that

xk ∈ (xi, x̂j) or xk ∈ (xj , x̂i); let A ⊆ X2 be the set of all nearly antipodal pairs. Given a nearly
antipodal pair 〈xi, xj〉 ∈ A, let the critical arc of 〈xi, xj〉, denoted crit(xi, xj), be the long open arc
between x̂i and x̂j , that is,

crit(xi, xj) = S1 \ [x̂i, x̂j ] = (xi, x̂j) ∪ [xi, xj ] ∪ (xj , x̂i).

See Figure 1 for an illustration of the construction given above.
Let y1, . . . , yn ∈ S1, and define a multiset Y by Y = {y1, . . . , yn}. It is sufficient to prove that

there exists a pair of nearly antipodal points 〈xi, xj〉 ∈ A such that∑
k∈N

d(xi, xk) +
∑
k∈N

d(xj , xk) ≤
∑
k∈N

d(xi, yk) +
∑
k∈N

d(xj , yk).

1If x and y are antipodal then these arcs are ambiguously defined.
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Figure 1: An illustration of the construction in the proof of Theorem 1, for n = 4. The nearly
antipodal pairs are A = {〈x1, x3〉, 〈x2, x4〉, 〈x3, x4〉}.

Indeed, in this case we get that Equation (2) holds with respect to either xi or xj . Therefore,
assume for the purpose of contradiction that for every pair of nearly antipodal points 〈xi, xj〉 ∈ A,∑

k∈N

d(xi, xk) +
∑
k∈N

d(xj , xk) >
∑
k∈N

d(xi, yk) +
∑
k∈N

d(xj , yk). (3)

We claim that Equation (3) implies that for every pair of nearly antipodal points 〈xi, xj〉 ∈ A,
the number of points from Y on crit(xi, xj) is strictly greater than the number of points from X
on the same arc. Formally, for 〈xi, xj〉 ∈ A, let

αX
ij = |{xk ∈ X : xk ∈ crit(xi, xj)}|,

and
αY

ij = |{yk ∈ Y : yk ∈ crit(xi, xj)}|.

We have the following claim.

Lemma 1. Let 〈xi, xj〉 ∈ A. Then αY
ij > αX

ij .

Proof. For every point z ∈ [xi, xj ], we have that

d(xi, z) + d(xj , z) = d(xi, xj).

Let d′(xi, xj) be the length of the longer arc S1 \ [xi, xj ] between xi and xj , namely

d′(xi, xj) = d(xi, x̂j) + d(x̂j , x̂i) + d(x̂i, xj) = d(xi, xj) + 2 · d(xi, x̂j) > d(xi, xj).

For every point z ∈ [x̂i, x̂j ] it holds that

d(xi, z) + d(xj , z) = d′(xi, xj).

Finally, it holds that for every z ∈ (xi, x̂j) ∪ (xj , x̂i),

d(xi, xj) < d(xi, z) + d(xj , z) < d′(xi, xj).
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Since xi and xj are nearly antipodal, there are no points from X in (xi, x̂j) and (xj , x̂i). Therefore,∑
k∈N

d(xi, xk) +
∑
k∈N

d(xj , xk) = αX
ij · d(xi, xj) + (n− αX

ij ) · d′(xi, xj). (4)

On the other hand,∑
k∈N

d(xi, yk) +
∑
k∈N

d(xj , yk) ≥ αY
ij · d(xi, xj) + (n− αY

ij) · d′(xi, xj). (5)

Using Equations (4) and (5), we get that (3) directly implies that αY
ij > αX

ij , as claimed.

From Lemma 1, we immediately get that∑
(xi,xj)∈A

αX
ij <

∑
(xi,xj)∈A

αY
ij . (6)

In order to derive a contradiction, we also need the following lemma.

Lemma 2. There exists r ∈ N such that ∑
(xi,xj)∈A

αX
ij = r · n, (7)

whereas ∑
(xi,xj)∈A

αY
ij ≤ r · n, (8)

Proof. It is easy to see that |A| is odd (e.g., by induction on n); let |A| = 2s + 1, for some s ∈ N.
We first wish to claim that every xi ∈ X is a member of exactly s+ 1 critical arcs, which directly
proves Equation (7) with r = s+ 1.

Without loss of generality we prove the claim with respect to x1 ∈ X. Consider the clockwise
closed arc between x1 and x̂1. Let Z = {z1, . . . , zt} be all the points xi or x̂i on this arc, where
for all k, zk+1 � zk. In particular, z1 = x1 and zt = x̂1. For instance, in Figure 1 we have that
Z = {x1, x2, x̂4, x3, x̂1}.

Now, we have that the set of nearly-antipodal pairs A is exactly the set of pairs 〈xi, xj〉 such
that zk is a point xi and and zk+1 is an antipodal point x̂j (this is a type 1 nearly-antipodal pair),
or zk is an antipodal point x̂i and zk+1 is a point xj (this is a type 2 nearly-antipodal pair). If
〈xi, xj〉 is a nearly-antipodal pair of type 1, we have that x1 ∈ [xi, xj ], and hence x1 ∈ crit(xi, xj).
On the other hand, if 〈xi, xj〉 is a nearly-antipodal pair of type 2, then x1 /∈ crit(xi, xj). Since
z1 = x1 is a point from X and xn+1 = x̂1 is an antipodal point, the number of nearly-antipodal
pairs of type 1 is exactly s+ 1, which proves the claim.

In order to prove Equation (8), let y ∈ S1. It is sufficient to prove that there exists xi ∈ X such
that y appears in at most as many critical arcs as xi, since we already know that xi is a member
of exactly s + 1 critical arcs. We consider the two points or antipodal points that are adjacent to
y, and briefly examine four cases.

1. xi � y � xj : y appears in exactly the critical arcs that contain xi (these are also exactly the
critical arcs that contain xj).
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2. xi � y ≺ x̂j : y appears in exactly the critical arcs that contain xi.

3. x̂i ≺ y � xj : y appears in exactly the critical arcs that contain xj .

4. x̂i � y � x̂j : When walking counterclockwise from x̂i, let xk ∈ X be the first point from X,
and let x̂l be the last antipodal point such that xk ≺ x̂l � x̂i. Then y is contained in all the
critical arcs that contain xk, except for crit(xk, x̂l), that is, in exactly s critical arcs.

We deduce that every yi is contained in at most r = s+ 1 critical arcs, which implies the validity
of Equation (8).

It follows from Lemma 2 that ∑
(xi,xj)∈A

αX
ij ≥

∑
(xi,xj)∈A

αY
ij ,

in contradiction to Equation (6).

3 A Game Theoretic Interpretation

Consider a facility location setting where the facility is to be located on a network. Each player
i ∈ N has an ideal location on the network; the player’s cost is the distance between its ideal
location and the location that was selected for the facility. A mechanism is a function that receives
the reported ideal locations of the players as input, and returns the location of the facility.

From the game theoretic point of view it is desirable that mechanisms be immune to manipula-
tion by rational players. A mechanism is strategyproof if players can never benefit by misreporting
their ideal location, regardless of the reports of the other players. In other words, by misreporting
his location a player cannot influence the facility location in a way that it becomes closer to his
ideal location. Schummer and Vohra [2] establish a characterization of deterministic strategyproof
facility location mechanisms on networks. In particular, they show that if the network is a circle
then the only deterministic strategyproof and onto mechanism is a dictatorship of one of the play-
ers, i.e., given any constellation of ideal locations the mechanism selects the ideal location of a fixed
player.

Randomization provides a way around this negative result. Indeed, under the random dictator
mechanism the ideal location of one of the agents is selected uniformly at random. This mechanism
is strategyproof: if an agent was chosen as the dictator then it could not have gained from lying,
whereas if it was not chosen then it could not have affected the outcome. Random dictator is also
“fair” compared to a deterministic dictatorship, and in particular produces an outcome that yields
a good approximation to the optimal facility location in terms of minimizing the sum of players’
costs2.

Taking our game theoretic requirements a step further, we say that a mechanism is group
strategyproof if even a coalition of agents cannot all benefit by lying, that is, for every joint deviation
by a coalition there is a member of the coalition whose expected distance from the facility does
not decrease. Group strategyproofness is a highly desirable property, but is rarely satisfied by
nontrivial mechanisms. We can derive the following result as an immediate corollary of Theorem 1.

2Specifically, it gives a 2 − 2/n approximation, where approximation is defined in the usual sense by looking at
the worst-case ratio between the expected cost of the mechanism’s solution and the cost of the optimal solution [1].
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Corollary 1. Assume that the network is a circle. Then the random dictator mechanism is group
strategyproof.

To see this, note that we can assume without loss of generality that the deviating coalition
contains all the players. Indeed, the expected cost of a player given that a nondeviating player
is selected by the mechanism, and the probability that a nondeviating player is selected by the
mechanism, are both independent of the reports of the deviating players. The corollary follows
after scaling by a factor of 1/n. For more details, including the formal facility location model, the
reader is referred to [1].
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