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Abstract

For every dimension d ≥ 1 there exists a constant c = c(d) such that for all n ≥ 1, every

set of at least cn lattice points in the d-dimensional Euclidean space contains a subset of car-

dinality precisely n whose centroid is also a lattice point. The proof combines techniques from

additive number theory with results about the expansion properties of Cayley graphs with given

eigenvalues.

1 Introduction

Let f(n, d) denote the minimum possible number f so that every set of f lattice points in the

d-dimensional Euclidean space contains a subset of cardinality n whose centroid is also a lattice

point. The problem of determining or estimating f(n, d) was suggested by Harborth [12], and

studied by various authors.

By an old result of Erdős, Ginzburg and Ziv [8], f(n, 1) = 2n−1 for all n. For the general case,

the following simple bounds are proved in [12]:

(n− 1)2d + 1 ≤ f(n, d) ≤ (n− 1)nd + 1 (1)

f(n1n2, d) ≤ f(n1, d) + n1(f(n2, d)− 1) (2)

The inequality (2) implies that if equality holds in the lower bound of (1) for (n1, d) and for (n2, d),

then equality holds for (n1n2, d) as well. Therefore, since it is easy to see that f(2, d) = 2d + 1,

it follows that f(2a, d) = (2a − 1)2d + 1 for all a ≥ 1. Similarly, as shown by Kemnitz [13],

f(p, 2) = 4p− 3 for p = 2, 3, 5, 7 and hence f(n, 2) = 4n− 3 for all n = 2a3b5c7d. It is conjectured
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in [13] that the lower bound in (1) is tight for d = 2, i.e., that f(n, 2) = 4n − 3 for all n, but this

is still open, although in [2] it is shown that f(n, 2) ≤ 6n− 5 for all n and that f(p, 2) ≤ 5p− 2 for

every sufficiently large prime p.

For d > 2 it is known that the lower bound in (1) is not tight, in general. Various researchers

observed that f(3, 3) ≥ 19 (> 8 · 2 + 1). Examples appear in [12], [7], [13], [14], where it is also

shown that in fact f(3, 3) = 19. As shown in [13], f(3, 4) = 41. By the main result of [6], [10],

f(3, d) = o(3d) as d tends to infinity. The problem of determining f(n, d) precisely for all n and d

seems extremely difficult.

In the present short paper we focus on the problem of estimating f(n, d) for a fixed dimension

d and large n, in an attempt to extend the results of [8] and [2] that deal with the cases d = 1 and

d = 2, respectively. Our main result is that for every fixed dimension d, f(n, d) ≤ c(d)n, where

c(d) is a constant depending only on the dimension d.

It is convenient to reformulate the definition of f(n, d) in terms of sequences of elements of the

abelian group Zdn. If S is a sequence of (not necessarily distinct) elements of an abelian group, and

T is a subsequence of S containing m elements, T is an m-subsequence. If the sum of elements in T

is the identity 0 of the group, T is a zero-sum subsequence. In this notation, f(n, d) is the minimum

possible f so that every sequence of f members of Zdn contains a zero-sum n-subsequence. Our

main result is the following.

Theorem 1.1 There exists an absolute constant c > 0 so that for all n, every sequence of at least

(cd log2 d)dn (not necessarily distinct) elements of Zdn contains a 0-sum n-subsequence. Therefore,

f(n, d) ≤ (cd log2 d)dn.

The proof of Theorem 1.1 is presented in the next section. It combines techniques from addi-

tive number theory with results about the expansion properties of graphs with given eigenvalues.

These expansion results are applied to appropriately defined Cayley graphs of abelian groups whose

eigenvalues can be easily computed in terms of the multiplicative characters of the groups.

To simplify the presentation, we do not make any attempt to optimize the absolute constants

in our various estimates. We also omit all floor and ceiling signs whenever these are not crucial.

2 The proof

It is not difficult to check that by (2) it suffices to prove Theorem 1.1 for primes n = p. For this

case, Zdp is a linear space, and our proof proceeds by induction on the dimension d. The basic idea

is, roughly, as follows. If our sequence contains sufficiently many members in a lower dimensional
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(affine) subspace we can apply induction. Otherwise, we show that every vector v ∈ Zdp is a sum

of precisely p members of the sequence. This is done by finding pairwise disjoint subsequences

A1, . . . , Ar of the given sequence so that the cardinality of A1 + · · ·+Ai grows sufficiently quickly

to ensure that every vector is in the sum A1 + · · ·+Ar, where r ≤ p. The detailed proof combines

tools from additive number theory with graph theoretical techniques and is presented in the next

three subsections.

2.1 Adding linear bases of vector spaces

Let p be a prime. A hyperplane in Zdp is the set of all vectors v of Zdp so that u · v = b, where here

u is a nonzero vector in Zdp , b ∈ Zp, and u · v denotes the usual inner product of u and v over the

field Zp. An affine basis of Zdp is a set of d+1 vectors in Zdp which is not contained in a hyperplane.

Proposition 2.1 Let x ≤ p/4d be a power of 2, and let A1, A2, . . . , As be s affine bases of Zdp ,

where s = 4xd. Then

|A1 +A2 + · · ·+As| ≥ xd.

The proof presented below is a rather simple consequence of the following result of Ruzsa, proved

in [19] by applying the elegant graph theoretical technique of Plünnecke [18].

Lemma 2.2 ([19], Corollary 5.2) If Y and B are finite subsets of an abelian group and h ≥ 1

is an integer, then

|Y +B| ≥ |Y |( |hB|
|Y |

)1/h.

Corollary 2.3 Let Y be a subset of Zdp and let B be an affine basis of Zdp . If |Y | ≤ xd for some

integer x ≤ p/4d then |Y +B| ≥ |Y |21/(2x).

Proof By an affine transformation we may assume that B is the set consisting of the 0-vector and

the d unit vectors. If h = 2xd, then hB contains all the vectors in which every coordinate is at

most 2x and hence |hB| ≥ (2x)d. The desired result now follows from Lemma 2.2. 2

Proof of Proposition 2.1 Start with the set Y1 of cardinality 1 containing only the zero vector

and with x1 = 2 and repeatedly apply the last corollary, applying it first with Y = Y1 and B = A1,

then with Y = Y1 + A1 (= A1) and with B = A2 and so on. By the corollary, after j ≤ 2dx1

such steps the resulting set Y = A1 + · · · + Aj is of size at least xd1. Define x2 = 2x1 and repeat

this process with the next affine bases, until the set Y of sums given by Y = A1 + A2 + · · · + Ai

contains at least xd2 members. By the corollary, this will happen after at most 2dx2 additional

steps. Continuing in this manner the desired result follows. 2
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Remark An alternative proof of Proposition 2.1 can be given, based on the main result of [15]

(see also [3], Lemma 6.9). The proof presented above is somehwat shorter.

2.2 Expansion and set addition

In this subsection we prove the following result.

Proposition 2.4 Suppose W ≥ 1, let A be a sequence of elements of Zdp and suppose that no

hyperplane contains more than |A|/4W members of A. Then, for every subset Y ⊂ Zdp of at most

pd/2 elements of Zdp there is an element a ∈ A such that

|(a+ Y ) \ Y | ≥ W

16p
|Y |.

In order to prove this assertion, we need the following known facts.

Lemma 2.5 ([9], see also [17], [1]) Let Y be a finite subset of an abelian group G, suppose a ∈ G
and let i be a positive integer . Then

|(−a+ Y ) \ Y | = |(a+ Y ) \ Y | (3)

|(ia+ Y ) \ Y | ≤ i · |(a+ Y ) \ Y | (4)

It is worth noting that some variant of (4) can be deduced from Lemma 2.2, but the estimate here

is better for our purposes.

If H = (V,E) is a loopless multigraph, the adjacency matrix of H is the symmetric matrix

(auv)u,v∈V , where au,v is the number of parallel edges between u and v. The eigenvalues of H are

the eigenvalues of this matrix. Note that if H is ∆-regular the largest eigenvalue of H is ∆.

Lemma 2.6 ([4], see also [5], page 120) Let H = (V,E) be a ∆-regular loopless multigraph and

let λ denote the second largest eigenvalue of H. Let V = Y ∪Z be a partition of V into two disjoint

sets, and let e(Y, Z) denote the number of edges of H that have one end in Y and one end in Z.

Then

e(Y, Z) ≥ (∆− λ)
|Y ||Z|
|V |

.

Let G be a finite abelian group, and let S be a multiset of elements of G so that 0 6∈ S and the

number of occurences of each s in S is equal to the number of occurences of −s in S. The Cayley

graph H = H(G,S) is the |S|-regular (multi-) graph whose set of vertices is G in which for each

g ∈ G and each element s that appears ls times in S there are ls parallel edges joining g and g+ s.
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Lemma 2.7 (see, e.g., [16]) Let G, S and H = H(G,S) be as above. Then, the eigenvalues of

H are the numbers ∑
s∈S

χ(s),

where χ ranges over all the multiplicative characters of G.

Proof of Proposition 2.4 Put G = Zdp . For each a ∈ A let Sa be the multiset

{a, 2a, 3a, . . . , 2dp/W ea} ∪ {−a,−2a,−3a, . . . ,−2dp/W ea}.

Let S be the multiset of elements of G consisting of the union (with repetitions) of the multisets

Sa, as a ranges over all members of A. Put ∆ = |S| = 4dp/we|A|, and let H = H(G,S) be the

corresponding Cayley graph. This graph is ∆-regular. We claim that its second largest eigenvalue

is at most 3∆/4. To see this observe that by Lemma 2.7, each nontrivial eigenvalue of H is of the

form ∑
s∈S

wv·s =
∑
a∈A

∑
s∈Sa

wv·s,

where here w = e
2πi
p , · denotes the usual product over Zp, and v is some nonzero member of G. Fix

such a v. For a ∈ A let v ·a be the product of a and v in Zp represented so that −p/2 < v ·a ≤ p/2.

By assumption, for each fixed b ∈ Zp, there are at most |A|/4W members a of A so that v · a = b.

Therefore, for at least |A|/2 members a ∈ A, |v · a| ≥ p/W . For each such a, if l = |v · a| (≥ W )

and r = 2dp/W e, then∑
s∈Sa

wv·s = wl(1− wrl)/(1− wl) + w−l(1− w−rl)/(1− w−l).

Therefore

|
∑
s∈Sa

wv·s| ≤ 4
|1− wl|

≤ 8
W2π/p

< 2p/W ≤ r.

Since this is the case for at least |A|/2 members of A, we conclude that

|
∑
a∈A

∑
s∈Sa

wv·s| ≤ |A|
2
r +
|A|
2

2r = 3∆/4,

as claimed.

Let Y ⊂ Zdp = G be a set of at most half the members of G. Put Z = G \ Y . By Lemma 2.6

and the above estimate for the eigenvalues of H there are at least ∆
4 |Y ||Z|/|G| ≥ ∆|Y |/8 edges of

H with one end in Y and another in G \ Y . This means that there are at least ∆|Y |/8 ordered

pairs (y, s) with y ∈ Y and s ∈ S so that y + s 6∈ Y . By averaging, it follows that there is some

fixed s′ ∈ S so that the number of members y of Y for which y + s′ 6∈ Y is at least |Y |/8. By the
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definition of S, there is an ε ∈ {−1, 1}, a positive integer j ≤ 2p/W and an a ∈ A so that s′ = εja.

Hence |(εja+Y ) \Y | ≥ |Y |/8 and by the two parts of Lemma 2.5, |(a+Y ) \Y | ≥ |Y |/8j ≥ W
16p |Y |,

completing the proof of the proposition. 2

2.3 The proof of the main result

We can now prove Theorem 1.1. Observe, first, that it suffices to prove it for the case of prime

n = p, since if f(p, d) ≤ cp for every prime p then f(p, d) ≤ 2cp − (2c − 1) for every such p, and

hence, by (2), f(n, d) ≤ 2cn− (2c− 1) ≤ 2cn for all n. We thus assume that n = p is a prime and

prove that

f(p, d) ≤ c(d)p (5)

for every prime p by induction on the dimension d, where the constants c(d) are defined as follows.

c(1) = 2 and c(d) = 256(d log2 d+ 5)c(d− 1) + (d+ 1) for d ≥ 2 (6)

It is easy to see that the constants c(d) above satisfy, indeed, c(d) ≤ (cd log2 d)d for some absolute

constant c. Observe, also, that we may assume that, say, p > 32d since otherwise the assertion of

the theorem follows trivially from (1).

To start the induction note that since as proved in [8] f(p, 1) = 2p − 1 for all p, (5) holds for

d = 1, with c(1) = 2. Assuming (5) holds for d−1 we prove it for d (≥ 2). Let S be a sequence of at

least c(d)p (not necessarily distinct) elements of Zdp . If there are at least c(d− 1)p elements of S on

a hyperplane, then, by the induction hypothesis, there is a 0-sum p-subsequence among these, and

there is nothing to prove. Hence, we may and will assume that there is no hyperplane containing at

least c(d− 1)p members of S. We next show that in this case we can find pairwise disjoint subsets

A1, . . . , As, B1, . . . Bt, A
′
1, . . . A

′
s′ , B

′
1, . . . , B

′
t′ of S, with the following properties. The cardinality of

each Ai and each A′i is d+ 1, the cardinality of each Bj and each B′j is 2, s+ t+ s′ + t′ ≤ p,

|A1 + . . .+As +B1 + . . .+Bt| > pd/2, (7)

and

|A′1 + . . .+A′s′ +B′1 + . . .+B′t′ | > pd/2.

This will show that

A1 + . . .+As +B1 + . . .+Bt +A′1 + . . .+As′ +B′1 + . . .+B′t′ = Zdp ,

i.e., every element of Zdp is a sum of s+ t+ s′ + t′ (≤ p) members of S. By choosing an arbitrary

set of p − s − t − s′ − t′ members of S that do not lie in the Ai, A′i, Bj and B′j and by writing
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the summation of their inverses as such a sum, we will get the desired 0-sum p-subsequence and

complete the proof.

It remains to prove the existence of the sets Ai, A′i, Bj , B
′
j with the above properties. We

construct these sets one by one, as shown below. Put W = 64(d log2 d+5) and observe that by (6),

c(d)p− p(d+ 1)
4W

= c(d− 1)p.

This means that even if we delete any set of at most p(d + 1) members of the sequence S, there

is no hyperplane containing more than a fraction of 1/4W of the remaining part of the sequence.

Therefore, even after some of the sets Ai, A′i, Bj , B
′
j will be defined, the remaining part of our

sequence S will still satisfy the assumptions in Proposition 2.4 which will be useful in the definition

of the other required sets.

We now turn to the construction of the above sets. The construction of the sets Ai, A′i is simple.

Let x be a power of 2 satisfying
p

32d
≤ x ≤ p

16d
.

Put s = s′ = 4xd (≤ p/4) and let A1, . . . , As and A′1, . . . , A
′
s′ be pairwise disjoint subsequences of S,

each forming an affine basis of Zdp . Observe that these bases certainly exist, and can be extracted

from S one by one, since during this procedure the remaining part of S cannot lie on a hyperplane

(in fact, there is no hyperplane containing even a fraction of 1/4W of this remaining part). By

proposition 2.1

|A1 + . . .+As| ≥ xd ≥ (
p

32d
)d, (8)

and a similar estimate holds for the sets A′i.

We next define the sets B1, . . . , Bt. Put Y = A1 + . . .+ As. If |Y | > pd/2 we do not need any

set Bi, as (7) already holds. Otherwise, let S′ denote the subsequence of S without the members of

the sets Ai and A′i, let s′ be an arbitrary member of S′, and apply Proposition 2.4 to A = −s′+S′

and Y . By the proposition, there is an a ∈ A so that

|(a+ Y ) ∪ Y | ≥ (1 +
W

16p
)|Y |.

Define B1 = {a+ s′, s′} (⊂ S′) and observe that

|Y +B1| = |(a+ Y ) ∪ Y | ≥ (1 +
W

16p
)|Y |.

Next, update Y to be Y = A1 + . . .+As+B1 and update S′ by omitting from it the elements of

B1. If, now, |Y | > pd/2 there is no need for any other sets Bj . Otherwise, apply, again, Proposition

2.4 as above to get another set B2 for which

|A1 + . . . As +B1 +B2| ≥ (1 +
W

16p
)|A1 + . . . As +B1|.
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Continuing in this manner we keep defining sets Bj until the required inequality (7) holds.

Since in each step the cardinality of the sum A1 + . . . + Bj is multiplied by at least (1 + W/16p)

it is easy to see that by (8), the number of steps will not exceed 16p
W log((32d)d) ≤ p/4. Once this

happens, the sets B′j can be defined in a similar manner, where the fact that Proposition 2.4 can

be applied follows from the remark following the definition of W . This completes the description

of the construction, and the assertion of Theorem 1.1 follows. 2

3 Open problems

The problem of determining f(n, d) precisely for all n and d remains, of course, wide open, and

seems to be very difficult. It seems plausible to conjecture that the estimate in Theorem 1.1 can

be improved and that in fact there exists some absolute constant c so that f(n, d) ≤ cdn for all n

and d.

Another conjecture, mentioned in Section 1, is the one in [13] asserting that f(n, 2) = 4n − 3

for all n. See [2] for some work on this question, including a proof that f(n, 2) ≤ 6n− 5 for all n.

This proof is based on algebraic tools, and does not yield any higher dimensional extensions.

The case of small n and large dimension d is also interesting. In [6], [10] it is shown that

f(3, d) = o(3d) as d tends to infinity, but it is not known if there is an absolute δ > 0 so that

f(3, d) ≤ (3 − δ)d for all sufficiently large d. More generally, it is not difficult to deduce from the

main result of [11] that for every fixed n > 2, f(n, d) = o(nd) as d tends to infinity, but the problem

of finding a sharper estimate for this range of n and d remains open.
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