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Abstract

The investigation of the asymptotic behaviour of various parameters of powers of a fixed
graph leads to many fascinating problems, some of which are motivated by questions in infor-
mation theory, communication complexity, geometry and Ramsey theory. In this survey we
discuss these problems and describe the techniques used in their study which combine combi-
natorial, geometric, probabilistic and linear-algebra tools.

1 Graph Powers

There are several known distinct ways to define the powers of a fixed graph. The n-th AND power
of an undirected graph G = (V,E) is the graph denoted by G∧n whose vertex set is V n in which
distinct vertices (x1 . . . xn) and (x′1 . . . x

′
n) are connected if {xi, x′i} ∈ E for all i ∈ {1, 2, . . . , n} such

that xi 6= x′i. The n-th OR power of G is the graph denoted G∨n whose vertex set is V n in which
distinct vertices (x1 . . . xn) and (x′1 . . . x

′
n) are connected if distinct xi and x′i are connected in G

for some i ∈ {1, 2, . . . , n}.
The study of the asymptotic behaviour of various parameters of these powers of a fixed graph

G, as well as their behaviour for similarly defined powers of directed and undirected graphs, is
motivated by questions in various areas and leads to many intriguing problems. These are discussed
in the following sections, in which we focus our attention mainly to the open problems in the area,
and only briefly describe the known results and proof techniques. Proven and disproven conjectures
are intermingled throughout the paper with open problems. More detailed proofs can be found in
the papers listed in the bibliography.

2 Shannon Capacity

The independence number α(G) of a graph G is the maximum cardinality of a set of vertices of G
no two of which are adjacent.
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A channel consists of a finite input set X, a (possibly infinite) output set Y , and a nonempty
fan-out set Sx ⊆ Y for every x ∈ X. In each channel use, a sender transmits an input x ∈ X and
a receiver receives an arbitrary output in Sx. Shannon [57] initiated the study of the amount of
information a channel can communicate without error.

Associated with a channel C is its characteristic graph G(C). Its vertex set is X and two
(distinct) vertices are connected if their fan-out sets intersect, namely, both can result in the same
output.

Note that every graph (V,E) is the characteristic graph of some channel: its input set is V , its
output set is E, and Sv consists of all edges containing v.

The largest number of inputs a channel C can communicate without error in a single use is
α(G(C)), the independence number of its characteristic graph. This is done as follows: the sender
and the receiver agree in advance on an independent set I. The sender transmits only inputs in I.
Every received output belongs to the fan-out set of exactly one input in I, hence the receiver can
correctly determine the transmitted input. Conversely, it is easy to see that a set containing two
connected vertices cannot be communicated without error.

When the channel C is used n > 1 times the sender transmits a sequence x1 . . . xn of inputs
and the receiver receives a sequence y1 . . . yn of outputs where each yi ∈ Sxi . Conceptually, n uses
of C can be viewed as a single use of a larger channel Cn. Its input set is Xn, its output set is Y n,
and the fan-out set of (x1 . . . xn) ∈ Xn is the Cartesian product Sx1 × . . .× Sxn .

It is not difficult to check that the characteristic graph of Cn is simply G∧n, the n-th AND
product of G = G(C).

It follows that the largest number of messages C can communicate without error in n uses is
α(G∧n). The limit limn7→∞(α(G∧n))1/n is called the Shannon capacity of G and is denoted by
c(G). It represents the number of distinct messages per use the channel can convey without errors,
when used a large number of times. This limit exists, by super-multiplicativity, and is equal to the
supremum supn7→∞(α(G∧n))1/n. (It is worth noting that sometimes it is customary to call log c(G)
the Shannon capacity of the graph G, but we prefer the definition above, following Lovász [50].)

By super-multiplicativity, c(G) ≥ α(G) for every G. One of the early discoveries of Shannon
was that sometimes strict inequality holds. Thus, for example, it is known by the results in [57]
and [50] that the Shannon capacity of a cycle of length 5 satisfies c(C5) =

√
5, whereas, of course,

its independence number is 2. It seems interesting to decide how large can the gap between α(G)
and c(G) be. In particular, the following conjecture seems plausible.

Conjecture 2.1 For every constant C > 0 there is a graph G with independence number 2 satis-
fying c(G) > C.

As shown implicitly in [21] (and explicitly in [8]) there is a tight connection between the Shannon
capacity of graphs and appropriate Ramsey numbers. The Ramsey number r(3 : k) is the maximum
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number r such that there exists an edge coloring of the complete graph on r vertices by k colors with
no monochromatic triangle. It turns out that the conjecture above is equivalent to the conjecture
that for every C > 0 the Ramsey number r(3 : k) exceeds Ck provided k is sufficiently large as a
function of C. This is an old question of Erdős (c.f., e.g., [35], [19]). The best known lower bound
for r(3 : k) is Ω(321k/5), proved in [22] improving [29], and the best known upper bound is O(k!)
([33]).

A related interesting question, which is more natural from the information theoretic point of
view, is the estimation of the largest possible gap between α(G) and c(G) as a function of the
number n of vertices of the graph.

Conjecture 2.2 For every ε > 0 and every n > n0(ε) there exists a graph G on n vertices satisfying
α(G) < nε and c(G) > n1−ε.

Some results about this conjecture appear in [8], where it is shown that there are graphs Gn on n

vertices satisfying α(Gn) ≤ O(log n) and c(Gn) ≥
√
n, but the assertion of the conjecture remains

wide open and deserves further study.
Another intriguing problem is the computational problem of determining the Shannon capacity

c(G) of a given input graph G. It is not even known if this problem is decidable, and the value
of c(G) is not known even for several extremely simple graphs like the cycle of length 7 (or any
odd cycle of length bigger than 5). It is also not known if the capacity of the complement of
any odd cycle of length bigger than 5 is 2. The existence of a natural graph invariant which we
cannot compute even for such simple finite graphs is highly intriguing, and although the results of
Lovász [50], Haemers [38] and those in [3] supply some geometric and algebraic tools for studying
this invariant, these methods work only in very limited cases, and it would be desirable to have
additional effective techniques.

The following conjecture was raised by Shannon in his original paper in 1956.

Conjecture 2.3 ([57]) The Shannon capacity of the disjoint union of two graphs is equal to the
sum of their capacities.

He proved that the capacity of a union of two graphs is always at least as large as the sum of the
capacities, and equality holds provided the independence number of one of the graphs is equal to
the chromatic number of its complement.

In [3] it is proved that this conjecture is false. There are two graphs, each having Shannon
capacity at most k, so that the capacity of their disjoint union is at least kΩ(log k/ log log k). The
proof combines a variant of the beautiful construction of Frankl and Wilson [28], with the ideas in
[4] and [8]. These counterexamples have an interesting and somewhat counterintuitive information
theoretic interpretation. Indeed, If G and H are graphs of two channels, then their union represents
the sum of the channels corresponding to the situation where either one of the two channels may

3



be used, a new choice being made for each transmitted letter. Therefore such examples show
that by using two channels alternately it is sometimes possible to obtain capacity that exceeds
considerably the capacities of each of them. The problem of estimating the largest possible gap
between the capacity of a union and the sum of the capacities remains open and deserves further
study. A related problem is that of estimating the minimum possible value of c(G) + c(G), where
the minimum is taken over all graphs G with n vertices. The construction in [3] shows that this
minimum is at most eO(

√
logn log logn), but it seems plausible that it is, in fact, Θ(logn).

The relevance of geometry to the study of the Shannon capacity of graphs was initiated by
Lovász in [50]. In this paper he introduced the θ-function of a graph G = (V,E). One of its various
equivalent definitions is the maximum possible value of the sum

∑
v∈V (uTv ·b)2, where the maximum

is taken over all unit vectors b and {uv, v ∈ V } in an arbitrary Euclidean space, so that for any
two adjacent vertices w and v of G the vectors uw and uv are orthogonal. This function has many
fascinating properties, including the fact that it is at least the independence number (and even at
least the Shannon capacity) of G and at most the chromatic number of its complement, and the
fact that it can be computed in polynomial time. See the survey [43] for more details.

A related problem to that of determining the maximum possible value of the Shannon capacity
of a graph (on n vertices) with independence number 2 is that of determining or estimating the
maximum possible θ-function of such a graph. This problem was raised by Lovász, and is equivalent
to the geometric problem of estimating the maximum possible Euclidean norm of a sum of n unit
vectors in Rn, so that among any three of them some two are orthogonal. Konyagin [45], and
Kashin and Konyagin [44] showed that this maximum is at least Ω(n2/3/(log n)1/2) and at most
O(n2/3) and in [1] it is shown that it is Θ(n2/3). The corresponding graph of [1] has interesting
Ramsey theoretic properties as well, and in particular it provides an explicit example of a triangle-
free graph on n vertices with independence number O(n2/3). Another example of a graph with this
property has recently been constructed in [20].

Let G(n, 1/2) denote, as usual, the random graph on n labeled vertices denoted 1, 2, . . . , n ,
obtained by picking each pair of distinct vertices i, j to be an edge randomly and independently
with probability 1/2. We say that G(n, 1/2) satisfies a property A almost surely if the probability
that it satisfy A tends to 1 as n tends to infinity.

Conjecture 2.4 There is an absolute constant b so that the Shannon capacity of G(n, 1/2) is at
most b log2 n almost surely.

As proved by Juhasz [41], the θ-function of G(n, 1/2) is Θ(
√
n) almost surely. This, together

with the well known fact (cf., e.g., [16] or [9]), that the independence number of G(n, 1/2) is
(2 + o(1)) log2 n almost surely, implies that the Shannon capacity of G(n, 1/2) is at least Ω(log n)
and at most O(

√
n) almost surely.
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3 Witsenhausen’s Rate

The chromatic number χ(G) of a graph G is the minimum number of colors needed to color its
vertices so that no two adjacent vertices have the same color.

A dual source consists of a finite set X, a (possibly infinite) set Y , and a support set S ⊆ X×Y .
In each dual-source instance, a sender PX is given an x ∈ X and a receiver PY is given a y ∈ Y
such that (x, y) ∈ S. Witsenhausen [61] and Ferguson and Bailey [25] initiated the study of the
number of bits that PX must transmit in the worst case in order for PY to learn x without error.
(See [56] for the case when PX and PY are allowed to interact.)

The fan-out of x ∈ X is the set Sx = {y : (x, y) ∈ S} of y’s that are jointly possible with x.
Associated with a dual source S is its characteristic graph G = G(S). Its vertex set is X, and
two (distinct) vertices x, x′ are connected if their fan-out sets intersect, namely, there is a y that
is jointly possible with both. Note that as is the case with the characteristic graphs of channels,
here, too, every graph (V,E) is the characteristic graph of some dual source: X = V , Y = E, and
S = {(x, y) : x ∈ y}.

The smallest number of possible messages that enable PX to transmit one of them for a single
instance of S is χ(G), the chromatic number of S’s characteristic graph. To do so, PX and PY agree
in advance on a coloring of G. Given x, PX transmits its color. PY , having y, can determine x
because there is exactly one element of X with this color that is jointly possible with y. Conversely,
it is easy to see that if two connected vertices are assigned the same message, an error can result.

In n > 1 instances of the dual source S, PX knows x1 . . . xn while PY knows y1 . . . yn such that
each (xi, yi) ∈ S and wants to learn x1 . . . xn. Conceptually, n instances can be viewed as a single
instance of a larger dual source whose support set is Sn ⊆ Xn × Y n. The characteristic graph of
this larger dual source is G∧n, the n-th normal power of the characteristic graph of S. It follows
that the smallest number of messages that enable PX to to convey n instances of S without error is
χ(G∧n). Let R(G) denote the limit limn7→∞(χ(G∧n))1/n. This quantity, called the Witsenhaussen’s
rate of G, measures the number of messages per instance that enable PX to convey PY a large
number of instances with no error. By sub-multiplicativity this limit exists and is always at most
χ(G). (Here, too, it is sometimes customary to call logR(G) the rate of G but we prefer to avoid
the logarithm). Witsenhausen [61] showed that for some dual sources, fewer messages suffice for
each use of the larger system (than for a single instance). For example, for the cycle of length 5,
χ(C5) = 3 >

√
5 = R(C5).

It is interesting to study the maximum possible gap between χ(G) and R(G). A result of Linial
and Vazirani [48] implies that for every constant C there are graphs G for which R(G) ≤ 6 while
χ(G) > C. In [8] it is shown that for every C and every ε > 0 there are graphs G with R(G) ≤ 2+ε

and χ(G) > C. This is done by observing that the chromatic number of G∧n does not exceed that
of G∨n, and by applying to the Kneser graphs the results of McEliece and Posner [52], and of Berge
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and Simonovits [13] that relate the chromatic number of G∨n with the fractional chromatic number
of G. This, together with the result of Lovász [49] about the chromatic number of Kneser graphs,
gives the above mentioned bound.

The study of the maximum possible gap between χ(G) and R(G) as a function of the number
of vertices n of G seems more complicated. As shown in [8] the ratio between these two may be at
least Ω(

√
n/ log2 n), but the following conjecture remains open.

Conjecture 3.1 For every ε > 0 and n > n0(ε) there is a graph G on n vertices satisfying
χ(G) > n1−ε and R(G) ≤ nε.

As is the case with the Shannon capacity, the computational problem of determining R(G) for
a given input graph G seems, in general, far beyond reach of the existing techniques, and even the
computation of R(G) for some simple, small graphs appears to be extremely difficult.

4 Cayley graphs

The partial results obtained in [8] concerning the study of Conjectures 2.2 and 3.1 combine algebraic
and probabilistic techniques. The idea is to prove the existence of self complementary Cayley graphs
in which the largest independent set is very small compared to the size of the graphs. For a group
H and a subset S ⊂ H satisfying S = S−1, the Cayley graph of H with respect to S is the graph
whose vertices are all elements of H and g, h ∈ H are adjacent iff h−1g ∈ S. The following Ramsey
theoretic conjecture seems plausible.

Conjecture 4.1 There exists an absolute constant b such that for every group H on n elements
there is a Cayley graph of this group containing neither a complete subgraph nor an independent
set on more than b log n vertices.

A weaker version of this conjecture, obtained by replacing the log n term by a log2 n term, is proved
in [8], and this is the main tool in obtaining a partial result in the study of Conjecture 3.1. Although
the solution of the last conjecture will not lead immediately to progress in the attempts to solve
Conjecture 3.1, it is interesting in its own right.

Cayley graphs appear naturally in the study of the maximum possible value of the θ-function of
a graph on n vertices with independence number 2. The construction in [1], in which this problem
is solved up to a constant factor, uses Cayley graphs of Abelian groups. Their spectral properties,
obtained via known bounds on character sums, play a crucial role in proving their properties. These
questions are strongly related to problems in Combinatorial Geometry. In fact, by using related
techniques together with some of the ideas in [24] and [14] it is proved in [10] that that there is an
absolute positive constant δ > 0, so that for all positive integers k and d, there are sets of at least
dδ log2(k+2)/ log2 log2(k+2) nonzero vectors in Rd, in which any k + 1 members contain an orthogonal
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pair. This settles a problem of Füredi and Stanley [30]. The problem of estimating more accurately
the maximum possible size of such a collection of vectors remains open.

5 Sperner Capacity

For a digraph D = (V,E) and for a positive integer n, let w(Dn) denote the maximum possible
cardinality of a subset S of V n in which for every ordered pair (u1, u2, . . . , un) and (v1, v2, . . . , vn)
of members of S there is some i, 1 ≤ i ≤ n such that (ui, vi) is a directed edge of D. It is easy to
see that the function g(n) = w(Dn) is super-multiplicative, and hence the limit

lim
n7→∞

[ (w(Dn))1/n]

exists and is equal to the supremum of the quantity in the square brackets. This limit, denoted by
C(D), is called the capacity of the digraph.

The study of the capacity of directed graphs was introduced by Körner and Simonyi and by
Gargano, Körner and Vaccaro in [47], [31], where the authors study the quantity

∑
(D) = logC(D),

which they call the Sperner capacity of D, and show that it generalizes the Shannon capacity of
an undirected graph. In several subsequent papers [32], [46] they apply some properties of this
invariant in the asymptotic solution of various problems in extremal set theory.

The problem of computing C(D) for a given directed graph D is even more difficult in general
than that of computing the Shannon capacity c(G) of an undirected graph G , since if D is obtained
from the complement of G by directing each edge in both directions then C(D) = c(G). It is thus
natural to try and restrict attention to some limited yet interesting classes of directed graphs. One
such class is the class of all tournaments.

A tournament T is a digraph in which for every pair u, v of distinct vertices exactly one of the
ordered pairs (u, v), (v, u) is a directed edge. The tournament T is transitive if there is a linear
order on its vertices such that (u, v) is a directed edge iff u is smaller than v in this order.

It is easy to see that the capacity C(Tn) of the transitive tournament on n vertices is n.
Therefore, the capacity of any tournament that contains a transitive subtournament on n vertices
is at least n. Using algebraic techniques, Calderbank, Frankl, Graham, Li and Shepp [18] proved
that the capacity of the cyclically directed triangle is 2, namely, the number of vertices in the
largest transitive subtournament in it. Blokhuis [15] gave a simpler proof of this result. This
inspired Körner and Simonyi ([46]) to conjecture that for every tournament T , the capacity C(T )
is the maximum number of vertices in a transitive subtournament of T .

Using probabilistic arguments it is shown in [2] that this conjecture is false. This is based on
some simple properties of random tournaments obtained by deciding, for each pair of vertices u,v
randomly and independently, if (u, v) or (v, u) is a directed edge with equal probability. However,
the assertion of the conjecture is true for all tournaments with at most 5 vertices. In order to prove
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the assertion of the conjecture for small tournaments one can develop an algebraic method, related
to the technique of Haemers in [38], which enables one to bound the capacities of other digraphs
as well.

The following conjecture seems plausible.

Conjecture 5.1 There is an absolute constant c so that the probability that the capacity of a
random tournament on n vertices exceeds c log2 n tends to 0 as n tends to infinity.

Let t(T ) denote the maximum number of vertices in a transitive subtournament of T . It would
be interesting to estimate the maximum possible value of the ratio C(T )/t(T ), as T ranges over
all tournaments of n vertices. It can be shown that this maximum is at least Ω(

√
n/ log n), but we

suspect it might be bigger.
Another interesting problem, suggested by Körner, is to characterize all tournaments T in which

for every subtournament T ′, C(T ′) = t(T ′).
Given a directed graph D = (V,E) and a field F , a representation of D of dimension d over

F is an assignment of a vector uv ∈ F d to each vertex v of D, so that no vector uv lies in the
span of the vectors assigned to the in-neighbors of v. This notion seems promising in the study of
the capacities C(D) of directed graphs, as it can be shown, using some linear-algebra tools, that
if D has such a representation (over any field) then its capacity C(D) is at most d. This result,
obtained jointly by the author and G. Tardos, together with some simple combinatorial arguments,
suffices to determine the capacity of all tournaments with at most 5 vertices. It can be used to
show that, as proved in [2], the Sperner capacity of any digraph with maximum outdegree d is at
most d+ 1. More generally, it implies that, as proved in [27], the Sperner capacity of any digraph
whose vertex set can be partitioned into k classes, where di is the maximum outdegree in the i-th
class, is at most

∑k
i=1(di + 1). It does not suffice, however, to solve conjecture 5.1, whose study

seems to require additional techniques. Indeed, the minimum possible value of
∑k
i=1(di + 1), where

the minimum is taken over all tournaments on n vertices and all partitions of their vertices, where
the numbers di are defined as above, is easily seen to be at least (n+1)/2. Combining probabilistic
and combinatorial arguments one can show that the probability that the capacity of a random
tournament on n vertices is bigger than εn tends to 0 for every fixed positive ε, as n tends to
infinity, but the assertion of the conjecture is far stronger.

Sali and Simonyi [58] proved that any undirected vertex transitive self-complementary graph
on n vertices has an orientation whose Sperner capacity is

√
n. As mentioned in their paper, it

might be that any undirected graph G has an orientation D whose Sperner capacity is equal to the
Shannon capacity of the complement of G.
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6 Additional Graph Powers

The n-th (sparse) power of an undirected graph G = (V,E), denoted simply by Gn, is the graph
whose vertex set is V n in which distinct vertices (x1 . . . xn) and (x′1 . . . x

′
n) are connected iff there

exists a single index i such that xj = x′j for all j 6= i and xi and x′i are connected in G. The
study of the asymptotic behaviour of the independence number of Gn, for a fixed graph G, can
be motivated by the search for appropriately defined error-detecting codes in a certain channel.
Indeed, if the vertices of the graph are the possible inputs, and each input may be altered, during
the transmission process in a channel, to one of its neighbors, then this independence number
represents the maximum number of messages of length n that can be sent in a way that enables
us to detect the occurrence of one error. In [36] and some of its references the authors obtained
several results about the problem of estimating these independence numbers. In particular, they
proved that for every fixed graph G, the limit limn7→∞

α(Gn)
|V |n exists, and is at least 1/χ(G) and at

most the reciprocal of the fractional chromatic number of G. Moreover, for every Cayley graph
of an Abelian group this limit is precisely the reciprocal of the fractional chromatic number of
G. Several examples suggest that this invariant has interesting properties and its study seems to
require algebraic and combinatorial tools.

Another interesting topic dealing with sparse powers is the study of isoperimetric inequalities
in such powers. For G = (V,E) and Gn as above, and for an integer d, let f(G,n, d) denote
the maximum possible number of vertices in V n of distance at least d from a set of half the
vertices of V n, divided by |V |n. The study of the asymptotic behaviour of f(G,n, d) attracted a
considerable amount of attention, as it appears naturally in the study of many combinatorial and
geometric problems. See, for example, [53, 7, 55, 54, 17, 59, 37]. In all these references it is shown
that for every fixed G there exists a positive constant b = b(G) such that f(G,n, d) ≤ exp[−b(d2/n)]
for all d and n, but it seems interesting to get a more precise estimate, like the tight inequality of
Harper [39] for powers of a single edge. This inequality asserts that for the graph of the n-cube G
where n is, say, 2k+ 1, f(G,n, d) is precisely the set of all vertices of the cube whose distance from
a Hamming ball of radius (n− 1)/2 is at least d. That is, in this case

f(G,n, d) =

n+1
2
−d∑

i=0

(
n

i

)
.

In [5] the authors obtain, for every fixed G, an asymptotic formula with the right constant for
log f(G,n, d) if n is large and d is not too small as a function of n. This is done by a combination
of large deviation techniques and ideas borrowed from Game Theory, and provides an asymptotic
formula for all relevant d >>

√
n.

The results for d = o(n) are somewhat simpler and lead to a definition of a constant called in
[5] the spread constant of a graph G, which appears in the expression for f(G,n, d) for values of
d >>

√
n that satisfy d = o(n). For a graph G = (V,E), call a function X mapping V to the
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set of reals Lipschitz if |X(u) − X(v)| ≤ 1 for all uv ∈ E. Any such function can be considered
as a random variable on the symmetric probability space V (in which each vertex has the same
probability) and as such has a variance V AR[X]. The spread constant c = c(G) is the maximum
possible value of V AR[X] over all Lipschitz X. In [5] it is proved that for every fixed graph G, if
d/
√
n and n/d tend to infinity, then

f(G,n, d) = e−
d2

2cn
(1+o(1)).

For linear distances the situation is more complicated. Let m = m(G) denote the maximum,
over all vertices v of G, of the average distance of a vertex of G from v. It is not too difficult
to check that if d ≥ mn +

√
cn then f(G,n, d) = 0. For values of d satisfying

√
n << d and

mn− d >>
√
n the asymptotic value of f(G,n, d) is given as follows. For a real λ, let L(λ) be the

maximum possible value of lnE[eλX ], where the maximum is taken over all Lipschitz X : V 7→ R
with expectation E[X] = 0. For a real t define

R(t) = supλ∈R[λt− L(λ)].

Then, for d as above,
f(G,n, d) = e−R(d/n)n(1+o(1)).

If, for example, G is a triangle, then a simple though tedious computation shows that for every
0 ≤ t < 2/3,

e−R(t) = 2(2− 3t)t−2/3(6t+ 2)−1/3−t,

supplying a tight isoperimetric inequality for the space of all vectors of length n over an alphabet
of 3 letters with the Hamming metric.

The tensor product of two graphs G = (V,E) and H = (V ′, E′) is the graph whose vertex set
is the Cartesian product V × V ′ of the vertex sets of G and H, where (u, u′) is joined to (v, v′) if
either uv ∈ E or u′v′ ∈ E′, but not both. The n-th tensor power of G is the tensor product of n
copies of G. These powers are studied in [60], where the author shows how to use their properties to
construct edge colorings of complete graphs by two colors in which the number of monochromatic
copies of K4 is smaller than the expected number of such copies in random colorings. Similar
results hold for other graphs including all graphs containing a K4, as shown in [40]. This disproves
conjectures of Erdös [23] and of Burr and Rosta [12].

7 Some computational aspects

One of the main reasons for the fast development of Combinatorics during the recent years is
certainly the widely used application of combinatorial methods in the study and the development
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of efficient algorithms. It is therefore natural to study the computational aspects of the problems
considered here.

The properties of the Lovász θ-function and the fact that it can be computed in polynomial time
using semidefinite programming (see [34]) suggest that it can be used for the design of approximation
algorithms for the chromatic number of a graph and for its independence number. It is well
known that if, as is widely believed, the complexity classes P and NP differ, then there is no
polynomial time algorithm that provides a reasonable approximation for these quantities (see [26],
[11], [51]). In addition, examples of Feige [24] show that the ratio between the θ-function of
a graph on n vertices and its independence number (or chromatic number) may be as large as
n/eO(

√
logn). Despite these facts it is possible to apply the properties of the θ-function and obtain

some meaningful approximation of these invariants for graphs with small chromatic number or with
large independence number, and indeed there are algorithms along these lines for both problems
developed in [42] for coloring and in [6] for the independence number. A better understanding of the
possible gaps between the θ-function and these two parameters may lead to improved algorithms.

The computational problem of determining the Shannon capacity of a given input graph seems
very difficult. It would be interesting, however, to develop any (possibly exponential or even
doubly exponential time) algorithm that provides a reasonable approximation for this quantity .
The techniques in [8] or [3] can be extended to show that the independence number of any fixed
AND-power of a large graph provides essentially no information on its Shannon capacity. We
conclude the paper with the following plausible conjecture

Conjecture 7.1 There exists a function f(n) ≤ O(2n) such that for any graph G on n vertices,
(α(G∧f(n)))1/f(n) is always at least 0.99c(G).
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[40] C. N. Jagger, P. Šťov́iček and A. Thomason, Multiplicities of subgraphs, Combinatorica 16
(1996), 123-141.

[41] F. Juhasz, The asymptotic behaviour of Lovasz’ θ function for random graphs, Combinatorica
2 (1982), 153-155.

[42] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semi-definite program-
ming, In 35th Symposium on Foundations of Computer Science, IEEE Computer Society Press
(1994), pages 2–13.

[43] D. E. Knuth, The sandwich theorem, The Electronic Journal of Combinatorics, A1 (1994),
48pp.

[44] B. S. Kashin and S. V. Konyagin, On systems of vectors in a Hilbert space, Trudy Mat. Inst.
imeni V. A. Steklova, 157:64–67, 1981, English translation in: Proceedings of the Steklov
Institute of Mathematics (AMS 1983), 67–70.

[45] S. V. Konyagin, Systems of vectors in Euclidean space and an extremal problem for polynomials,
Mat. Zametki 29 (1981), 63-74. English translation in: Mathematical Notes of the Academy
of the USSR 29 (1981), 33-39.

[46] J. Körner, On clique growth in products of directed graphs, Graphs and Combinatorics 14
(1998), 25-36.

[47] J. Körner, G. Simonyi, A Sperner–type theorem and qualitative independence, J. Comb. The-
ory, 59(1992), 90–103.

[48] N. Linial and U. Vazirani, Graph products and chromatic numbers, In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, pages 124–128, 1989.

[49] L. Lovász, Kneser’s conjecture, chromatic number and homotopy, Journal of Combinatorial
Theory, 25 (1978), 319–324.

[50] L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Information Theory
IT-25, pages 1–7, 1979.

14



[51] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems. Proc.
25th ACM STOC (1993), 286–293.

[52] R.J. McEliece and E.C. Posner, Hide and seek, data storage, and entropy, The Annals of
Mathematical Statistics, 42(5):1706–1716, 1971.

[53] B. Maurey, Construction de suites symétriques, Compt. Rend. Acad. Sci. Paris 288 (1979),
679–681 (in French).

[54] C. J. H. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics
1989, London Math. Society Lecture Notes Series 141 (J. Siemons, ed.), Cambridge Univ.
Press (1989), 148–188.

[55] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed
Spaces, Lecture Notes in Mathematics 1200, Springer–Verlag, Berlin and New York, 1986.

[56] A. Orlitsky, Worst-case interactive communication I: Two messages are almost optimal, IEEE
Transactions on Information Theory, 36 (1990), 1111–1126.

[57] C. E. Shannon, The zero-error capacity of a noisy channel, IRE Transactions on Information
Theory, 2(3):8–19, 1956.

[58] A. Sali and G. Simonyi, Orientations of self-complementary graphs and the relation of Shannon
and Sperner capacities, to appear.

[59] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst.
Hautes Études Sci. Publ. Math. 81 (1995), 73–205.

[60] A. Thomason, Graph products and monochromatic multiplicities, Combinatorica 17 (1997),
125-134.

[61] H. Witsenhausen, The zero-error side information problem and chromatic numbers, IEEE
Transactions on Information Theory, 22(5):592–593, September 1976.

15


