Limitations on regularity lemmas for clustering graphs
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Abstract

Szemerédi’s regularity lemma is one instance in a family of regularity lemmas,
replacing the definition of density of a graph by a more general coefficient. Recently,
Fan Chung proved another instance, a regularity lemma for clustering graphs, and
asked whether good upper bounds could be derived for the quantitative estimates it
supplies. We answer this question in the negative, for every generalized regularity
lemma.

1 Introduction

Szemerédi’s regularity lemma [7] is a cornerstone of extremal combinatorics, with applications
in graph theory, number theory, computer science and more. Underlying the lemma is the
notion of density of a graph, which is the number of edges divided by the total number
of vertex pairs. The lemma says, roughly, that any graph of density bounded away from
zero can be approximated by a union of a constant number of bipartite graphs G; that are
regular, meaning that all induced subgraphs of a G; with sufficiently many vertices have
approximately the same density.

Recently, Chung [1] proved a variant of Szemerédi’s regularity lemma that is tailor made
for clustering graphs, which are graph with a clustering coefficient bounded away from zero.
The clustering coefficient of a graph G is the number of triangles in G divided by the
number of two-edge paths in G. It plays a key role in the definition of the “small world
phenomenon”, as clustering graphs come up often in real-world settings, such as social and
neural networks ([5, 8]). Chung’s regularity lemma says, roughly, that every graph G with
a clustering coefficient bounded away from zero can be approximated by a union of a con-
stant number of induced tripartite subgraphs G;, such that all induced subgraphs of a G;
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with sufficiently many two-edge paths have approximately the same clustering coefficient.
Importantly, this regularity lemma is meaningful even if the graph G' does not have constant
density, unlike Szemerédi’s regularity lemma, as long as the clustering coefficient of G is
constant.

More generally, for any fixed graph H and subgraph F' of H on the same vertex set, one
may consider the analogous (H, F')-coefficient, namely, the number of copies of H divided by
the number of copies of F. It turns out that an “(H, F')-regularity lemma” holds in general
(see [1]).

Since clustering graphs often appear “in nature”, it is perhaps reasonable to suspect
that they have an efficient regularity lemma, meaning one where the number of parts in the
partition is a slow-growing function of the regularity parameter 1/e. Indeed, the existence of
an efficient regularity lemma was the first open question raised in Chung’s paper [1], which
adds that “It is of both theoretical and practical interest to see if the clustering property
could be helpful for reducing the size of the partition”. More generally, one might ask
whether there is an efficient (H, F')-regularity lemma for some pairs (H, F'). Here we prove
that the answer to all these questions is negative.

1.1 Generalized regularity

Denote by ng(G), for a k-vertex graph H and a k-partite graph G, the number of unlabeled
copies' of H in G where distinct vertices are mapped into distinct vertex classes. For a
subgraph F' C H, also on k vertices, the (H, F')-coefficient of a k-partite graph G is

CH,F(G) =

Note that the density d(G) of a bipartite graph G is a special case of a cy r(G); specifically,
if the vertex classes of G are (V1,V3) then ¢y, & (G) = |G|/|V1||Va| = d(G). More generally,
cy 7 (G) is the “H-density” (that is, normalized H count) of G. Moreover, ck; p,(G) is the
clustering coefficient of G, where P, denotes the 2-edge path graph.”

Let us formally define (H, F')-regularity. We use the notation x + € for a number lying
in the interval [x — €, x + €.

Definition 1 ((H, F')-regular graph). Let F' C H be graphs on k vertices. A k-partite graph
G is e-(H, F)-regular if for every induced k-partite subgraph G' with ng(G') > enp(G), we
have ¢y p(G') = cur(G) L e.

!That is, subgraphs of G that are isomorphic to H. Alternatively, we may consider labeled copies (injective
mappings V(H) — V(G) that map edges of H to edges GG) with no real changes in our results.

2We note that [1] has, for technical reasons, two definitions of the clustering coefficient, depending on
whether the graph is guaranteed to be tripartite or not, and in the former case the denominator is the

number of two-edge paths with some fixed orientation. We opted to use a single definition.



Definition 2 ((H, F')-regular partition). Let FF C H be graphs on k vertices. A wvertex
partition P of a graph G is e-(H, F)-regular if all but at most eng(G) copies of H in G lie
in induced k-partite subgraphs G| X, ..., Xg|, with X1, ..., X € P, that are e-(H, F)-regular.

Our result shows that in any proof of an (H, F')-regularity lemma, the order of the
partition (that is, its number of parts) can in general be as large as a tower function, similarly
to the case for Szemerédi’s regularity lemma—as originally shown by Gowers [4]. In fact, the
graphs we construct use Gowers’ construction (or any other construction witnessing tower-
type bounds) as a black box. Our proof proceeds by showing that for certain special graphs,
as defined in Section 2, having an (H, F')-regular partition can be used to derive a similarly
regular partition.

We are now ready to state our result. Formally, the tower function is defined recursively
by twr(n) = 2"* (=1 for n > 1 and twr(0) = 1. To simplify the presentation, we omit all
floor and ceiling signs whenever these are not crucial.

Theorem 1. Let F' C H be graphs on k wvertices. There is a graph whose every e-(H, F')-
reqular partition is of order at least twr(1/ poly(ek¥)).

2 Lower Bound Proof

2.1 Semi-blowups

The central definition in our proof is that of a semi-blowup. A blowup of a graph H is any
graph obtained by replacing every vertex ¢ of H by a (non-empty) independent set V; of
new vertices, each edge {i,7} of H by a complete bipartite graph between V; and V;, and
each non-edge {i,j} of H by an empty bipartite graph between V; and V;. A semi-blowup
of H is any graph obtained from a blowup of H by replacing the bipartite graph between
V; and V;—for only one choice of {i,j}—by any bipartite graph. We write H ®©. G, for a
semi-blowup of H in which Gy replaces the bipartite graph corresponding to e = {i, j}.

We write N = {0, 1,2,...} for the set of nonnegative integers, and [k] = {1,...,k}.

Notation. In everything that follows, we fix:

an integer k > 2, graphs F' C H on the vertex set [k],
and an edge e = {1,2} € E(H) \ E(F).

Henceforth, in the semi-blowup H ®. Gq, the first vertex class of G is embedded as V;
and the second as V5. We will repeatedly use the following easy properties of semi-blowups.

The first property shows that an induced subgraph of a semi-blowup of H is again a semi-
blowup of H.

Observation 1. For all Uy C Vi,...,Ux C Vi, the induced subgraph (H ®.Go)[Us, ..., U]
is of the form H ®,Go[Uy, Us).



The second property shows that the “H-density” of a semi-blowup of H is exactly the
(edge-) density of the replacement bipartite graph.

Observation 2. ng(H ©. Go) = d(Go)|Va| - - |Vl

Proof. Sincee = {1,2} € E(H), a choice of a vertex from each vertex class, v; € V},... v €
Vi, spans a copy of H if and only if {v1,v2} € E(Gy). Moreover, such a copy is necessarily
an induced copy of H, and thus the only copy of H on this set of vertices. We conclude
np(H ©c Go) = |Go - [Va] - - [Vie| = d(Go)|VA] - - [Vil- u

Our choice of F' and e has the following implication, which will be central to our proofs.

Lemma 2.1. There are integers a,b € N, with a > 1 and a + b < k!, such that for every
bipartite graph Gy of density d,

np(H ®.Go) = (a+ bd)|Vi| - -+ |Vil. (1)
This has the following corollaries:
np(H ©cGo) = Vil -+ - [Vil, (2)

and, by Observation 2,
d

a+bd (3)

Proof. Put H~ = (V(H), E(H) \ {e}). For every choice of vertices v; € Vi,...,u; € Vi,
the copy of H they induce in G contains np(H) copies of F' if {vi,v2} € Go, and otherwise

CH7F<H ®e Go) =

only ng(H™) copies of F. It follows that
np(G) = np(H7)VA[-- - [Vi| + (np(H) = np(H™))[Gol[Vs] - - Vil

Put a =np(H™) and b = np(H) — a, so that np(G) = (a + bd)|Vi|- - - |Vi|. We clearly have
a+b=mnpr(H) < k!l. Moreover, and crucially, we have a > 1, since F' has at least one copy
in H that does not contain e, namely, F—as e ¢ E(F'). This completes the proof. ]

2.2 Regularity of semi-blowups

We use Lemma 2.1 to show that a semi-blowup can be used to reduce (H, F')-regularity to
Szemerédi’s regularity. Recall that a bipartite graph G on (V4,V3) is said to be e-regular
if for all induced bipartite subgraphs G[Si, Sa] with |S7| > €|Vi| and |Sa| > €|Va| we have
d(G[S1, %)) = d(G) £ e.

Claim 2.2. For every bipartite graph Gy, if H ®, Gy is e-(H, F)-reqular then Gy is \/e - k*-
reqular.



Proof. Put G = H®. Gy and € = /e - E?*. Let S; € V; and Sy C Vs be subsets with
|S1| > €|Vi| and |S2| > €|Va|, and put d* = d(G[S1, Ss]), d = d(G[V1, Va]). We will prove
that d* = d £ ¢, which would complete the proof as it would imply that Gy is €¢-regular.

By Observation 1, the induced k-partite graph G[Si, S2, Vs..., V] is a semi-blowup of H
of the form H ®, G[S1, S2]. It follows from (3) that there are integers a,b € N, with a > 1
and a + b < k!, such that

CH7F(G) == f(d) and CH,F(G[Sl, Sz, ‘/3, ceey Vk]) == f(d*) (4)

where
T

o=t FbY R
Note that f'(z) = a/(a+bx)* > 0, so f is monotone increasing and f(z) < f(1) = 1/(a+b).

Let

_aw
S 1l—ba’
Observe that g and go f are well defined and, for every = € [0, 1], we have g(f(x)) = z. Note

g(x) g:10,1/b) = R.

that ¢'(x) = a/(1 — bx)? for every z € [0,1/b), and so is monotone increasing; this implies

the bound
b+a/2 a+b

e+ () =(5) =
a/2

where the first inequality assumes € < k% (otherwise there is nothing to prove), so € < ath)
Using (2) we deduce the bound

np(GS1, 82, Vi, VB) 2 SISl Va] - [Vil = €* VA -+ Vil = (€% /kDnp(G) = e np(G).

Thus, since G is e-H/F-regular, cy p(G[S1, 5, V5...,Vi]) = cur(G) £ ¢, that is, f(d*) =
f(d) £ € by (4). We deduce, using the properties of f and g above, that

d*=g(f(d*))=g(f(d) xte- x:nfl&ﬁeg’(x) =d+te-k*,

where the second step applies the mean value theorem on ¢ in the interval between f(d*)
and f(d). Since € - k?* < ¢, this completes the proof. ]

2.3 Regular partitions—auxiliary claims

The following claim gives an approximate restriction of a partition onto a subset.

Claim 2.3 (Approximate restriction). Let P be a partition of U and let V- C U be a subset.
For P'={X € P||XNV|=>6|X|} with § = a|V|/|U| we have

Y IXavi=1-a)lV]

XeP!



Proof. We have

Yooxnvi< > axI< > aX=dU]=alV.

XeP\P! XeP\P! XeP

Therefore,

MIXAVI=Y IXnVi= > [XnV[=(1-a)V]

XeP! XeP XeP\P’
[

The slicing lemma for regular graphs shows that a sufficiently large induced subgraph of a
regular bipartite graph is regular. We will need the following analogue for (H, F')-regularity.

Claim 2.4 (Slicing). Let T be a k-partite graph on (X1, ..., Xy), and let Y1 C Xy,...,Y; C
Xy with |Y;| > 6;|X;| be such that G .= T[Y1,..., Y] is a semi-blowup of H. IfT is e-(H, F)-
reqular then G is € -(H, F')-reqular with € =€ - k!/(d1 -+ ).

Proof. Put A = ¢; - -+ §;. Since, by assumption, G is a semi-blowup of H, we have, using (2),

A €
np(G) 2 - Vel 2 AlXa] - [ Xk| 2 ne(T) = Snp(T).

6/

Let S; CYi,..., Sk C Y} be subsets with ng(G[Sy, ..., Sk]) > € -np(G). Then, by the above
inequality, np(G[S1,...,Sk]) > €-np(T). Since T is e-(H, F)-regular, we thus have

CH7F(G[5’1, ey Sk]) = CH7F(T) +e.
A special case of the above, obtained by taking S; =Y}, is
CH7F(G) = CH7F(T) *e.

Combining the last two estimates, we get cy p(G[S1, ..., Sk]) = cur(G) £ 2e. Since 2e < ¢
we deduce that G is €-(H, F')-regular, as needed. O

We will also need the following standard fact.
Fact 2.5. If G is a bipartite graph of density at most € then G is e-reqular.

To see why Fact 2.5 is true, note that all subsets S and T, each of size at least an
e-fraction of its vertex class, satisfy d(S,T) < d(G)/e* < e.



2.4 Putting everything together

We are now ready to prove Theorem 1. Recall that a vertex partition P of a graph G on n
vertices is said to be e-regular if 3y ., [ X||X'| < en® where the sum is over all cluster pairs
X, X" € P such that G[X, X'] is not e-regular. We use the following standard terminology:
a (semi-) blowup is said to be balanced if all vertex classes have the same size. The common
refinement of partitions P and V is the partition {X NV | X € P,V eV, X NV # 0}.

Our main result towards the proof of Theorem 1 is the following, which in some sense
lifts Claim 2.2 to a statement about partitions. Note that in the construction here we need
the blowup to be balanced, or at least not too “unbalanced”, since a relatively small vertex
class could be completely covered by small fragments of clusters from the regular partition,
thereby making our slicing lemma in Claim 2.4 unusable.

Theorem 2. If P is an e-(H, F)-regular partition of a balanced semi-blowup H ®. Gy then
the common refinement of P and {Vi,Va} is an e'/*k** -regular partition of Gj.

Proof. Put ¢ = €'/4k*. Let G = H®.Gy be a semi-blowup of H withn = |V;| = --- = V4],
and let P be an e-(H, F)-regular partition of G. Fori € {1,2}, denote the common refinement
of Pand {V;} by Q; ={XNV;| X €P, XNV, #0}. We need to prove that

S Ml <ent )

(Y1,Y2)€Q1x Q2
not €'-regular

Let P; = {X € 73| | X NV;| > 6;/X|} where we set, with hindsight,
1e ifie{1,2}
ol ifie {3, k).
Moreover, let P} = {X nv; ‘ X e 77@}. Using Claim 2.3 and the fact that G is balanced,

> lf[m\ =f[ > Y= (%n)M. (6)

Y3,.., Y 1 =3 3/7,67):
ViviePr

On the way to proving (5), our first goal will be to prove an analogous bound for P; x Pj,
rather than for Q; x Q,, as follows;

Y [Golvi, Yal| < €28+ |Gl . (7)

(Y1,Y2)EP; xP3

not €’-regular
Put A = §;---0; (> €*/(2k)*). We claim that if the k-partite graph G[X1,...,X}] with
X, € Py,..., Xk € Py is e-(H, F)-regular then the bipartite graph G[X; N Vi, Xy N V5
is €-regular. To see this, put ¥; = X; N'V; and note that G[Y;,...,Y,] is of the form
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H ©. G[Y1,Y3)], by Observation 1, and since |Y;| > 6;|X;| for every 1 < i < k, it is ek!A™!-
(H, F)-regular by Claim 2.4. Next, Claim 2.2 implies that G[Y}, Ys] is Vek!A~1k?*_regular.
Since Vek! A1k < (\/e/€)k3* < ¢, our claim follows. Now, to simplify the discussion, let
us introduce two pieces of notation:

Rp = {(X1,...,Xi) € Py x --- X P |G[Xq, ..., X}] is not e-(H, F)-regular}

R = {(X1, LX) EPI XX Py } G[X: NV, Xy N V) is not e'-regular}.

Then the claim above, in contrapositive, says Ry € Rp. We deduce that

Y o naGXy, X)) = Y na(GIX, L X))

> Y (@ NV XN V)

— Z Z np(GY1, ..., Ys])

Y3 ..... Yi: (Yl,YQ)G’Pf xP5
ViYi€P] ot €-regular

=Y 3 GML Y Y] Y

Y3 ..... Yi: (Yl,YQ)EPik xP5
ViYi€P/ not ¢-regular

G X leml,

(Y1,Y2)€ePy xP;
not ¢-regular

v

where the last equality uses Observation 1 and Observation 2, and the last inequality uses (6).
On the other hand, as P is an e-(H, F')-regular partition of G,

Z nH(G[Xl,,Xk]) SEHH(G) = €- |G0|nk_2,
where the last equality uses Observation 2. Combining the above two inequalities implies (7).

To deduce from (7) that Q; U Q, is indeed an €-regular partition of Gy, we will need two
more observations. First, using Fact 2.5,

_ _ 1 1
>, Ml Y TGN, Y <€t |Go| < SeGol < S,
(Y1,Y2)€P; xP3 (Y1,Y2)€Py xPs
not €’-regular not €-regular

where the second inequality follows from (7), and the penultimate inequality uses the choice
of €. Second, we claim that every cluster pair (Y1,Y3) € (Q1 x Q2) \ (P5 x P;) satisfies
[Y1]|Ya] < 61]X1]|X2|, where X; € P is uniquely defined by Y; = X; N'V;. Indeed, without
loss of generality Y; ¢ Py, meaning |Yi| < 61| X7, so |Y1]|Y2| < 01| X1]|X3|. It follows that

> Ml Y alXnlXAvil =6 (Y 1Xvil)( 3 X)) =’
XeP

(Y1,Y2)€Q1 x Q2 X, X'eP Xep
(Y1,Y2)¢Py xP3



Combining the last two inequalities, and using our choice of §; = %6’ , we obtain (5) and thus

complete the proof. O

To deduce Theorem 1 from Theorem 2, we use the celebrated tower-type lower bound
for Szemerédi’s regularity lemma, originally proved by Gowers [4]. (See also [6] for a simpler
proof.) For our application we need the bound to hold without assuming the partition is
equitable.® As was shown by Fox, Lovdsz and Zhao (see Theorem 2.2 in [3], or Theorem 1.2
in [2]), this can be assumed without significant loss.

Theorem 3 ([3, 4]). There is a bipartite graph whose every e-reqular partition is of order at
least twr(1/ poly(e)).

Proof of Theorem 1. Let GGy be the bipartite graph given by Theorem 3. Consider a
balanced semi-blowup G = H ®. Gy (where, implicitly, the blowup has sufficiently many
vertices for the semi-blowup G to be well defined). Let P be an e-(H, F')-regular partition
of G, and let Q be the common refinement of P and {V;, V3}, where V;, V5 are the vertex
classes of G. Apply Theorem 2 to deduce that Q is a poly(ek*)-regular partition of Gy. By
Theorem 3, the order of Q is at least twr(1/ poly(ek¥)), and we are done. O

3 Concluding Remarks

We have shown that tower-type lower bounds hold for every generalized regularity lemma.
One may raise the objection that, since a generalized regularity lemma can be meaningful
also for sparse graphs (that is, of density tending to 0 with the number of vertices), it is
not as satisfactory if our lower bound construction is dense. Indeed, the construction in
Theorem 1, being a semi-blowup of H, is—for any H with at least two edges—of density at
least 1/k. However, it turns out that one can easily get arbitrarily sparse graph with the
same lower bound, provided F' is connected. For example, one may add any desired number
of isolated vertices to the graph from Theorem 1 so as to reduce the density as needed,
yet still maintain the property that any (H, F')-regular partition is large. Indeed, this is a
consequence of the following observation.

Observation 3. Suppose F' is connected. Let a k-partite graph G be obtained from a k-partite
graph G by adding isolated vertices. If G is e-(H, F')-reqular then Gy is also e-(H, F')-regular.

Proof. As F and H are connected, np(G) = np(Go) and ng(G) = nuy(Go). Let G’ be a
k-partite induced subgraph of Gy with np(G’) > enp(Gy). Then np(G’') > enp(G), and as G
is e-(H, F)-regular, cy p(G') = cu r(G) L€, that is, cy r(G') = curp(Go) £ €, as needed. [

3In an equitable partition, all parts have the same size give or take 1.
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